BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Garbar C, Mascaux C, Giustiniani J, Merrouche Y, Bensussan A. Chemotherapy treatment induces an increase of autophagy in the luminal breast cancer cell MCF7, but not in the triple-negative MDA-MB231. Sci Rep 2017;7:7201. [PMID: 28775276 DOI: 10.1038/s41598-017-07489-x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Pospiech K, Orzechowska M, Nowakowska M, Anusewicz D, Płuciennik E, Kośla K, Bednarek AK. TGFα-EGFR pathway in breast carcinogenesis, association with WWOX expression and estrogen activation. J Appl Genet 2022. [PMID: 35290621 DOI: 10.1007/s13353-022-00690-3] [Reference Citation Analysis]
2 Bajbouj K, Shafarin J, Taneera J, Hamad M. Estrogen Signaling Induces Mitochondrial Dysfunction-Associated Autophagy and Senescence in Breast Cancer Cells. Biology (Basel) 2020;9:E68. [PMID: 32244623 DOI: 10.3390/biology9040068] [Reference Citation Analysis]
3 Ulyanova V, Dudkina E, Nadyrova A, Kalashnikov V, Surchenko Y, Ilinskaya O. The Cytotoxicity of RNase-Derived Peptides. Biomolecules 2020;11:E16. [PMID: 33375305 DOI: 10.3390/biom11010016] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Liu X, Feng C, Liu J, Cao L, Xiang G, Liu F, Wang S, Jiao J, Niu Y. Androgen receptor and heat shock protein 27 co-regulate the malignant potential of molecular apocrine breast cancer. J Exp Clin Cancer Res 2018;37:90. [PMID: 29699584 DOI: 10.1186/s13046-018-0762-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
5 Wilde L, Tanson K, Curry J, Martinez-outschoorn U. Autophagy in cancer: a complex relationship. Biochemical Journal 2018;475:1939-54. [DOI: 10.1042/bcj20170847] [Cited by in Crossref: 35] [Cited by in F6Publishing: 23] [Article Influence: 8.8] [Reference Citation Analysis]
6 Xu J, Patel NH, Saleh T, Cudjoe EK Jr, Alotaibi M, Wu Y, Lima S, Hawkridge AM, Gewirtz DA. Differential Radiation Sensitivity in p53 Wild-Type and p53-Deficient Tumor Cells Associated with Senescence but not Apoptosis or (Nonprotective) Autophagy. Radiat Res 2018;190:538-57. [PMID: 30132722 DOI: 10.1667/RR15099.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
7 Yang D, Zhang M, Gan Y, Yang S, Wang J, Yu M, Wei J, Chen J. Involvement of oxidative stress in ZnO NPs-induced apoptosis and autophagy of mouse GC-1 spg cells. Ecotoxicol Environ Saf 2020;202:110960. [PMID: 32800232 DOI: 10.1016/j.ecoenv.2020.110960] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Sun WL, Wang L, Luo J, Zhu HW, Cai ZW. Ambra1 modulates the sensitivity of breast cancer cells to epirubicin by regulating autophagy via ATG12. Cancer Sci 2018;109:3129-38. [PMID: 30027574 DOI: 10.1111/cas.13743] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
9 Schwarze B, Jelača S, Welcke L, Maksimović-Ivanić D, Mijatović S, Hey-Hawkins E. 2,2'-Bipyridine-Modified Tamoxifen: A Versatile Vector for Molybdacarboranes. ChemMedChem 2019;14:2075-83. [PMID: 31677361 DOI: 10.1002/cmdc.201900554] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
10 Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020;19:12. [PMID: 31969156 DOI: 10.1186/s12943-020-1138-4] [Cited by in Crossref: 100] [Cited by in F6Publishing: 112] [Article Influence: 50.0] [Reference Citation Analysis]
11 Qi J, Xing Y, Liu Y, Wang MM, Wei X, Sui Z, Ding L, Zhang Y, Lu C, Fei YH, Liu N, Chen R, Wu M, Wang L, Zhong Z, Wang T, Liu Y, Wang Y, Liu J, Xu H, Guo F, Wang W. MCOLN1/TRPML1 finely controls oncogenic autophagy in cancer by mediating zinc influx. Autophagy 2021;:1-22. [PMID: 33890549 DOI: 10.1080/15548627.2021.1917132] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kyriakopoulou K, Kefali E, Piperigkou Z, Bassiony H, Karamanos NK. Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cell Signal 2018;51:99-109. [PMID: 30071291 DOI: 10.1016/j.cellsig.2018.07.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
