BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Allen JD, Ross TM. Next generation methodology for updating HA vaccines against emerging human seasonal influenza A(H3N2) viruses. Sci Rep 2021;11:4554. [PMID: 33654128 DOI: 10.1038/s41598-020-79590-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Huang Y, França MS, Allen JD, Shi H, Ross TM. Next Generation of Computationally Optimized Broadly Reactive HA Vaccines Elicited Cross-Reactive Immune Responses and Provided Protection against H1N1 Virus Infection. Vaccines (Basel) 2021;9:793. [PMID: 34358209 DOI: 10.3390/vaccines9070793] [Reference Citation Analysis]
2 Xia YL, Li W, Li Y, Ji XL, Fu YX, Liu SQ. A Deep Learning Approach for Predicting Antigenic Variation of Influenza A H3N2. Comput Math Methods Med 2021;2021:9997669. [PMID: 34697557 DOI: 10.1155/2021/9997669] [Reference Citation Analysis]
3 Caradonna TM, Schmidt AG. Protein engineering strategies for rational immunogen design. NPJ Vaccines 2021;6:154. [PMID: 34921149 DOI: 10.1038/s41541-021-00417-1] [Reference Citation Analysis]
4 Nguyen QT, Choi YK. Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021;13:973. [PMID: 34073996 DOI: 10.3390/v13060973] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Nuñez IA, Huang Y, Ross TM. Next-Generation Computationally Designed Influenza Hemagglutinin Vaccines Protect against H5Nx Virus Infections. Pathogens 2021;10:1352. [PMID: 34832509 DOI: 10.3390/pathogens10111352] [Reference Citation Analysis]
6 Allen JD, Ross TM. Evaluation of Next-Generation H3 Influenza Vaccines in Ferrets Pre-Immune to Historical H3N2 Viruses. Front Immunol 2021;12:707339. [PMID: 34475872 DOI: 10.3389/fimmu.2021.707339] [Reference Citation Analysis]
7 Varma DM, Batty CJ, Stiepel RT, Graham-Gurysh EG, Roque JA 3rd, Pena ES, Hasan Zahid MS, Qiu K, Anselmo A, Hill DB, Ross TM, Bachelder EM, Ainslie KM. Development of an Intranasal Gel for the Delivery of a Broadly Acting Subunit Influenza Vaccine. ACS Biomater Sci Eng 2022;8:1573-82. [PMID: 35353486 DOI: 10.1021/acsbiomaterials.2c00015] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 de Carvalho Lima EN, Diaz RS, Justo JF, Castilho Piqueira JR. Advances and Perspectives in the Use of Carbon Nanotubes in Vaccine Development. Int J Nanomedicine 2021;16:5411-35. [PMID: 34408416 DOI: 10.2147/IJN.S314308] [Reference Citation Analysis]
9 Roubidoux EK, Schultz-Cherry S. Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021;9:787. [PMID: 34358203 DOI: 10.3390/vaccines9070787] [Reference Citation Analysis]
10 Allen JD, Ross TM. Bivalent H1 and H3 COBRA Recombinant Hemagglutinin Vaccines Elicit Seroprotective Antibodies against H1N1 and H3N2 Influenza Viruses from 2009 to 2019. J Virol 2022;:e0165221. [PMID: 35289635 DOI: 10.1128/jvi.01652-21] [Reference Citation Analysis]