BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Friese C, Harbst K, Borch TH, Westergaard MCW, Pedersen M, Kverneland A, Jönsson G, Donia M, Svane IM, Met Ö. CTLA-4 blockade boosts the expansion of tumor-reactive CD8+ tumor-infiltrating lymphocytes in ovarian cancer. Sci Rep 2020;10:3914. [PMID: 32127601 DOI: 10.1038/s41598-020-60738-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Drakes ML, Stiff PJ. Ovarian Cancer: Therapeutic Strategies to Overcome Immune Suppression. Adv Exp Med Biol 2021;1330:33-54. [PMID: 34339029 DOI: 10.1007/978-3-030-73359-9_3] [Reference Citation Analysis]
2 Kverneland AH, Chamberlain CA, Borch TH, Nielsen M, Mørk SK, Kjeldsen JW, Lorentzen CL, Jørgensen LP, Riis LB, Yde CW, Met Ö, Donia M, Marie Svane I. Adoptive cell therapy with tumor-infiltrating lymphocytes supported by checkpoint inhibition across multiple solid cancer types. J Immunother Cancer 2021;9:e003499. [PMID: 34607899 DOI: 10.1136/jitc-2021-003499] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Morotti M, Albukhari A, Alsaadi A, Artibani M, Brenton JD, Curbishley SM, Dong T, Dustin ML, Hu Z, McGranahan N, Miller ML, Santana-Gonzalez L, Seymour LW, Shi T, Van Loo P, Yau C, White H, Wietek N, Church DN, Wedge DC, Ahmed AA. Promises and challenges of adoptive T-cell therapies for solid tumours. Br J Cancer 2021;124:1759-76. [PMID: 33782566 DOI: 10.1038/s41416-021-01353-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
4 Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021;13:6231. [PMID: 34944851 DOI: 10.3390/cancers13246231] [Reference Citation Analysis]
5 Eddy K, Chen S. Overcoming Immune Evasion in Melanoma. Int J Mol Sci 2020;21:E8984. [PMID: 33256089 DOI: 10.3390/ijms21238984] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
6 Chung DC, Jacquelot N, Ghaedi M, Warner K, Ohashi PS. Innate Lymphoid Cells: Role in Immune Regulation and Cancer. Cancers 2022;14:2071. [DOI: 10.3390/cancers14092071] [Reference Citation Analysis]
7 Ibrahim OM, Pandey RK, Chatta G, Kalinski P. Role of tumor microenvironment in the efficacy of BCG therapy. Trends Res 2020;3. [PMID: 33178990 DOI: 10.15761/tr.1000170] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Drakes ML, Czerlanis CM, Stiff PJ. Immune Checkpoint Blockade in Gynecologic Cancers: State of Affairs. Cancers (Basel) 2020;12:E3301. [PMID: 33182298 DOI: 10.3390/cancers12113301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
9 Ito T, Kawai Y, Yasui Y, Iriguchi S, Minagawa A, Ishii T, Miyoshi H, Taketo MM, Kawada K, Obama K, Sakai Y, Kaneko S. The therapeutic potential of multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-1derived iPS cells. Commun Biol 2021;4:694. [PMID: 34099861 DOI: 10.1038/s42003-021-02195-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Ibrahim OM, Basse PH, Jiang W, Guru K, Chatta G, Kalinski P. NFκB-Activated COX2/PGE2/EP4 Axis Controls the Magnitude and Selectivity of BCG-Induced Inflammation in Human Bladder Cancer Tissues. Cancers (Basel) 2021;13:1323. [PMID: 33809455 DOI: 10.3390/cancers13061323] [Reference Citation Analysis]
11 Bianchi V, Harari A, Coukos G. Neoantigen-Specific Adoptive Cell Therapies for Cancer: Making T-Cell Products More Personal. Front Immunol 2020;11:1215. [PMID: 32695101 DOI: 10.3389/fimmu.2020.01215] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
