BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hadar A, Milanesi E, Walczak M, Puzianowska-Kuźnicka M, Kuźnicki J, Squassina A, Niola P, Chillotti C, Attems J, Gozes I, Gurwitz D. SIRT1, miR-132 and miR-212 link human longevity to Alzheimer's Disease. Sci Rep 2018;8:8465. [PMID: 29855513 DOI: 10.1038/s41598-018-26547-6] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 11.6] [Reference Citation Analysis]
Number Citing Articles
1 Puig-Parnau I, Garcia-Brito S, Vila-Soles L, Riberas A, Aldavert-Vera L, Segura-Torres P, Kádár E, Huguet G. Intracranial Self-stimulation of the Medial Forebrain Bundle Ameliorates Memory Disturbances and Pathological Hallmarks in an Alzheimer's Disease Model by Intracerebral Administration of Amyloid-β in Rats. Neuroscience 2023:S0306-4522(23)00009-X. [PMID: 36646411 DOI: 10.1016/j.neuroscience.2023.01.005] [Reference Citation Analysis]
2 Yadav S, Sarkar S, Pandey A, Singh T. Ageing at Molecular Level: Role of MicroRNAs. Subcell Biochem 2023;102:195-248. [PMID: 36600135 DOI: 10.1007/978-3-031-21410-3_9] [Reference Citation Analysis]
3 Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022;24. [PMID: 36614171 DOI: 10.3390/ijms24010728] [Reference Citation Analysis]
4 Zou C, Huang X, Zhang Y, Pan M, Xie J, Chen L, Meng Y, Zou D, Luo J. Potential biomarkers of Alzheimer’s disease and cerebral small vessel disease. Front Mol Neurosci 2022;15:996107. [DOI: 10.3389/fnmol.2022.996107] [Reference Citation Analysis]
5 Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. Biology 2022;11:1151. [DOI: 10.3390/biology11081151] [Reference Citation Analysis]
6 Hadar A, Voinsky I, Parkhomenko O, Puzianowska-Kuźnicka M, Kuźnicki J, Gozes I, Gurwitz D. Higher ATM expression in lymphoblastoid cell lines from centenarian compared with younger women. Drug Dev Res 2022. [PMID: 35774024 DOI: 10.1002/ddr.21972] [Reference Citation Analysis]
7 Eshkoor SA, Ghodsian N, Akhtari-zavare M. MicroRNAs influence and longevity. Egypt J Med Hum Genet 2022;23. [DOI: 10.1186/s43042-022-00316-7] [Reference Citation Analysis]
8 Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022;13:908076. [PMID: 35720333 DOI: 10.3389/fimmu.2022.908076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Gentile G, Morello G, La Cognata V, Guarnaccia M, Conforti FL, Cavallaro S. Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. JPM 2022;12:770. [DOI: 10.3390/jpm12050770] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Wingo AP, Wang M, Liu J, Breen MS, Yang HS, Tang B, Schneider JA, Seyfried NT, Lah JJ, Levey AI, Bennett DA, Jin P, De Jager PL, Wingo TS. Brain microRNAs are associated with variation in cognitive trajectory in advanced age. Transl Psychiatry 2022;12:47. [PMID: 35105862 DOI: 10.1038/s41398-022-01806-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zeng C, Meng X, Mai D, Xu K, Qu S. Overexpression of miR-132-3p contributes to neuronal protection in in vitro and in vivo models of Alzheimer's disease. Behav Brain Res 2022;417:113584. [PMID: 34536429 DOI: 10.1016/j.bbr.2021.113584] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
12 Jauhari A, Singh T, Yadav S. Neurodevelopmental Disorders and Neurotoxicity: MicroRNA in Focus. Journal of Chemical Neuroanatomy 2022. [DOI: 10.1016/j.jchemneu.2022.102072] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Gámez-García A, Vazquez BN. Nuclear Sirtuins and the Aging of the Immune System. Genes (Basel) 2021;12:1856. [PMID: 34946805 DOI: 10.3390/genes12121856] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
