BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Humeau Y, Choquet D. The next generation of approaches to investigate the link between synaptic plasticity and learning. Nat Neurosci 2019;22:1536-43. [PMID: 31477899 DOI: 10.1038/s41593-019-0480-6] [Cited by in Crossref: 37] [Cited by in F6Publishing: 44] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Huffels CFM, Middeldorp J, Hol EM. Aß Pathology and Neuron-Glia Interactions: A Synaptocentric View. Neurochem Res 2022. [PMID: 35976488 DOI: 10.1007/s11064-022-03699-6] [Reference Citation Analysis]
2 Getz AM, Ducros M, Breillat C, Lampin-Saint-Amaux A, Daburon S, François U, Nowacka A, Fernández-Monreal M, Hosy E, Lanore F, Zieger HL, Sainlos M, Humeau Y, Choquet D. High-resolution imaging and manipulation of endogenous AMPA receptor surface mobility during synaptic plasticity and learning. Sci Adv 2022;8:eabm5298. [PMID: 35895810 DOI: 10.1126/sciadv.abm5298] [Reference Citation Analysis]
3 Rost BR, Wietek J, Yizhar O, Schmitz D. Optogenetics at the presynapse. Nat Neurosci 2022. [PMID: 35835882 DOI: 10.1038/s41593-022-01113-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Nakao A, Hayashida K, Ogura H, Mori Y, Imoto K. Hippocampus-related cognitive disorders develop in the absence of epilepsy and ataxia in the heterozygous Cacna1a mutant mice tottering. Channels (Austin) 2022;16:113-26. [PMID: 35548926 DOI: 10.1080/19336950.2022.2072449] [Reference Citation Analysis]
5 Choquet D, Opazo P. The role of AMPAR lateral diffusion in memory. Semin Cell Dev Biol 2022;125:76-83. [PMID: 35123863 DOI: 10.1016/j.semcdb.2022.01.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Yoder JA, Anderson CB, Wang C, Izquierdo EJ. Reinforcement Learning for Central Pattern Generation in Dynamical Recurrent Neural Networks. Front Comput Neurosci 2022;16:818985. [DOI: 10.3389/fncom.2022.818985] [Reference Citation Analysis]
7 Xue Z, Shui M, Lin X, Sun Y, Liu J, Wei C, Wu A, Li T. Role of BDNF/ProBDNF Imbalance in Postoperative Cognitive Dysfunction by Modulating Synaptic Plasticity in Aged Mice. Front Aging Neurosci 2022;14:780972. [DOI: 10.3389/fnagi.2022.780972] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
8 Dankovich TM, Rizzoli SO. The Synaptic Extracellular Matrix: Long-Lived, Stable, and Still Remarkably Dynamic. Front Synaptic Neurosci 2022;14:854956. [DOI: 10.3389/fnsyn.2022.854956] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Dankovich TM, Kaushik R, Olsthoorn LHM, Petersen GC, Giro PE, Kluever V, Agüi-Gonzalez P, Grewe K, Bao G, Beuermann S, Hadi HA, Doeren J, Klöppner S, Cooper BH, Dityatev A, Rizzoli SO. Extracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R. Nat Commun 2021;12:7129. [PMID: 34880248 DOI: 10.1038/s41467-021-27462-7] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
10 Maldonado-Díaz C, Vazquez M, Marie B. A comparison of three different methods of eliciting rapid activity-dependent synaptic plasticity at the Drosophila NMJ. PLoS One 2021;16:e0260553. [PMID: 34847197 DOI: 10.1371/journal.pone.0260553] [Reference Citation Analysis]
