BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang W, Sun C, Shao Y, Zhou Z, Hou Y, Li A. Partial depletion of dopaminergic neurons in the substantia nigra impairs olfaction and alters neural activity in the olfactory bulb. Sci Rep 2019;9:254. [PMID: 30670747 DOI: 10.1038/s41598-018-36538-2] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Morash MG, Nixon J, Shimoda LMN, Turner H, Stokes AJ, Small-howard AL, Ellis LD. Identification of minimum essential therapeutic mixtures from cannabis plant extracts by screening in cell and animal models of Parkinson’s disease. Front Pharmacol 2022;13:907579. [DOI: 10.3389/fphar.2022.907579] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Magdy A, Farrag EAE, Hamed SM, Abdallah Z, El Nashar EM, Alghamdi MA, Ali AAH, Abd El-kader M. Neuroprotective and therapeutic effects of calcitriol in rotenone-induced Parkinson’s disease rat model. Front Cell Neurosci 2022;16:967813. [DOI: 10.3389/fncel.2022.967813] [Reference Citation Analysis]
3 Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson’s disease. Brain Communications 2022;4. [DOI: 10.1093/braincomms/fcac165] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Song B, Feldmann JW, Cao S, Feitosa M, Kong Y, Kim W, Schweitzer A, Leblanc P, Schweitzer JS, Kim K. A Pitx3-deficient developmental mouse model for fine motor, olfactory, and gastrointestinal symptoms of Parkinson's disease. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105777] [Reference Citation Analysis]
5 Zhang F, Yao Y, Miao N, Wang N, Xu X, Yang C. Neuroprotective effects of microRNA 124 in Parkinson's disease mice. Archives of Gerontology and Geriatrics 2022;99:104588. [DOI: 10.1016/j.archger.2021.104588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Golubev AG. Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022;75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Reference Citation Analysis]
7 Zhang J, Yang Y, Zhou C, Zhu R, Xiao X, Zhou B, Wan D. LncRNA miR-17-92a-1 cluster host gene (MIR17HG) promotes neuronal damage and microglial activation by targeting the microRNA-153-3p/alpha-synuclein axis in Parkinson's disease. Bioengineered 2022;13:4493-516. [PMID: 35137671 DOI: 10.1080/21655979.2022.2033409] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Alberts T, Antipova V, Holzmann C, Hawlitschka A, Schmitt O, Kurth J, Stenzel J, Lindner T, Krause BJ, Wree A, Witt M. Olfactory Bulb D2/D3 Receptor Availability after Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson’s Disease. Toxins 2022;14:94. [DOI: 10.3390/toxins14020094] [Reference Citation Analysis]
9 Chen F, Liu W, Liu P, Wang Z, Zhou Y, Liu X, Li A. α-Synuclein aggregation in the olfactory bulb induces olfactory deficits by perturbing granule cells and granular-mitral synaptic transmission. NPJ Parkinsons Dis 2021;7:114. [PMID: 34903719 DOI: 10.1038/s41531-021-00259-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
10 Berry JK, Cox D. Increased oscillatory power in a computational model of the olfactory bulb due to synaptic degeneration. Phys Rev E 2021;104:024405. [PMID: 34525666 DOI: 10.1103/PhysRevE.104.024405] [Reference Citation Analysis]
11 Iravani B, Arshamian A, Schaefer M, Svenningsson P, Lundström JN. A non-invasive olfactory bulb measure dissociates Parkinson's patients from healthy controls and discloses disease duration. NPJ Parkinsons Dis 2021;7:75. [PMID: 34408159 DOI: 10.1038/s41531-021-00220-8] [Reference Citation Analysis]
12 Sahoo PK, Aparna S, Naik PK, Singh SB, Das SK. Bisphenol A exposure induces neurobehavioral deficits and neurodegeneration through induction of oxidative stress and activated caspase-3 expression in zebrafish brain. J Biochem Mol Toxicol 2021;:e22873. [PMID: 34342104 DOI: 10.1002/jbt.22873] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Deng I, Corrigan F, Garg S, Zhou XF, Bobrovskaya L. Further Characterization of Intrastriatal Lipopolysaccharide Model of Parkinson's Disease in C57BL/6 Mice. Int J Mol Sci 2021;22:7380. [PMID: 34299000 DOI: 10.3390/ijms22147380] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Xu H, Geng C, Hua X, Liu P, Xu J, Li A. Distinct Characteristics of Odor-evoked Calcium and Electrophysiological Signals in Mitral/Tufted Cells in the Mouse Olfactory Bulb. Neurosci Bull 2021;37:959-72. [PMID: 33856645 DOI: 10.1007/s12264-021-00680-1] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Sun C, Yin Z, Li BZ, Du