BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Seshadri DR, Li RT, Voos JE, Rowbottom JR, Alfes CM, Zorman CA, Drummond CK. Wearable sensors for monitoring the physiological and biochemical profile of the athlete. NPJ Digit Med 2019;2:72. [PMID: 31341957 DOI: 10.1038/s41746-019-0150-9] [Cited by in Crossref: 79] [Cited by in F6Publishing: 50] [Article Influence: 26.3] [Reference Citation Analysis]
Number Citing Articles
1 Garg V, Gupta T, Rani S, Bandyopadhyay-ghosh S, Ghosh SB, Qiao L, Liu G. A hierarchically designed nanocomposite hydrogel with multisensory capabilities towards wearable devices for human-body motion and glucose concentration detection. Composites Science and Technology 2021;213:108894. [DOI: 10.1016/j.compscitech.2021.108894] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 12.0] [Reference Citation Analysis]
2 Hassani H, Komendantova N, Unger S, Ghodsi F. The Use of Big Data via 5G to Alleviate Symptoms of Acute Stress Disorder Caused by Quarantine Measures. Front Psychol 2021;12:569024. [PMID: 35283805 DOI: 10.3389/fpsyg.2021.569024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lin WY, Chen CH, Lee MY. Design and Implementation of a Wearable Accelerometer-Based Motion/Tilt Sensing Internet of Things Module and Its Application to Bed Fall Prevention. Biosensors (Basel) 2021;11:428. [PMID: 34821644 DOI: 10.3390/bios11110428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Alvarez-Perea A, Dimov V, Popescu FD, Zubeldia JM. The applications of eHealth technologies in the management of asthma and allergic diseases. Clin Transl Allergy 2021;11:e12061. [PMID: 34504682 DOI: 10.1002/clt2.12061] [Reference Citation Analysis]
5 Seshadri DR, Thom ML, Harlow ER, Drummond CK, Voos JE. Case Report: Return to Sport Following the COVID-19 Lockdown and Its Impact on Injury Rates in the German Soccer League. Front Sports Act Living 2021;3:604226. [PMID: 33681759 DOI: 10.3389/fspor.2021.604226] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Di Giminiani R, Cardinale M, Ferrari M, Quaresima V. Validation of Fabric-Based Thigh-Wearable EMG Sensors and Oximetry for Monitoring Quadriceps Activity during Strength and Endurance Exercises. Sensors (Basel) 2020;20:E4664. [PMID: 32824976 DOI: 10.3390/s20174664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
7 Teixeira E, Fonseca H, Diniz-Sousa F, Veras L, Boppre G, Oliveira J, Pinto D, Alves AJ, Barbosa A, Mendes R, Marques-Aleixo I. Wearable Devices for Physical Activity and Healthcare Monitoring in Elderly People: A Critical Review. Geriatrics (Basel) 2021;6:38. [PMID: 33917104 DOI: 10.3390/geriatrics6020038] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yu H, Zhou Z. Optimization of IoT-Based Artificial Intelligence Assisted Telemedicine Health Analysis System. IEEE Access 2021;9:85034-48. [DOI: 10.1109/access.2021.3088262] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Martín-Escudero P, Cabanas AM, Fuentes-Ferrer M, Galindo-Canales M. Oxygen Saturation Behavior by Pulse Oximetry in Female Athletes: Breaking Myths. Biosensors (Basel) 2021;11:391. [PMID: 34677347 DOI: 10.3390/bios11100391] [Reference Citation Analysis]
10 Lee KFA, Gan WS, Christopoulos G. Biomarker-Informed Machine Learning Model of Cognitive Fatigue from a Heart Rate Response Perspective. Sensors (Basel) 2021;21:3843. [PMID: 34199416 DOI: 10.3390/s21113843] [Reference Citation Analysis]