14 Yaron-Saminsky D, Nagaraj K, Sarfstein R, Laron Z, Pasmanik-Chor M, Werner H. MicroRNA 132-3p Is Upregulated in Laron Syndrome Patients and Controls Longevity Gene Expression. Int J Mol Sci 2021;22:11861. [PMID: 34769292 DOI: 10.3390/ijms222111861] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Karmon G, Sragovich S, Hacohen-Kleiman G, Ben-Horin-Hazak I, Kasparek P, Schuster B, Sedlacek R, Pasmanik-Chor M, Theotokis P, Touloumi O, Zoidou S, Huang L, Wu PY, Shi R, Kapitansky O, Lobyntseva A, Giladi E, Shapira G, Shomron N, Bereswill S, Heimesaat MM, Grigoriadis N, McKinney RA, Rubinstein M, Gozes I. Novel ADNP Syndrome Mice Reveal Dramatic Sex-Specific Peripheral Gene Expression With Brain Synaptic and Tau Pathologies. Biol Psychiatry 2021:S0006-3223(21)01630-9. [PMID: 34865853 DOI: 10.1016/j.biopsych.2021.09.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
16 Cong L, Cong Y, Feng N, Liang W, Wu Y. Up-regulated microRNA-132 reduces the cognition-damaging effect of sevoflurane on Alzheimer's disease rats by inhibiting FOXA1. Genomics 2021;113:3644-52. [PMID: 34400241 DOI: 10.1016/j.ygeno.2021.08.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
17 Zia A, Sahebdel F, Farkhondeh T, Ashrafizadeh M, Zarrabi A, Hushmandi K, Samarghandian S. A review study on the modulation of SIRT1 expression by miRNAs in aging and age-associated diseases. Int J Biol Macromol 2021;188:52-61. [PMID: 34364937 DOI: 10.1016/j.ijbiomac.2021.08.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Pukhalskaia AE, Linkova NS, Diatlova AS, Kozlov KL, Kvetnoy IM, Koroleva MV, Volkov AM. Sirtuins Expression in the Hippocampus and Buccal Epithelium of Elderly and Senile Individuals with Alzheimer’s Disease. Adv Gerontol 2021;11:126-31. [DOI: 10.1134/s2079057021020120] [Reference Citation Analysis]
19 Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y, Chang W. The Role of Non-coding RNAs in Alzheimer's Disease: From Regulated Mechanism to Therapeutic Targets and Diagnostic Biomarkers. Front Aging Neurosci 2021;13:654978. [PMID: 34276336 DOI: 10.3389/fnagi.2021.654978] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
20 Dong LH, Sun L, Zhang WJ, Wang XY, Li JM. Reduced serum miR-202 may promote the progression of Alzheimer's disease patients via targeting amyloid precursor protein. Kaohsiung J Med Sci 2021;37:730-8. [PMID: 34042273 DOI: 10.1002/kjm2.12391] [Reference Citation Analysis]
21 Zhang M, Bian Z. Alzheimer's Disease and microRNA-132: A Widespread Pathological Factor and Potential Therapeutic Target. Front Neurosci 2021;15:687973. [PMID: 34108863 DOI: 10.3389/fnins.2021.687973] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
22 Si J, Jin Y, Cui M, Yao Q, Li R, Li X. Neuroprotective effect of miR-212-5p on isoflurane-induced cognitive dysfunction by inhibiting neuroinflammation. Toxicol Mech Methods 2021;31:501-6. [PMID: 34024225 DOI: 10.1080/15376516.2021.1919948] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Hartmann A, Hartmann C, Secci R, Hermann A, Fuellen G, Walter M. Ranking Biomarkers of Aging by Citation Profiling and Effort Scoring. Front Genet 2021;12:686320. [PMID: 34093670 DOI: 10.3389/fgene.2021.686320] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
24 Hadar A, Kapitansky O, Ganaiem M, Sragovich S, Lobyntseva A, Giladi E, Yeheskel A, Avitan A, Vatine GD, Gurwitz D, Ivashko-Pachima Y, Gozes I. Introducing ADNP and SIRT1 as new partners regulating microtubules and histone methylation. Mol Psychiatry 2021. [PMID: 33967268 DOI: 10.1038/s41380-021-01143-9] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