13 Silvestri S, Cirilli I, Marcheggiani F, Dludla P, Lupidi G, Pettinari R, Marchetti F, Di Nicola C, Falcioni G, Marchini C, Orlando P, Tiano L, Amici A. Evaluation of anticancer role of a novel ruthenium(II)-based compound compared with NAMI-A and cisplatin in impairing mitochondrial functionality and promoting oxidative stress in triple negative breast cancer models. Mitochondrion 2021;56:25-34. [PMID: 33220497 DOI: 10.1016/j.mito.2020.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhang H, Lu B. The Roles of ceRNAs-Mediated Autophagy in Cancer Chemoresistance and Metastasis. Cancers (Basel) 2020;12:E2926. [PMID: 33050642 DOI: 10.3390/cancers12102926] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Chen X, Li S, Li D, Li M, Su Z, Lai X, Zhou C, Chen S, Li S, Yang X, Su J, Zhang Y. Ethanol Extract of Brucea javanica Seed Inhibit Triple-Negative Breast Cancer by Restraining Autophagy via PI3K/Akt/mTOR Pathway. Front Pharmacol 2020;11:606. [PMID: 32411003 DOI: 10.3389/fphar.2020.00606] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Gan Y, Yang D, Yang S, Wang J, Wei J, Chen J. Di‐2‐ethylhexyl phthalate (DEHP) induces apoptosis and autophagy of mouse GC‐1 spg cells. Environmental Toxicology 2019;35:292-9. [DOI: 10.1002/tox.22866] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
17 Serra A, Önlü S, Coretto P, Greco D. An integrated quantitative structure and mechanism of action-activity relationship model of human serum albumin binding. J Cheminform 2019;11:38. [PMID: 31172382 DOI: 10.1186/s13321-019-0359-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
18 Luparello C, Ragona D, Asaro DML, Lazzara V, Affranchi F, Arizza V, Vazzana M. Cell-Free Coelomic Fluid Extracts of the Sea Urchin Arbacia lixula Impair Mitochondrial Potential and Cell Cycle Distribution and Stimulate Reactive Oxygen Species Production and Autophagic Activity in Triple-Negative MDA-MB231 Breast Cancer Cells. JMSE 2020;8:261. [DOI: 10.3390/jmse8040261] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
19 Barbirou M, Sghaier I, Bedoui S, Ben Abderrazek R, Kraiem H, Farah A, Hassiki R, Mokrani A, Mezlini A, Almawi WY, Loueslati-Yacoubi B, Bouhaouala-Zahar B. KCNB1 gene polymorphisms and related indel as predictor biomarkers of treatment response for colorectal cancer - toward a personalized medicine. Tumour Biol 2020;42:1010428320925237. [PMID: 32484056 DOI: 10.1177/1010428320925237] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Devenport SN, Shah YM. Functions and Implications of Autophagy in Colon Cancer. Cells 2019;8:E1349. [PMID: 31671556 DOI: 10.3390/cells8111349] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
21 Ferraro MG, Piccolo M, Misso G, Maione F, Montesarchio D, Caraglia M, Paduano L, Santamaria R, Irace C. Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems. Cells 2020;9:E1412. [PMID: 32517101 DOI: 10.3390/cells9061412] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
22 Salimi L, Akbari A, Jabbari N, Mojarad B, Vahhabi A, Szafert S, Kalashani SA, Soraya H, Nawaz M, Rezaie J. Synergies in exosomes and autophagy pathways for cellular homeostasis and metastasis of tumor cells. Cell Biosci 2020;10:64. [PMID: 32426106 DOI: 10.1186/s13578-020-00426-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
23 Su J, Chen X, Xiao Y, Li D, Li M, Li H, Huang J, Lai Z, Su Z, Xie Y, Zhu D, Chen Q, Lu H, He J, Xia C. Bruceae Fructus Oil Inhibits Triple-Negative Breast Cancer by Restraining Autophagy: Dependence on the Gut Microbiota-Mediated Amino Acid Regulation. Front Pharmacol 2021;12:727082. [PMID: 34658867 DOI: 10.3389/fphar.2021.727082] [Reference Citation Analysis]
24 Luparello C, Ragona D, Asaro DML, Lazzara V, Affranchi F, Celi M, Arizza V, Vazzana M. Cytotoxic Potential of the Coelomic Fluid Extracted from the Sea Cucumber Holothuria tubulosa against Triple-Negative MDA-MB231 Breast Cancer Cells. Biology (Basel) 2019;8:E76. [PMID: 31600896 DOI: 10.3390/biology8040076] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
25 Sun Y, Shen J, Zeng L, Yang D, Shao S, Wang J, Wei J, Xiong J, Chen J. Role of autophagy in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis in mouse Leydig cells. Environmental Pollution 2018;243:563-72. [DOI: 10.1016/j.envpol.2018.08.089] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 11.0] [Reference Citation Analysis]
26 Garbar C, Mascaux C, Merrouche Y, Bensussan A. Triple-negative and HER2-overexpressing breast cancer cell sialylation impacts tumor microenvironment T-lymphocyte subset recruitment: a possible mechanism of tumor escape. Cancer Manag Res 2018;10:1051-9. [PMID: 29765252 DOI: 10.2147/CMAR.S162932] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]