11 Wan EY, Ghanbari H, Akoum N, Itzhak Attia Z, Asirvatham SJ, Chung EH, Dagher L, Al-khatib SM, Stuart Mendenhall G, Mcmanus DD, Pathak RK, Passman RS, Peters NS, Schwartzman DS, Svennberg E, Tarakji KG, Turakhia MP, Trela A, Yarmohammadi H, Marrouche NF. HRS White Paper on Clinical Utilization of Digital Health Technology. Cardiovascular Digital Health Journal 2021;2:196-211. [DOI: 10.1016/j.cvdhj.2021.07.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Ovchinnikov AN, Paoli A, Seleznev VV, Deryugina AV. Measurement of Lipid Peroxidation Products and Creatine Kinase in Blood Plasma and Saliva of Athletes at Rest and following Exercise. JCM 2022;11:3098. [DOI: 10.3390/jcm11113098] [Reference Citation Analysis]
13 Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The Role of 3D Printing Technology in Microengineering of Microneedles. Small 2022;:e2106392. [PMID: 35362226 DOI: 10.1002/smll.202106392] [Reference Citation Analysis]
14 Gnacek M, Broulidakis J, Mavridou I, Fatoorechi M, Seiss E, Kostoulas T, Balaguer-ballester E, Kiprijanovska I, Rosten C, Nduka C. emteqPRO—Fully Integrated Biometric Sensing Array for Non-Invasive Biomedical Research in Virtual Reality. Front Virtual Real 2022;3:781218. [DOI: 10.3389/frvir.2022.781218] [Reference Citation Analysis]
15 Singh AV, Ansari MHD, Rosenkranz D, Maharjan RS, Kriegel FL, Gandhi K, Kanase A, Singh R, Laux P, Luch A. Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine. Adv Healthc Mater 2020;9:e1901862. [PMID: 32627972 DOI: 10.1002/adhm.201901862] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 34.5] [Reference Citation Analysis]
16 Wang B, Zong B, Wang H, Han B, Shi G. Analysis of Digital Long Jump Take-off Wearable Sensor Monitoring System. Journal of Sensors 2021;2021:1-10. [DOI: 10.1155/2021/4857624] [Reference Citation Analysis]
17 Ige EO, Adetunla A, Awesu A, Ajayi OK, Caruntu CF. Sensitivity Analysis of a Smart 3D-Printed Hand Prosthetic. Journal of Robotics 2022;2022:1-9. [DOI: 10.1155/2022/9145352] [Reference Citation Analysis]
18 Mortazavi Moghadam F, Bigdeli M, Tamayol A, Shin SR. TISS nanobiosensor for salivary cortisol measurement by aptamer Ag nanocluster SAIE supraparticle structure. Sensors and Actuators B: Chemical 2021;344:130160. [DOI: 10.1016/j.snb.2021.130160] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
19 Keegan RJ, Flood A, Niyonsenga T, Welvaert M, Rattray B, Sarkar M, Melberzs L, Crone D. Development and Initial Validation of an Acute Readiness Monitoring Scale in Military Personnel. Front Psychol 2021;12:738609. [PMID: 34867619 DOI: 10.3389/fpsyg.2021.738609] [Reference Citation Analysis]
20 Myagkova MA, Orlova EA, Petrochenko SN, Bobrova ZV, Bachurin SO. Measurement of Immunological Parameters to Assess Human Body Readiness for Physical Load. Bull Exp Biol Med 2021;172:218-22. [PMID: 34855086 DOI: 10.1007/s10517-021-05366-2] [Reference Citation Analysis]
21 Hossain G, Rahman M, Hossain IZ, Khan A. Wearable socks with single electrode triboelectric textile sensors for monitoring footsteps. Sensors and Actuators A: Physical 2022;333:113316. [DOI: 10.1016/j.sna.2021.113316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Phatak AA, Wieland FG, Vempala K, Volkmar F, Memmert D. Artificial Intelligence Based Body Sensor Network Framework-Narrative Review: Proposing an End-to-End Framework using Wearable Sensors, Real-Time Location Systems and Artificial Intelligence/Machine Learning Algorithms for Data Collection, Data Mining and Knowledge Discovery in Sports and Healthcare. Sports Med Open 2021;7:79. [PMID: 34716868 DOI: 10.1186/s40798-021-00372-0] [Reference Citation Analysis]
23 Veeralingam S, Badhulika S. Bi 2 S 3 /PVDF/Ppy-Based Freestanding, Wearable, Transient Nanomembrane for Ultrasensitive Pressure, Strain, and Temperature Sensing. ACS Appl Bio Mater 2021;4:14-23. [DOI: 10.1021/acsabm.0c01399] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