11 Kossio YFK, Goedeke S, Klos C, Memmesheimer RM. Drifting assemblies for persistent memory: Neuron transitions and unsupervised compensation. Proc Natl Acad Sci U S A 2021;118:e2023832118. [PMID: 34772802 DOI: 10.1073/pnas.2023832118] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Lenz M, Eichler A, Kruse P, Muellerleile J, Deller T, Jedlicka P, Vlachos A. All-trans retinoic acid induces synaptopodin-dependent metaplasticity in mouse dentate granule cells. Elife 2021;10:e71983. [PMID: 34723795 DOI: 10.7554/eLife.71983] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Wang IF, Wang Y, Yang YH, Huang GJ, Tsai KJ, Shen CJ. Activation of a hippocampal CREB-pCREB-miRNA-MEF2 axis modulates individual variation of spatial learning and memory capability. Cell Rep 2021;36:109477. [PMID: 34348143 DOI: 10.1016/j.celrep.2021.109477] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Helm MS, Dankovich TM, Mandad S, Rammner B, Jähne S, Salimi V, Koerbs C, Leibrandt R, Urlaub H, Schikorski T, Rizzoli SO. A large-scale nanoscopy and biochemistry analysis of postsynaptic dendritic spines. Nat Neurosci 2021;24:1151-62. [PMID: 34168338 DOI: 10.1038/s41593-021-00874-w] [Cited by in F6Publishing: 19] [Reference Citation Analysis]
15 Jia P, Manuel AM, Fernandes BS, Dai Y, Zhao Z. Distinct effect of prenatal and postnatal brain expression across 20 brain disorders and anthropometric social traits: a systematic study of spatiotemporal modularity. Brief Bioinform 2021:bbab214. [PMID: 34086851 DOI: 10.1093/bib/bbab214] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Takemoto K. Optical manipulation of molecular function by chromophore-assisted light inactivation. Proc Jpn Acad Ser B Phys Biol Sci 2021;97:197-209. [PMID: 33840676 DOI: 10.2183/pjab.97.011] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Obashi K, Taraska JW, Okabe S. The role of molecular diffusion within dendritic spines in synaptic function. J Gen Physiol 2021;153:e202012814. [PMID: 33720306 DOI: 10.1085/jgp.202012814] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zheng K, Hu F, Zhou Y, Zhang J, Zheng J, Lai C, Xiong W, Cui K, Hu YZ, Han ZT, Zhang HH, Chen JG, Man HY, Liu D, Lu Y, Zhu LQ. miR-135a-5p mediates memory and synaptic impairments via the Rock2/Adducin1 signaling pathway in a mouse model of Alzheimer's disease. Nat Commun 2021;12:1903. [PMID: 33771994 DOI: 10.1038/s41467-021-22196-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
19 Schulte C, Maric HM. Expanding GABAAR pharmacology via receptor-associated proteins. Curr Opin Pharmacol 2021;57:98-106. [PMID: 33684670 DOI: 10.1016/j.coph.2021.01.004] [Reference Citation Analysis]
20 Ojima K, Shiraiwa K, Soga K, Doura T, Takato M, Komatsu K, Yuzaki M, Hamachi I, Kiyonaka S. Ligand-directed two-step labeling to quantify neuronal glutamate receptor trafficking. Nat Commun 2021;12:831. [PMID: 33547306 DOI: 10.1038/s41467-021-21082-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
21 He J, Chen Z, Kang X, Wu L, Jiang JM, Liu SM, Wei HJ, Chen YJ, Zou W, Wang CY, Zhang P. SIRT1 Mediates H2S-Ameliorated Diabetes-Associated Cognitive Dysfunction in Rats: Possible Involvement of Inhibiting Hippocampal Endoplasmic Reticulum Stress and Synaptic Dysfunction. Neurochem Res 2021;46:611-23. [PMID: 33534060 DOI: 10.1007/s11064-020-03196-8] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
22 Li KW, Gonzalez-Lozano MA, Koopmans F, Smit AB. Recent Developments in Data Independent Acquisition (DIA) Mass Spectrometry: Application of Quantitative Analysis of the Brain Proteome. Front Mol Neurosci 2020;13:564446. [PMID: 33424549 DOI: 10.3389/fnmol.2020.564446] [Cited by in Crossref: 2] [Cited by in F6Publishing: 18] [Article Influence: 1.0] [Reference Citation Analysis]
23 Sohn H, Meirhaeghe N, Rajalingham R, Jazayeri M. A Network Perspective on Sensorimotor Learning. Trends Neurosci 2021;44:170-81. [PMID: 33349476 DOI: 10.1016/j.tins.2020.11.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
