BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kocan M, Sarwar M, Ang SY, Xiao J, Marugan JJ, Hossain MA, Wang C, Hutchinson DS, Samuel CS, Agoulnik AI, Bathgate RAD, Summers RJ. ML290 is a biased allosteric agonist at the relaxin receptor RXFP1. Sci Rep 2017;7:2968. [PMID: 28592882 DOI: 10.1038/s41598-017-02916-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Tapia Cáceres F, Gaspari TA, Hossain MA, Samuel CS. Relaxin Inhibits the Cardiac Myofibroblast NLRP3 Inflammasome as Part of Its Anti-Fibrotic Actions via the Angiotensin Type 2 and ATP (P2X7) Receptors. IJMS 2022;23:7074. [DOI: 10.3390/ijms23137074] [Reference Citation Analysis]
2 Speck D, Kleinau G, Meininghaus M, Erbe A, Einfeldt A, Szczepek M, Scheerer P, Pütter V. Expression and Characterization of Relaxin Family Peptide Receptor 1 Variants. Front Pharmacol 2022;12:826112. [DOI: 10.3389/fphar.2021.826112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021;197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Ng HH, Soula M, Rivas B, Wilson KJ, Marugan JJ, Agoulnik AI. Anti-apoptotic and Matrix Remodeling Actions of a Small Molecule Agonist of the Human Relaxin Receptor, ML290 in Mice With Unilateral Ureteral Obstruction. Front Physiol 2021;12:650769. [PMID: 34305630 DOI: 10.3389/fphys.2021.650769] [Reference Citation Analysis]
5 Ezhilarasan D. Relaxin in hepatic fibrosis: What is known and where to head? Biochimie 2021;187:144-51. [PMID: 34102254 DOI: 10.1016/j.biochi.2021.06.001] [Reference Citation Analysis]
6 Pinar AA, Yuferov A, Gaspari TA, Samuel CS. Relaxin Can Mediate Its Anti-Fibrotic Effects by Targeting the Myofibroblast NLRP3 Inflammasome at the Level of Caspase-1. Front Pharmacol 2020;11:1201. [PMID: 32848798 DOI: 10.3389/fphar.2020.01201] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wang C, Pinar AA, Widdop RE, Hossain MA, Bathgate RAD, Denton KM, Kemp-Harper BK, Samuel CS. The anti-fibrotic actions of relaxin are mediated through AT2 R-associated protein phosphatases via RXFP1-AT2 R functional crosstalk in human cardiac myofibroblasts. FASEB J 2020;34:8217-33. [PMID: 32297670 DOI: 10.1096/fj.201902506R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Devarakonda T, Mauro AG, Guzman G, Hovsepian S, Cain C, Das A, Praveen P, Hossain MA, Salloum FN. B7-33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction-Related Adverse Cardiac Remodeling in Mice. J Am Heart Assoc 2020;9:e015748. [PMID: 32295457 DOI: 10.1161/JAHA.119.015748] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
9 Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020;8:e1194. [PMID: 32100955 DOI: 10.1002/mgg3.1194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Cáceres FT, Gaspari TA, Samuel CS, Pinar AA. Serelaxin inhibits the profibrotic TGF-β1/IL-1β axis by targeting TLR-4 and the NLRP3 inflammasome in cardiac myofibroblasts. FASEB J 2019;33:14717-33. [PMID: 31689135 DOI: 10.1096/fj.201901079RR] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
11 Chow BSM, Kocan M, Shen M, Wang Y, Han L, Chew JY, Wang C, Bosnyak S, Mirabito-Colafella KM, Barsha G, Wigg B, Johnstone EKM, Hossain MA, Pfleger KDG, Denton KM, Widdop RE, Summers RJ, Bathgate RAD, Hewitson TD, Samuel CS. AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis. J Am Soc Nephrol 2019;30:2191-207. [PMID: 31511361 DOI: 10.1681/ASN.2019060597] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 3.7] [Reference Citation Analysis]
12 Kaftanovskaya EM, Ng HH, Soula M, Rivas B, Myhr C, Ho BA, Cervantes BA, Shupe TD, Devarasetty M, Hu X, Xu X, Patnaik S, Wilson KJ, Barnaeva E, Ferrer M, Southall NT, Marugan JJ, Bishop CE, Agoulnik IU, Agoulnik AI. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis. FASEB J 2019;33:12435-46. [PMID: 31419161 DOI: 10.1096/fj.201901046R] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