24 Ghoorchian A, Kamalabadi M, Moradi M, Madrakian T, Afkhami A, Bagheri H, Ahmadi M, Khoshsafar H. Wearable Potentiometric Sensor Based on Na0.44MnO2 for Non-invasive Monitoring of Sodium Ions in Sweat. Anal Chem 2022. [PMID: 35050594 DOI: 10.1021/acs.analchem.1c04960] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Muniz-Pardos B, Angeloudis K, Guppy FM, Keramitsoglou I, Sutehall S, Bosch A, Tanisawa K, Hosokawa Y, Ash GI, Schobersberger W, Grundstein AJ, Casa DJ, Morrissey MC, Yamasawa F, Zelenkova I, Racinais S, Pitsiladis Y. Wearable and telemedicine innovations for Olympic events and elite sport. J Sports Med Phys Fitness 2021;61:1061-72. [PMID: 34256539 DOI: 10.23736/S0022-4707.21.12752-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Ma D, Chon S, Cho S, Lee Y, Yoo M, Kim D, Lee DY, Lim JK. A novel photolithographic method for fabrication of flexible micro-patterned glucose sensors. Journal of Electroanalytical Chemistry 2020;876:114720. [DOI: 10.1016/j.jelechem.2020.114720] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
27 Butt MA, Kazanskiy NL, Khonina SN. Revolution in Flexible Wearable Electronics for Temperature and Pressure Monitoring—A Review. Electronics 2022;11:716. [DOI: 10.3390/electronics11050716] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Wu H, Xu L, Wang Y, Zhang T, Zhang H, Bowen CR, Wang ZL, Yang Y. Enhanced Power Generation from the Interaction between Sweat and Electrodes for Human Health Monitoring. ACS Energy Lett 2020;5:3708-17. [DOI: 10.1021/acsenergylett.0c01992] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
29 Yoo YJ, Heo S, Kim YJ, Ko JH, Mira ZF, Song YM. Functional photonic structures for external interaction with flexible/wearable devices. Nano Res 2021;14:2904-18. [DOI: 10.1007/s12274-021-3388-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
30 Howard J, Murashov V, Cauda E, Snawder J. Advanced sensor technologies and the future of work. Am J Ind Med 2022;65:3-11. [PMID: 34647336 DOI: 10.1002/ajim.23300] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Mazzara F, Patella B, D’agostino C, Bruno MG, Carbone S, Lopresti F, Aiello G, Torino C, Vilasi A, O’riordan A, Inguanta R. PANI-Based Wearable Electrochemical Sensor for pH Sweat Monitoring. Chemosensors 2021;9:169. [DOI: 10.3390/chemosensors9070169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
32 Bettucci O, Matrone GM, Santoro F. Conductive Polymer‐Based Bioelectronic Platforms toward Sustainable and Biointegrated Devices: A Journey from Skin to Brain across Human Body Interfaces. Adv Materials Technologies 2022;7:2100293. [DOI: 10.1002/admt.202100293] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
33 Wang Y, Rinawati M, Zhan J, Lin K, Huang C, Chen K, Mizuguchi H, Jiang J, Hwang B, Yeh M. Boron-Doped Graphene Quantum Dots Anchored to Carbon Nanotubes as Noble Metal-Free Electrocatalysts of Uric Acid for a Wearable Sweat Sensor. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02279] [Reference Citation Analysis]
34 Garg A, Nam W, Zhou W. Reusable Surface-Enhanced Raman Spectroscopy Membranes and Textiles via Template-Assisted Self-Assembly and Micro/Nanoimprinting. ACS Appl Mater Interfaces 2020;12:56290-9. [DOI: 10.1021/acsami.0c16351] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
35 Manjakkal L, Dervin S, Dahiya R. Flexible potentiometric pH sensors for wearable systems. RSC Adv 2020;10:8594-617. [DOI: 10.1039/d0ra00016g] [Cited by in Crossref: 51] [Article Influence: 25.5] [Reference Citation Analysis]
36 Yan T, Zhang G, Chai H, Qu L, Zhang X. Flexible Biosensors Based on Colorimetry, Fluorescence, and Electrochemistry for Point-of-Care Testing. Front Bioeng Biotechnol 2021;9:753692. [PMID: 34650963 DOI: 10.3389/fbioe.2021.753692] [Reference Citation Analysis]