25 Paul S, Saha D, Bk B. Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer's Disease and Type 2 Diabetes. Mol Neurobiol 2021;58:3677-91. [PMID: 33797062 DOI: 10.1007/s12035-021-02365-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Nagaraj S, Want A, Laskowska-Kaszub K, Fesiuk A, Vaz S, Logarinho E, Wojda U. Candidate Alzheimer's Disease Biomarker miR-483-5p Lowers TAU Phosphorylation by Direct ERK1/2 Repression. Int J Mol Sci 2021;22:3653. [PMID: 33915734 DOI: 10.3390/ijms22073653] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
27 Yin P, Xue Y, Wang T, Zhong D, Li G. The Therapeutic Targets of Fingolimod (FTY720) Are Involved in Pathological Processes in the Frontal Cortex of Alzheimer's Disease Patients: A Network Pharmacology Study. Front Aging Neurosci 2021;13:609679. [PMID: 33603656 DOI: 10.3389/fnagi.2021.609679] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
28 Chilton W, Maier MC, Akinnibosun OA, O’brien BJ, Charchar FJ. Exercise, epigenetics, and aging. Epigenetics of Exercise and Sports 2021. [DOI: 10.1016/b978-0-12-820682-9.00002-5] [Reference Citation Analysis]
29 Morris BJ. Sirtuins and aging. Sirtuin Biology in Medicine 2021. [DOI: 10.1016/b978-0-12-814118-2.00017-3] [Reference Citation Analysis]
30 Mengel-from J. Circulating microRNAs as biomarkers of health in elderly individuals. Assessments, Treatments and Modeling in Aging and Neurological Disease 2021. [DOI: 10.1016/b978-0-12-818000-6.00024-x] [Reference Citation Analysis]
31 Moreno-García L, López-Royo T, Calvo AC, Toivonen JM, de la Torre M, Moreno-Martínez L, Molina N, Aparicio P, Zaragoza P, Manzano R, Osta R. Competing Endogenous RNA Networks as Biomarkers in Neurodegenerative Diseases. Int J Mol Sci 2020;21:E9582. [PMID: 33339180 DOI: 10.3390/ijms21249582] [Cited by in Crossref: 26] [Cited by in F6Publishing: 32] [Article Influence: 8.7] [Reference Citation Analysis]
32 Hadj-Moussa H, Pamenter ME, Storey KB. Hypoxic naked mole-rat brains use microRNA to coordinate hypometabolic fuels and neuroprotective defenses. J Cell Physiol 2021;236:5080-97. [PMID: 33305831 DOI: 10.1002/jcp.30216] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
33 Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020;12:583884. [PMID: 33364931 DOI: 10.3389/fnagi.2020.583884] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
34 Pukhalskaia AE, Dyatlova AS, Linkova NS, Kozlov KL, Kvetnaia TV, Koroleva MV, Kvetnoy IM. Sirtuins as Possible Predictors of Aging and Alzheimer's Disease Development: Verification in the Hippocampus and Saliva. Bull Exp Biol Med 2020;169:821-4. [PMID: 33098511 DOI: 10.1007/s10517-020-04986-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
35 Camporez D, Belcavello L, Almeida JFF, Silva-sena GG, Pimassoni LHS, Morelato RL, do Carmo Pimentel Batitucci M, de Paula F. Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer’s disease. Neurol Sci 2021;42:1843-51. [DOI: 10.1007/s10072-020-04704-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
36 Aylwin CF, Lomniczi A. Sirtuin (SIRT)-1: At the crossroads of puberty and metabolism. Curr Opin Endocr Metab Res 2020;14:65-72. [PMID: 32905232 DOI: 10.1016/j.coemr.2020.06.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