12 Kumar S, Singh SK, Rana B, Rana A. Tumor-infiltrating CD8+ T cell antitumor efficacy and exhaustion: molecular insights. Drug Discov Today 2021;26:951-67. [PMID: 33450394 DOI: 10.1016/j.drudis.2021.01.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
13 Hulen TM, Chamberlain CA, Svane IM, Met Ö. ACT Up TIL Now: The Evolution of Tumor-Infiltrating Lymphocytes in Adoptive Cell Therapy for the Treatment of Solid Tumors. Immuno 2021;1:194-211. [DOI: 10.3390/immuno1030012] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wang S, Sun J, Chen K, Ma P, Lei Q, Xing S, Cao Z, Sun S, Yu Z, Liu Y, Li N. Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med 2021;19:140. [PMID: 34112147 DOI: 10.1186/s12916-021-02006-4] [Reference Citation Analysis]
15 Titov A, Zmievskaya E, Ganeeva I, Valiullina A, Petukhov A, Rakhmatullina A, Miftakhova R, Fainshtein M, Rizvanov A, Bulatov E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers (Basel) 2021;13:743. [PMID: 33670139 DOI: 10.3390/cancers13040743] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
16 Borch TH, Harbst K, Rana AH, Andersen R, Martinenaite E, Kongsted P, Pedersen M, Nielsen M, Kjeldsen JW, Kverneland AH, Lauss M, Hölmich LR, Hendel H, Met Ö, Jönsson G, Donia M, Marie Svane I. Clinical efficacy of T-cell therapy after short-term BRAF-inhibitor priming in patients with checkpoint inhibitor-resistant metastatic melanoma. J Immunother Cancer 2021;9:e002703. [PMID: 34210820 DOI: 10.1136/jitc-2021-002703] [Reference Citation Analysis]
17 Rosen BC, Pedreño-Lopez N, Ricciardi MJ, Reed JS, Sacha JB, Rakasz EG, Watkins DI. Rhesus Cytomegalovirus-Specific CD8+ Cytotoxic T Lymphocytes Do Not Become Functionally Exhausted in Chronic SIVmac239 Infection. Front Immunol 2020;11:1960. [PMID: 32922404 DOI: 10.3389/fimmu.2020.01960] [Reference Citation Analysis]
18 Lang SM, Dorigo O. Cell-based immunotherapies in gynecologic cancers. Curr Opin Obstet Gynecol 2022;34:10-4. [PMID: 34967809 DOI: 10.1097/GCO.0000000000000760] [Reference Citation Analysis]
19 Nie X, Song L, Li X, Wang Y, Qu B. Prognostic signature of ovarian cancer based on 14 tumor microenvironment-related genes. Medicine (Baltimore) 2021;100:e26574. [PMID: 34260536 DOI: 10.1097/MD.0000000000026574] [Reference Citation Analysis]
20 Yadav D, Kwak M, Chauhan PS, Puranik N, Lee PCW, Jin JO. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin Cancer Biol 2022:S1044-579X(22)00044-X. [PMID: 35181474 DOI: 10.1016/j.semcancer.2022.02.016] [Reference Citation Analysis]
21 Świderska J, Kozłowski M, Kwiatkowski S, Cymbaluk-Płoska A. Immunotherapy of Ovarian Cancer with Particular Emphasis on the PD-1/PDL-1 as Target Points. Cancers (Basel) 2021;13:6063. [PMID: 34885169 DOI: 10.3390/cancers13236063] [Reference Citation Analysis]
22 Philip H, Snir T, Gordin M, Shugay M, Zilberberg A, Efroni S. A T cell repertoire timestamp is at the core of responsiveness to CTLA-4 blockade. iScience 2021;24:102100. [PMID: 33604527 DOI: 10.1016/j.isci.2021.102100] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Granhøj JS, Witness Præst Jensen A, Presti M, Met Ö, Svane IM, Donia M. Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Expert Opin Biol Ther 2022. [PMID: 35414331 DOI: 10.1080/14712598.2022.2064711] [Reference Citation Analysis]
24 Benard E, Casey NP, Inderberg EM, Wälchli S. SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scand J Immunol 2020;92:e12917. [PMID: 32557659 DOI: 10.1111/sji.12917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]