37 Seshadri DR, Thom ML, Harlow ER, Gabbett TJ, Geletka BJ, Hsu JJ, Drummond CK, Phelan DM, Voos JE. Wearable Technology and Analytics as a Complementary Toolkit to Optimize Workload and to Reduce Injury Burden. Front Sports Act Living 2020;2:630576. [PMID: 33554111 DOI: 10.3389/fspor.2020.630576] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
38 Shojaei Baghini M, Vilouras A, Douthwaite M, Georgiou P, Dahiya R. Ultra‐thin ISFET‐based sensing systems. Electrochemical Science Adv. [DOI: 10.1002/elsa.202100202] [Reference Citation Analysis]
39 Naikoo GA, Awan T, Salim H, Arshad F, Hassan IU, Pedram MZ, Ahmed W, Faruck HL, Aljabali AAA, Mishra V, Serrano-Aroca Á, Goyal R, Negi P, Birkett M, Nasef MM, Charbe NB, Bakshi HA, Tambuwala MM. Fourth-generation glucose sensors composed of copper nanostructures for diabetes management: A critical review. Bioeng Transl Med 2022;7:e10248. [PMID: 35111949 DOI: 10.1002/btm2.10248] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Tang W, Yin L, Sempionatto JR, Moon JM, Teymourian H, Wang J. Touch-Based Stressless Cortisol Sensing. Adv Mater 2021;33:e2008465. [PMID: 33786887 DOI: 10.1002/adma.202008465] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 32.0] [Reference Citation Analysis]
41 Zhang H, Qiu Y, Yu S, Ding C, Hu J, Qi H, Tian Y, Zhang Z, Liu A, Wu H. Wearable microfluidic patch with integrated capillary valves and pumps for sweat management and multiple biomarker analysis. Biomicrofluidics 2022;16:044104. [DOI: 10.1063/5.0092084] [Reference Citation Analysis]
42 Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020;120:12903-93. [DOI: 10.1021/acs.chemrev.0c00472] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
43 Passos J, Lopes SI, Clemente FM, Moreira PM, Rico-González M, Bezerra P, Rodrigues LP. Wearables and Internet of Things (IoT) Technologies for Fitness Assessment: A Systematic Review. Sensors (Basel) 2021;21:5418. [PMID: 34450860 DOI: 10.3390/s21165418] [Reference Citation Analysis]
44 Brainina KZ, Kazakov YE. Electrochemical Hybrid Methods and Sensors for Antioxidant/Oxidant Activity Monitoring and Their Use as a Diagnostic Tool of Oxidative Stress: Future Perspectives and Challenges. Chemosensors 2020;8:90. [DOI: 10.3390/chemosensors8040090] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Kazanskiy NL, Butt MA, Khonina SN. Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare-A Review. Nanomaterials (Basel) 2022;12:334. [PMID: 35159679 DOI: 10.3390/nano12030334] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
46 Carr AR, Patel YH, Neff CR, Charkhabi S, Kallmyer NE, Angus HF, Reuel NF. Sweat monitoring beneath garments using passive, wireless resonant sensors interfaced with laser-ablated microfluidics. NPJ Digit Med 2020;3:62. [PMID: 32377573 DOI: 10.1038/s41746-020-0270-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
47 Verpoorten E, Massaglia G, Pirri CF, Quaglio M. Electrospun PEO/PEDOT:PSS Nanofibers for Wearable Physiological Flex Sensors. Sensors (Basel) 2021;21:4110. [PMID: 34203743 DOI: 10.3390/s21124110] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Jeerapan I, Sonsa-ard T, Nacapricha D. Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors 2020;8:71. [DOI: 10.3390/chemosensors8030071] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
49 Promphet N, Thanawattano C, Buekban C, Laochai T, Rattanawaleedirojn P, Siralertmukul K, Potiyaraj P, Hinestroza JP, Rodthongkum N. Thread‐Based Wristwatch Sensing Device for Noninvasive and Simultaneous Detection of Glucose and Lactate. Adv Materials Technologies 2022;7:2101684. [DOI: 10.1002/admt.202101684] [Reference Citation Analysis]