H, Tang K, Liu P, Hang Pun S, Lei TC, Li A. Oxytocin modulates neural processing of mitral/tufted cells in the olfactory bulb. Acta Physiol (Oxf) 2021;231:e13626. [PMID: 33580583 DOI: 10.1111/apha.13626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Corona R, Jayakumar P, Carbajo Mata MA, Del Valle-Díaz MF, Luna-García LA, Morales T. Sexually dimorphic effects of prolactin treatment on the onset of puberty and olfactory function in mice. Gen Comp Endocrinol 2021;301:113652. [PMID: 33122037 DOI: 10.1016/j.ygcen.2020.113652] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Siddique YH, Rahul, Idrisi M, Shahid M. Effect of Cabergoline on Cognitive Impairments in Transgenic Drosophila Model of Parkinson’s Disease. LDDD 2020;17:1261-9. [DOI: 10.2174/1570180817999200514100917] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Berry JK, Cox D. Increased oscillatory power in a computational model of the olfactory bulb due to synaptic degeneration.. [DOI: 10.1101/2020.08.06.239293] [Reference Citation Analysis]
19 Marin C, Langdon C, Alobid I, Mullol J. Olfactory Dysfunction in Traumatic Brain Injury: the Role of Neurogenesis. Curr Allergy Asthma Rep 2020;20:55. [PMID: 32648230 DOI: 10.1007/s11882-020-00949-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Paß T, Aßfalg M, Tolve M, Blaess S, Rothermel M, Wiesner RJ, Ricke KM. The Impact of Mitochondrial Dysfunction on Dopaminergic Neurons in the Olfactory Bulb and Odor Detection. Mol Neurobiol 2020;57:3646-57. [PMID: 32564285 DOI: 10.1007/s12035-020-01947-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
21 El-Ghaiesh SH, Bahr HI, Ibrahiem AT, Ghorab D, Alomar SY, Farag NE, Zaitone SA. Metformin Protects From Rotenone-Induced Nigrostriatal Neuronal Death in Adult Mice by Activating AMPK-FOXO3 Signaling and Mitigation of Angiogenesis. Front Mol Neurosci 2020;13:84. [PMID: 32625061 DOI: 10.3389/fnmol.2020.00084] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
22 Jiang J, Piao X, Hu S, Gao J, Bao M. LncRNA H19 diminishes dopaminergic neuron loss by mediating microRNA-301b-3p in Parkinson's disease via the HPRT1-mediated Wnt/β-catenin signaling pathway. Aging (Albany NY) 2020;12:8820-36. [PMID: 32434961 DOI: 10.18632/aging.102877] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
23 Wang C, Xin L, Cai CC, Cong CY, Xie JF, Kong XP, Dong CY, Li J, Cui GF, Chen HL, Ren YL, Shao YF, Hou YP. Neuropeptide S Displays as a Key Neuromodulator in Olfactory Spatial Memory. Chem Senses 2020;45:195-202. [PMID: 32010937 DOI: 10.1093/chemse/bjaa003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Wu J, Liu P, Chen F, Ge L, Lu Y, Li A. Excitability of Neural Activity is Enhanced, but Neural Discrimination of Odors is Slightly Decreased, in the Olfactory Bulb of Fasted Mice. Genes (Basel) 2020;11:E433. [PMID: 32316323 DOI: 10.3390/genes11040433] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
25 Liu P, Cao T, Xu J, Mao X, Wang D, Li A. Plasticity of Sniffing Pattern and Neural Activity in the Olfactory Bulb of Behaving Mice During Odor Sampling, Anticipation, and Reward. Neurosci Bull 2020;36:598-610. [PMID: 31989425 DOI: 10.1007/s12264-019-00463-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
26 Gomes ED, Barata-antunes S, Teixeira-castro A, Assunção-silva RC, Marques CR, Monteiro S, Teixeira FG, Fernandes AM, Silva NA. Animal models of central nervous system disorders. Handbook of Innovations in Central Nervous System Regenerative Medicine 2020. [DOI: 10.1016/b978-0-12-818084-6.00018-0] [Reference Citation Analysis]
27 Wang D, Liu P, Mao X, Zhou Z, Cao T, Xu J, Sun C, Li A. Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex. J Neurosci 2019;39:10002-18. [PMID: 31672791 DOI: 10.1523/JNEUROSCI.1234-19.2019] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
28 Sun C, Tang K, Wu J, Xu H, Zhang W, Cao T, Zhou Y, Yu T, Li A. Leptin modulates olfactory discrimination and neural activity in the olfactory bulb. Acta Physiol (Oxf) 2019;227:e13319. [PMID: 31144469 DOI: 10.1111/apha.13319] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
29 Marin C, Laxe S, Langdon C, Alobid I, Berenguer J, Fuentes M, Bernabeu M, Mullol J. Olfactory Training Prevents Olfactory Dysfunction Induced by Bulbar Excitotoxic Lesions: Role of Neurogenesis and Dopaminergic Interneurons. Mol Neurobiol 2019;56:8063-75. [DOI: 10.1007/s12035-019-1639-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]