BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Levy-Jurgenson A, Tekpli X, Kristensen VN, Yakhini Z. Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer. Sci Rep 2020;10:18802. [PMID: 33139755 DOI: 10.1038/s41598-020-75708-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Schneider L, Laiouar-Pedari S, Kuntz S, Krieghoff-Henning E, Hekler A, Kather JN, Gaiser T, Fröhling S, Brinker TJ. Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review. Eur J Cancer 2022;160:80-91. [PMID: 34810047 DOI: 10.1016/j.ejca.2021.10.007] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Gao D, Ning J, Liu G, Sun S, Dang X. SpatialMap: Spatial Mapping of Unmeasured Gene Expression Profiles in Spatial Transcriptomic Data Using Generalized Linear Spatial Models. Front Genet 2022;13:893522. [DOI: 10.3389/fgene.2022.893522] [Reference Citation Analysis]
3 Murchan P, Ó'Brien C, O'Connell S, McNevin CS, Baird AM, Sheils O, Ó Broin P, Finn SP. Deep Learning of Histopathological Features for the Prediction of Tumour Molecular Genetics. Diagnostics (Basel) 2021;11:1406. [PMID: 34441338 DOI: 10.3390/diagnostics11081406] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Tavolara TE, Niazi MKK, Gower AC, Ginese M, Beamer G, Gurcan MN. Deep learning predicts gene expression as an intermediate data modality to identify susceptibility patterns in Mycobacterium tuberculosis infected Diversity Outbred mice. EBioMedicine 2021;67:103388. [PMID: 34000621 DOI: 10.1016/j.ebiom.2021.103388] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Galili B, Samohi S, Yakhini Z. On the stability of log-rank test under labeling errors. Bioinformatics 2021:btab495. [PMID: 34255820 DOI: 10.1093/bioinformatics/btab495] [Reference Citation Analysis]
6 Li Y, Stanojevic S, Garmire LX. Emerging Artificial Intelligence Applications in Spatial Transcriptomics Analysis. Computational and Structural Biotechnology Journal 2022. [DOI: 10.1016/j.csbj.2022.05.056] [Reference Citation Analysis]
7 Pratapa A, Doron M, Caicedo JC. Image-based cell phenotyping with deep learning. Curr Opin Chem Biol 2021;65:9-17. [PMID: 34023800 DOI: 10.1016/j.cbpa.2021.04.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wu Y, Cheng Y, Wang X, Fan J, Gao Q. Spatial omics: Navigating to the golden era of cancer research. Clin Transl Med 2022;12:e696. [PMID: 35040595 DOI: 10.1002/ctm2.696] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
9 Huang K, Xiao C, Glass LM, Critchlow CW, Gibson G, Sun J. Machine learning applications for therapeutic tasks with genomics data. Patterns (N Y) 2021;2:100328. [PMID: 34693370 DOI: 10.1016/j.patter.2021.100328] [Reference Citation Analysis]
10 Krešimir Lukić I. Bioinformatics approach to spatially resolved transcriptomics. Emerg Top Life Sci 2021:ETLS20210131. [PMID: 34369559 DOI: 10.1042/ETLS20210131] [Reference Citation Analysis]
11 Foroughi pour A, White BS, Park J, Sheridan TB, Chuang JH. Deep learning features encode interpretable morphologies within histological images. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-13541-2] [Reference Citation Analysis]
12 Qu H, Zhou M, Yan Z, Wang H, Rustgi VK, Zhang S, Gevaert O, Metaxas DN. Genetic mutation and biological pathway prediction based on whole slide images in breast carcinoma using deep learning. NPJ Precis Oncol 2021;5:87. [PMID: 34556802 DOI: 10.1038/s41698-021-00225-9] [Reference Citation Analysis]
13 Miller BF, Huang F, Atta L, Sahoo A, Fan J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nat Commun 2022;13:2339. [PMID: 35487922 DOI: 10.1038/s41467-022-30033-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]