50 Hekmatmanesh A, Zhidchenko V, Kauranen K, Siitonen K, Handroos H, Soutukorva S, Kilpelainen A. Biosignals in Human Factors Research for Heavy Equipment Operators: A Review of Available Methods and Their Feasibility in Laboratory and Ambulatory Studies. IEEE Access 2021;9:97466-82. [DOI: 10.1109/access.2021.3092516] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
51 Ambrosi A, Singh M, Webster RD, Steele TWJ. Precise Control of Diazirine Reduction to Tune the Mechanical Properties of Electrocuring Adhesives. ChemElectroChem 2021;8:2715-25. [DOI: 10.1002/celc.202100594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Gravina R, Fortino G. Wearable Body Sensor Networks: State-of-the-Art and Research Directions. IEEE Sensors J 2021;21:12511-22. [DOI: 10.1109/jsen.2020.3044447] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
53 Lu S, Samandari M, Li C, Li H, Song D, Zhang Y, Tamayol A, Wang X. Multimodal sensing and therapeutic systems for wound healing and management: A review. Sensors and Actuators Reports 2022;4:100075. [DOI: 10.1016/j.snr.2022.100075] [Reference Citation Analysis]
54 Swetha P, Balijapalli U, Feng S. Wireless accessing of salivary biomarkers based wearable electrochemical sensors: A mini-review. Electrochemistry Communications 2022;140:107314. [DOI: 10.1016/j.elecom.2022.107314] [Reference Citation Analysis]
55 Lama J, Yau A, Chen G, Sivakumar A, Zhao X, Chen J. Textile triboelectric nanogenerators for self-powered biomonitoring. J Mater Chem A 2021;9:19149-78. [DOI: 10.1039/d1ta02518j] [Cited by in Crossref: 8] [Article Influence: 8.0] [Reference Citation Analysis]
56 Boschetto G, Todri-Sanial A. Assessing doping strategies for monolayer MoS2 towards non-enzymatic detection of cortisol: a first-principles study. Phys Chem Chem Phys 2022;24:1048-58. [PMID: 34927645 DOI: 10.1039/d1cp04116a] [Reference Citation Analysis]
57 Firouzi F, Farahani B, Daneshmand M, Grise K, Song J, Saracco R, Wang LL, Lo K, Angelov P, Soares E, Loh PS, Talebpour Z, Moradi R, Goodarzi M, Ashraf H, Talebpour M, Talebpour A, Romeo L, Das R, Heidari H, Pasquale D, Moody J, Woods C, Huang ES, Barnaghi P, Sarrafzadeh M, Li R, Beck KL, Isayev O, Sung N, Luo A. Harnessing the Power of Smart and Connected Health to Tackle COVID-19: IoT, AI, Robotics, and Blockchain for a Better World. IEEE Internet Things J 2021;8:12826-46. [PMID: 35782886 DOI: 10.1109/JIOT.2021.3073904] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 14.0] [Reference Citation Analysis]
58 Seshadri DR, Davies EV, Harlow ER, Hsu JJ, Knighton SC, Walker TA, Voos JE, Drummond CK. Wearable Sensors for COVID-19: A Call to Action to Harness Our Digital Infrastructure for Remote Patient Monitoring and Virtual Assessments. Front Digit Health 2020;2:8. [DOI: 10.3389/fdgth.2020.00008] [Cited by in Crossref: 71] [Cited by in F6Publishing: 12] [Article Influence: 35.5] [Reference Citation Analysis]
59 Kodithuwakku Arachchige SNK, Burch V RF, Chander H, Turner AJ, Knight AC. The use of wearable devices in cognitive fatigue: current trends and future intentions. Theoretical Issues in Ergonomics Science. [DOI: 10.1080/1463922x.2021.1965670] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Jose M, Oudebrouckx G, Bormans S, Veske P, Thoelen R, Deferme W. Monitoring Body Fluids in Textiles: Combining Impedance and Thermal Principles in a Printed, Wearable, and Washable Sensor. ACS Sens 2021;6:896-907. [PMID: 33499590 DOI: 10.1021/acssensors.0c02037] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
61 Reda A, El-Safty SA, Selim MM, Shenashen MA. Optical glucose biosensor built-in disposable strips and wearable electronic devices. Biosens Bioelectron 2021;185:113237. [PMID: 33932881 DOI: 10.1016/j.bios.2021.113237] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