13 Mukherjee S, Darzi S, Paul K, Werkmeister JA, Gargett CE. Mesenchymal stem cell-based bioengineered constructs: foreign body response, cross-talk with macrophages and impact of biomaterial design strategies for pelvic floor disorders. Interface Focus 2019;9:20180089. [PMID: 31263531 DOI: 10.1098/rsfs.2018.0089] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
14 Leo CH, Jelinic M, Ng HH, Parry LJ, Tare M. Recent developments in relaxin mimetics as therapeutics for cardiovascular diseases. Curr Opin Pharmacol 2019;45:42-8. [PMID: 31048209 DOI: 10.1016/j.coph.2019.04.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Kanai AJ, Konieczko EM, Bennett RG, Samuel CS, Royce SG. Relaxin and fibrosis: Emerging targets, challenges, and future directions. Mol Cell Endocrinol 2019;487:66-74. [PMID: 30772373 DOI: 10.1016/j.mce.2019.02.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
16 Ng HH, Shen M, Samuel CS, Schlossmann J, Bennett RG. Relaxin and extracellular matrix remodeling: Mechanisms and signaling pathways. Mol Cell Endocrinol 2019;487:59-65. [PMID: 30660699 DOI: 10.1016/j.mce.2019.01.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
17 Martin B, Romero G, Salama G. Cardioprotective actions of relaxin. Mol Cell Endocrinol 2019;487:45-53. [PMID: 30625345 DOI: 10.1016/j.mce.2018.12.016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
18 Valkovic AL, Bathgate RA, Samuel CS, Kocan M. Understanding relaxin signalling at the cellular level. Mol Cell Endocrinol 2019;487:24-33. [PMID: 30592984 DOI: 10.1016/j.mce.2018.12.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Ng HH, Esteban-Lopez M, Agoulnik AI. Targeting the relaxin/insulin-like family peptide receptor 1 and 2 with small molecule compounds. Mol Cell Endocrinol 2019;487:40-4. [PMID: 30590098 DOI: 10.1016/j.mce.2018.12.013] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
20 Hoare BL, Bruell S, Sethi A, Gooley PR, Lew MJ, Hossain MA, Inoue A, Scott DJ, Bathgate RAD. Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis. iScience 2019;11:93-113. [PMID: 30594862 DOI: 10.1016/j.isci.2018.12.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
21 Valkovic AL, Leckey MB, Whitehead AR, Hossain MA, Inoue A, Kocan M, Bathgate RAD. Real-time examination of cAMP activity at relaxin family peptide receptors using a BRET-based biosensor. Pharmacol Res Perspect 2018;6:e00432. [PMID: 30263124 DOI: 10.1002/prp2.432] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
22 Bathgate RA, Kocan M, Scott DJ, Hossain MA, Good SV, Yegorov S, Bogerd J, Gooley PR. The relaxin receptor as a therapeutic target – perspectives from evolution and drug targeting. Pharmacology & Therapeutics 2018;187:114-32. [DOI: 10.1016/j.pharmthera.2018.02.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
23 Wilson KJ, Xiao J, Chen CZ, Huang Z, Agoulnik IU, Ferrer M, Southall N, Hu X, Zheng W, Xu X, Wang A, Myhr C, Barnaeva E, George ER, Agoulnik AI, Marugan JJ. Optimization of the first small-molecule relaxin/insulin-like family peptide receptor (RXFP1) agonists: Activation results in an antifibrotic gene expression profile. Eur J Med Chem 2018;156:79-92. [PMID: 30006176 DOI: 10.1016/j.ejmech.2018.06.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
24 Bumbak F, Keen AC, Gunn NJ, Gooley PR, Bathgate RAD, Scott DJ. Optimization and 13CH3 methionine labeling of a signaling competent neurotensin receptor 1 variant for NMR studies. Biochim Biophys Acta Biomembr 2018;1860:1372-83. [PMID: 29596791 DOI: 10.1016/j.bbamem.2018.03.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
25 Devarakonda T, Salloum FN. Heart Disease and Relaxin: New Actions for an Old Hormone. Trends Endocrinol Metab 2018;29:338-48. [PMID: 29526354 DOI: 10.1016/j.tem.2018.02.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]