37 Jiang SB, Lu YS, Liu T, Li LM, Wang HX, Wu Y, Gao XH, Chen HD. UVA influenced the SIRT1-miR-27a-5p-SMAD2-MMP1/COL1/BCL2 axis in human skin primary fibroblasts. J Cell Mol Med 2020;24:10027-41. [PMID: 32790210 DOI: 10.1111/jcmm.15610] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
38 Sessa F, Salerno M, Cipolloni L, Bertozzi G, Messina G, Mizio GD, Asmundo A, Pomara C. Anabolic-androgenic steroids and brain injury: miRNA evaluation in users compared to cocaine abusers and elderly people. Aging (Albany NY) 2020;12:15314-27. [PMID: 32756006 DOI: 10.18632/aging.103512] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
39 Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSF. Modulation of MicroRNAs as a Potential Molecular Mechanism Involved in the Beneficial Actions of Physical Exercise in Alzheimer Disease. Int J Mol Sci 2020;21:E4977. [PMID: 32674523 DOI: 10.3390/ijms21144977] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
40 Andersen SL. Centenarians as Models of Resistance and Resilience to Alzheimer's Disease and Related Dementias. Adv Geriatr Med Res 2020;2:e200018. [PMID: 32743561 DOI: 10.20900/agmr20200018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Wang Y, Chang Q. MicroRNA miR-212 regulates PDCD4 to attenuate Aβ25-35-induced neurotoxicity via PI3K/AKT signaling pathway in Alzheimer's disease. Biotechnol Lett 2020;42:1789-97. [PMID: 32474742 DOI: 10.1007/s10529-020-02915-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
42 Braga DL, Mousovich-Neto F, Tonon-da-Silva G, Salgueiro WG, Mori MA. Epigenetic changes during ageing and their underlying mechanisms. Biogerontology 2020;21:423-43. [PMID: 32356238 DOI: 10.1007/s10522-020-09874-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
43 Squassina A, Niola P, Lopez JP, Cruceanu C, Pisanu C, Congiu D, Severino G, Ardau R, Chillotti C, Alda M, Turecki G, Del Zompo M. MicroRNA expression profiling of lymphoblasts from bipolar disorder patients who died by suicide, pathway analysis and integration with postmortem brain findings. Eur Neuropsychopharmacol 2020;34:39-49. [PMID: 32241689 DOI: 10.1016/j.euroneuro.2020.03.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
44 Puig-Parnau I, Garcia-Brito S, Faghihi N, Gubern C, Aldavert-Vera L, Segura-Torres P, Huguet G, Kádár E. Intracranial Self-Stimulation Modulates Levels of SIRT1 Protein and Neural Plasticity-Related microRNAs. Mol Neurobiol 2020;57:2551-62. [PMID: 32219698 DOI: 10.1007/s12035-020-01901-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
45 Monroy-jaramillo N, Vázquez-martínez ER. Epigenetics and Ageing. Clinical Genetics and Genomics of Aging 2020. [DOI: 10.1007/978-3-030-40955-5_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 García-velázquez L, Arias C. An Update on the Molecular Pillars of Aging. Clinical Genetics and Genomics of Aging 2020. [DOI: 10.1007/978-3-030-40955-5_1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
47 Ivashko-Pachima Y, Hadar A, Grigg I, Korenková V, Kapitansky O, Karmon G, Gershovits M, Sayas CL, Kooy RF, Attems J, Gurwitz D, Gozes I. Discovery of autism/intellectual disability somatic mutations in Alzheimer's brains: mutated ADNP cytoskeletal impairments and repair as a case study. Mol Psychiatry 2021;26:1619-33. [PMID: 31664177 DOI: 10.1038/s41380-019-0563-5] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
48 Kong P, Yu Y, Wang L, Dou YQ, Zhang XH, Cui Y, Wang HY, Yong YT, Liu YB, Hu HJ, Cui W, Sun SG, Li BH, Zhang F, Han M. circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res 2019;47:3580-93. [PMID: 30820544 DOI: 10.1093/nar/gkz141] [Cited by in Crossref: 79] [Cited by in F6Publishing: 84] [Article Influence: 19.8] [Reference Citation Analysis]