62 Persiani SGL, Kobas B, Koth SC, Auer T. Biometric Data as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built Environment. Energies 2021;14:232. [DOI: 10.3390/en14010232] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
63 Minamiki T, Minami T, Chen Y, Mano T, Takeda Y, Fukuda K, Tokito S. Flexible organic thin-film transistor immunosensor printed on a one-micron-thick film. Commun Mater 2021;2. [DOI: 10.1038/s43246-020-00112-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
64 Wu C, Zhang X, Wang R, Chen LJ, Nie M, Zhang Z, Huang X, Han L. Low-dimensional material based wearable sensors. Nanotechnology 2021;33. [PMID: 34706353 DOI: 10.1088/1361-6528/ac33d1] [Reference Citation Analysis]
65 Manjakkal L, Yin L, Nathan A, Wang J, Dahiya R. Energy Autonomous Sweat-Based Wearable Systems. Adv Mater 2021;33:e2100899. [PMID: 34247412 DOI: 10.1002/adma.202100899] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 21.0] [Reference Citation Analysis]
66 Naik AR, Warren B, Burns A, Lenigk R, Morse J, Alizadeh A, Watkins JJ. Electrowetting valves for sweat-based microfluidics. Microfluid Nanofluid 2021;25. [DOI: 10.1007/s10404-020-02403-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
67 Bayoumy K, Gaber M, Elshafeey A, Mhaimeed O, Dineen EH, Marvel FA, Martin SS, Muse ED, Turakhia MP, Tarakji KG, Elshazly MB. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol 2021;18:581-99. [PMID: 33664502 DOI: 10.1038/s41569-021-00522-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
68 Ji W, Zhu J, Wu W, Wang N, Wang J, Wu J, Wu Q, Wang X, Yu C, Wei G, Li L, Huo F. Wearable Sweat Biosensors Refresh Personalized Health/Medical Diagnostics. Research (Wash D C) 2021;2021:9757126. [PMID: 34778790 DOI: 10.34133/2021/9757126] [Reference Citation Analysis]
69 Palumbo A, Vizza P, Calabrese B, Ielpo N. Biopotential Signal Monitoring Systems in Rehabilitation: A Review. Sensors (Basel) 2021;21:7172. [PMID: 34770477 DOI: 10.3390/s21217172] [Reference Citation Analysis]
70 Pazos MD, Hu Y, Elani Y, Browning KL, Jiang N, Yetisen AK. Tattoo Inks for Optical Biosensing in Interstitial Fluid. Adv Healthc Mater 2021;10:e2101238. [PMID: 34510804 DOI: 10.1002/adhm.202101238] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Du Y, Zhang X, Liu P, Yu D, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022;10:944428. [DOI: 10.3389/fchem.2022.944428] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Das CM, Kang L, Ouyang Q, Yong K. Advanced low‐dimensional carbon materials for flexible devices. InfoMat 2020;2:698-714. [DOI: 10.1002/inf2.12073] [Cited by in Crossref: 20] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
73 Zhang K, Wang J, Liu T, Luo Y, Loh XJ, Chen X. Machine Learning-Reinforced Noninvasive Biosensors for Healthcare. Adv Healthc Mater 2021;10:e2100734. [PMID: 34165240 DOI: 10.1002/adhm.202100734] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
74 Chu SS, Nguyen HA, Zhang J, Tabassum S, Cao H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. Sensors 2022;22:5200. [DOI: 10.3390/s22145200] [Reference Citation Analysis]
75 Kwon S, Kwon YT, Kim YS, Lim HR, Mahmood M, Yeo WH. Skin-conformal, soft material-enabled bioelectronic system with minimized motion artifacts for reliable health and performance monitoring of athletes. Biosens Bioelectron 2020;151:111981. [PMID: 31999588 DOI: 10.1016/j.bios.2019.111981] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
76 Cust EE, Sweeting AJ, Ball K, Robertson S. Classification of Australian football kick types in-situation via ankle-mounted inertial measurement units. J Sports Sci 2021;39:1330-8. [PMID: 33377818 DOI: 10.1080/02640414.2020.1868678] [Reference Citation Analysis]
