BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Rana S, Mukherjee A, Chawla-Sarkar M. Synchronized Orchestration of miR-99b and let-7g Positively Regulates Rotavirus Infection by Modulating Autophagy. Sci Rep 2019;9:1318. [PMID: 30718795 DOI: 10.1038/s41598-018-38473-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Chandra P, Banerjee S, Saha P, Chawla-sarkar M, Patra U. Sneaking into the viral safe-houses: Implications of host components in regulating integrity and dynamics of rotaviral replication factories. Front Cell Infect Microbiol 2022;12:977799. [DOI: 10.3389/fcimb.2022.977799] [Reference Citation Analysis]
2 Antia A, Pinski AN, Ding S. Re-Examining Rotavirus Innate Immune Evasion: Potential Applications of the Reverse Genetics System. mBio 2022;:e0130822. [PMID: 35699371 DOI: 10.1128/mbio.01308-22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Elkady G, Chen Y, Hu C, Chen J, Chen X, Guo A. MicroRNA Profile of MA-104 Cell Line Associated With the Pathogenesis of Bovine Rotavirus Strain Circulated in Chinese Calves. Front Microbiol 2022;13:854348. [DOI: 10.3389/fmicb.2022.854348] [Reference Citation Analysis]
4 Bhuinya A, Dass D, Banerjee A, Mukherjee A. A Tale of Antiviral Counterattacks in Rotavirus Infection. Microbiological Research 2022. [DOI: 10.1016/j.micres.2022.127046] [Reference Citation Analysis]
5 Banerjee A, Chawla-sarkar M, Mukherjee A. Rotavirus-Mediated Suppression of miRNA-192 Family and miRNA-181a Activates Wnt/β-Catenin Signaling Pathway: An In Vitro Study. Viruses 2022;14:558. [DOI: 10.3390/v14030558] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Fatmi A, Chabni N, Cernada M, Vento M, González-López M, Aribi M, Pallardó FV, García-Giménez JL. Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed Pharmacother 2022;145:112444. [PMID: 34808550 DOI: 10.1016/j.biopha.2021.112444] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Roy SG. Regulation of autophagy by miRNAs in human diseases. Nucleus (Calcutta) 2021;:1-13. [PMID: 34690368 DOI: 10.1007/s13237-021-00378-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kim YJ, Lee WJ, Ko BW, Lim HW, Yeon Y, Ahn SJ, Lee BR. Investigation of MicroRNA Expression in Anterior Lens Capsules of Senile Cataract Patients and MicroRNA Differences According to the Cataract Type. Transl Vis Sci Technol 2021;10:14. [PMID: 34003899 DOI: 10.1167/tvst.10.2.14] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
9 Tohmé MJ, Delgui LR. Advances in the Development of Antiviral Compounds for Rotavirus Infections. mBio 2021;12:e00111-21. [PMID: 33975930 DOI: 10.1128/mBio.00111-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence 2021;12:1022-62. [PMID: 33818275 DOI: 10.1080/21505594.2021.1903198] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Mukhopadhyay U, Banerjee A, Chawla-Sarkar M, Mukherjee A. Rotavirus Induces Epithelial-Mesenchymal Transition Markers by Transcriptional Suppression of miRNA-29b. Front Microbiol 2021;12:631183. [PMID: 33679655 DOI: 10.3389/fmicb.2021.631183] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
12 Emamgolizadeh Gurt Tapeh B, Mosayyebi B, Samei M, Beyrampour Basmenj H, Mohammadi A, Alivand MR, Hassanpour P, Solali S. microRNAs involved in T-cell development, selection, activation, and hemostasis. J Cell Physiol 2020;235:8461-71. [PMID: 32324267 DOI: 10.1002/jcp.29689] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
13 Crawford SE, Criglar JM, Liu Z, Broughman JR, Estes MK. COPII Vesicle Transport Is Required for Rotavirus NSP4 Interaction with the Autophagy Protein LC3 II and Trafficking to Viroplasms. J Virol 2019;94:e01341-19. [PMID: 31597778 DOI: 10.1128/JVI.01341-19] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
14 Mukhopadhyay U, Chanda S, Patra U, Mukherjee A, Komoto S, Chawla-Sarkar M. Biphasic regulation of RNA interference during rotavirus infection by modulation of Argonaute2. Cell Microbiol 2019;21:e13101. [PMID: 31424151 DOI: 10.1111/cmi.13101] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
15 Zhao Y, Wang Z, Zhang W, Zhang L. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors. 2019;45:844-856. [PMID: 31418958 DOI: 10.1002/biof.1555] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 8.7] [Reference Citation Analysis]