49 Takousis P, Sadlon A, Schulz J, Wohlers I, Dobricic V, Middleton L, Lill CM, Perneczky R, Bertram L. Differential expression of microRNAs in Alzheimer's disease brain, blood, and cerebrospinal fluid. Alzheimers Dement 2019;15:1468-77. [PMID: 31495604 DOI: 10.1016/j.jalz.2019.06.4952] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 15.3] [Reference Citation Analysis]
50 Ansari A, Maffioletti E, Milanesi E, Marizzoni M, Frisoni GB, Blin O, Richardson JC, Bordet R, Forloni G, Gennarelli M, Bocchio-Chiavetto L; PharmaCog Consortium. miR-146a and miR-181a are involved in the progression of mild cognitive impairment to Alzheimer's disease. Neurobiol Aging 2019;82:102-9. [PMID: 31437718 DOI: 10.1016/j.neurobiolaging.2019.06.005] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 13.3] [Reference Citation Analysis]
51 Xie J, Zhang L, Fan X, Dong X, Zhang Z, Fan W. MicroRNA-146a improves sepsis-induced cardiomyopathy by regulating the TLR-4/NF-κB signaling pathway. Exp Ther Med 2019;18:779-85. [PMID: 31281454 DOI: 10.3892/etm.2019.7657] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
52 Hadar A, Gurwitz D. Peripheral transcriptomic biomarkers for early detection of sporadic Alzheimer disease? Dialogues Clin Neurosci 2018;20:293-300. [PMID: 30936769 [PMID: 30936769 DOI: 10.31887/dcns.2018.20.4/dgurwitz] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
53 Yu CC, Jiang T, Yang AF, Du YJ, Wu M, Kong LH. Epigenetic Modulation on Tau Phosphorylation in Alzheimer's Disease. Neural Plast 2019;2019:6856327. [PMID: 31093272 DOI: 10.1155/2019/6856327] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
54 Sessa F, Maglietta F, Bertozzi G, Salerno M, Di Mizio G, Messina G, Montana A, Ricci P, Pomara C. Human Brain Injury and miRNAs: An Experimental Study. Int J Mol Sci 2019;20:E1546. [PMID: 30934805 DOI: 10.3390/ijms20071546] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
55 Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019;20:E1223. [PMID: 30862067 DOI: 10.3390/ijms20051223] [Cited by in Crossref: 132] [Cited by in F6Publishing: 144] [Article Influence: 33.0] [Reference Citation Analysis]
56 Zhang H, Lin J, Hu T, Ren Z, Wang W, He Q. Effect of miR-132 on bupivacaine-induced neurotoxicity in human neuroblastoma cell line. Journal of Pharmacological Sciences 2019;139:186-92. [DOI: 10.1016/j.jphs.2019.01.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
57 Ramakrishna S, Muddashetty RS. Emerging Role of microRNAs in Dementia. J Mol Biol 2019;431:1743-62. [PMID: 30738891 DOI: 10.1016/j.jmb.2019.01.046] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
58 Cacabelos R, Cacabelos P, Carril JC. Epigenetics and Pharmacoepigenetics of Age-Related Neurodegenerative Disorders. Pharmacoepigenetics. Elsevier; 2019. pp. 903-50. [DOI: 10.1016/b978-0-12-813939-4.00038-3] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
59 Gomez-verjan JC, Vazquez-martinez ER, Rivero-segura NA, Medina-campos RH. The RNA world of human ageing. Hum Genet 2018;137:865-79. [DOI: 10.1007/s00439-018-1955-3] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 6.2] [Reference Citation Analysis]
60 Ayers D, Scerri C. Non-coding RNA influences in dementia. Noncoding RNA Res 2018;3:188-94. [PMID: 30533568 DOI: 10.1016/j.ncrna.2018.09.002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]