77 Zhong B, Jiang K, Wang L, Shen G. Wearable Sweat Loss Measuring Devices: From the Role of Sweat Loss to Advanced Mechanisms and Designs. Adv Sci (Weinh) 2022;9:e2103257. [PMID: 34713981 DOI: 10.1002/advs.202103257] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
78 Raman S, Arunagirinathan RS. Silver Nanowires in Stretchable Resistive Strain Sensors. Nanomaterials 2022;12:1932. [DOI: 10.3390/nano12111932] [Reference Citation Analysis]
79 Feng Q, Liu Y, Wang L. Wearable Device-Based Smart Football Athlete Health Prediction Algorithm Based on Recurrent Neural Networks. J Healthc Eng 2021;2021:2613300. [PMID: 34373774 DOI: 10.1155/2021/2613300] [Reference Citation Analysis]
80 Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA Jr, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021;6:2787-801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 19.0] [Reference Citation Analysis]
81 Li C, Liu D, Xu C, Wang Z, Shu S, Sun Z, Tang W, Wang ZL. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat Commun 2021;12:2950. [PMID: 34011979 DOI: 10.1038/s41467-021-23207-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Vaquer A, Barón E, de la Rica R. Wearable Analytical Platform with Enzyme-Modulated Dynamic Range for the Simultaneous Colorimetric Detection of Sweat Volume and Sweat Biomarkers. ACS Sens 2021;6:130-6. [PMID: 33371672 DOI: 10.1021/acssensors.0c01980] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
83 Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021;26:748. [PMID: 33535493 DOI: 10.3390/molecules26030748] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
84 Williams HJ, Shipley JR, Rutz C, Wikelski M, Wilkes M, Hawkes LA. Future trends in measuring physiology in free-living animals. Philos Trans R Soc Lond B Biol Sci 2021;376:20200230. [PMID: 34176330 DOI: 10.1098/rstb.2020.0230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
85 Sempionatto JR, Jeerapan I, Krishnan S, Wang J. Wearable Chemical Sensors: Emerging Systems for On-Body Analytical Chemistry. Anal Chem 2020;92:378-96. [DOI: 10.1021/acs.analchem.9b04668] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 20.0] [Reference Citation Analysis]
86 Zhang G. A wearable device for health management detection of multiple physiological parameters based on ZigBee wireless networks. Measurement 2020;165:108168. [DOI: 10.1016/j.measurement.2020.108168] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
87 Xu J, Fang Y, Chen J. Wearable Biosensors for Non-Invasive Sweat Diagnostics. Biosensors (Basel) 2021;11:245. [PMID: 34436047 DOI: 10.3390/bios11080245] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
88 Carter SJ, Baranauskas MN, Ballinger TJ, Rogers LQ, Miller KD, Nabhan DC. Exercise load monitoring: integrated approaches to advance the individualisation of exercise oncology. BMJ Open Sport Exerc Med 2021;7:e001134. [PMID: 34540269 DOI: 10.1136/bmjsem-2021-001134] [Reference Citation Analysis]
89 Kalkal A, Kumar S, Kumar P, Pradhan R, Willander M, Packirisamy G, Kumar S, Malhotra BD. Recent advances in 3D printing technologies for wearable (bio)sensors. Additive Manufacturing 2021;46:102088. [DOI: 10.1016/j.addma.2021.102088] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
90 Zhang S, Suresh L, Yang J, Zhang X, Tan SC. Augmenting Sensor Performance with Machine Learning Towards Smart Wearable Sensing Electronic Systems. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202100194] [Reference Citation Analysis]
91 Low JSY, Thevarajah TM, Chang SW, Goh BT, Khor SM. Biosensing based on surface-enhanced Raman spectroscopy as an emerging/next-generation point-of-care approach for acute myocardial infarction diagnosis. Crit Rev Biotechnol 2020;40:1191-209. [PMID: 32811205 DOI: 10.1080/07388551.2020.1808582] [Reference Citation Analysis]
92 Nguyen D, Behrens DM, Sen S, Najdahmadi A, Pham JN, Speciale G, Lawrence MM, Majumdar S, Weiss GA, Botvinick EL. Photostable and Proteolysis-Resistant Förster Resonance Energy Transfer-Based Calcium Biosensor. Anal Chem 2020;92:7683-9. [PMID: 32352281 DOI: 10.1021/acs.analchem.0c00573] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
93 Jin X, Liu C, Xu T, Su L, Zhang X. Artificial intelligence biosensors: Challenges and prospects. Biosensors and Bioelectronics 2020;165:112412. [DOI: 10.1016/j.bios.2020.112412] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 16.0] [Reference Citation Analysis]
94 Singh AV, Rosenkranz D, Ansari MHD, Singh R, Kanase A, Singh SP, Johnston B, Tentschert J, Laux P, Luch A. Artificial Intelligence and Machine Learning Empower Advanced Biomedical Material Design to Toxicity Prediction. Advanced Intelligent Systems 2020;2:2000084. [DOI: 10.1002/aisy.202000084] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 9.5] [Reference Citation Analysis]
95 Liu L, Martinez Pancorbo P, Xiao T, Noguchi S, Marumi M, Segawa H, Karhadkar S, Gala de Pablo J, Hiramatsu K, Kitahama Y, Itoh T, Qu J, Takei K, Goda K. Highly Scalable, Wearable Surface‐Enhanced Raman Spectroscopy. Advanced Optical Materials. [DOI: 10.1002/adom.202200054] [Reference Citation Analysis]
96 Shakeriaski F, Ghodrat M. Challenges and limitation of wearable sensors used in firefighters’ protective clothing. Journal of Fire Sciences. [DOI: 10.1177/07349041221079004] [Reference Citation Analysis]
97 Wang Y, Wang Y, Zhu R, Tao Y, Chen Y, Liu Q, Liu X, Wang D. Woven fiber organic electrochemical transistors based on multiwalled carbon nanotube functionalized PEDOT nanowires for nondestructive detection of potassium ions. Materials Science and Engineering: B 2022;278:115657. [DOI: 10.1016/j.mseb.2022.115657] [Reference Citation Analysis]
98 Elshafei M, Shihab E. Towards Detecting Biceps Muscle Fatigue in Gym Activity Using Wearables. Sensors (Basel) 2021;21:759. [PMID: 33498702 DOI: 10.3390/s21030759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Pramanik A, Das S, Kumar B, Ganguly S, Singh M, Guleria K, Shenoy S, Singh S. Supplemental aerobic, anaerobic and strength training positively affects autonomic functioning, anaerobic capacity, and immune cell homeostasis of male judo athletes. Comparative Exercise Physiology. [DOI: 10.3920/cep210018] [Reference Citation Analysis]
100 Quer G, Gouda P, Galarnyk M, Topol EJ, Steinhubl SR. Inter- and intraindividual variability in daily resting heart rate and its associations with age, sex, sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. PLoS One 2020;15:e0227709. [PMID: 32023264 DOI: 10.1371/journal.pone.0227709] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 13.5] [Reference Citation Analysis]
101 Vavrinsky E, Stopjakova V, Kopani M, Kosnacova H. The Concept of Advanced Multi-Sensor Monitoring of Human Stress. Sensors (Basel) 2021;21:3499. [PMID: 34067895 DOI: 10.3390/s21103499] [Reference Citation Analysis]
102 Cascales JP, Roussakis E, Witthauer L, Goss A, Li X, Chen Y, Marks HL, Evans CL. Wearable device for remote monitoring of transcutaneous tissue oxygenation. Biomed Opt Express 2020;11:6989-7002. [PMID: 33408975 DOI: 10.1364/BOE.408850] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
103 Baldo TA, de Lima LF, Mendes LF, de Araujo WR, Paixão TRLC, Coltro WKT. Wearable and Biodegradable Sensors for Clinical and Environmental Applications. ACS Appl Electron Mater 2021;3:68-100. [DOI: 10.1021/acsaelm.0c00735] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]