24 Kees AL, Marneffe C, Mulle C. Lighting up pre-synaptic potentiation: An Editorial for "SynaptoPAC, an optogenetic tool for induction of presynaptic plasticity" on page 324. J Neurochem 2021;156:270-2. [PMID: 33274445 DOI: 10.1111/jnc.15236] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
25 Gürth CM, Dankovich TM, Rizzoli SO, D'Este E. Synaptic activity and strength are reflected by changes in the post-synaptic secretory pathway. Sci Rep 2020;10:20576. [PMID: 33239744 DOI: 10.1038/s41598-020-77260-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
26 Lee SH, Park HL, Kim MH, Kim MH, Park BG, Lee SD. Realization of Biomimetic Synaptic Functions in a One-Cell Organic Resistive Switching Device Using the Diffusive Parameter of Conductive Filaments. ACS Appl Mater Interfaces 2020;12:51719-28. [PMID: 33151051 DOI: 10.1021/acsami.0c15519] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
27 Qu W, Yuan B, Liu J, Liu Q, Zhang X, Cui R, Yang W, Li B. Emerging role of AMPA receptor subunit GluA1 in synaptic plasticity: Implications for Alzheimer's disease. Cell Prolif 2021;54:e12959. [PMID: 33188547 DOI: 10.1111/cpr.12959] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
28 Chen Y, Tsai F, Chen M, Carotenuto M. Antipsychotic Drugs Reverse MK801-Inhibited Cell Migration and F-actin Condensation by Modulating the Rho Signaling Pathway in B35 Cells. Behavioural Neurology 2020;2020:1-9. [DOI: 10.1155/2020/4163274] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 Joyal M, Groleau C, Bouchard C, Wilson MA, Fecteau S. Semantic Processing in Healthy Aging and Alzheimer's Disease: A Systematic Review of the N400 Differences. Brain Sci 2020;10:E770. [PMID: 33114051 DOI: 10.3390/brainsci10110770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
30 Mansur F, Alarcon JM, Stackpole EE, Wang R, Richter JD. Noncanonical cytoplasmic poly(A) polymerases regulate RNA levels, alternative RNA processing, and synaptic plasticity but not hippocampal-dependent behaviours. RNA Biol 2021;18:962-71. [PMID: 32954964 DOI: 10.1080/15476286.2020.1824061] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Baculis BC, Zhang J, Chung HJ. The Role of Kv7 Channels in Neural Plasticity and Behavior. Front Physiol 2020;11:568667. [PMID: 33071824 DOI: 10.3389/fphys.2020.568667] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
32 Han H, Ge F, Ma M, Yu H, Wei H, Zhao X, Yao H, Gong J, Qiu L, Xu W. Mixed receptors of AMPA and NMDA emulated using a 'Polka Dot'-structured two-dimensional conjugated polymer-based artificial synapse. Nanoscale Horiz 2020;5:1324-31. [PMID: 32749433 DOI: 10.1039/d0nh00348d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
33 Campelo T, Augusto E, Chenouard N, de Miranda A, Kouskoff V, Camus C, Choquet D, Gambino F. AMPAR-Dependent Synaptic Plasticity Initiates Cortical Remapping and Adaptive Behaviors during Sensory Experience. Cell Rep 2020;32:108097. [PMID: 32877679 DOI: 10.1016/j.celrep.2020.108097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
34 O'Connor M, Shentu YP, Wang G, Hu WT, Xu ZD, Wang XC, Liu R, Man HY. Acetylation of AMPA Receptors Regulates Receptor Trafficking and Rescues Memory Deficits in Alzheimer's Disease. iScience 2020;23:101465. [PMID: 32861999 DOI: 10.1016/j.isci.2020.101465] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Gambino F, Choquet D. Eyes Wide Open on AMPAR Trafficking during Motor Learning. Neuron 2020;105:764-6. [PMID: 32135087 DOI: 10.1016/j.neuron.2020.02.006] [Reference Citation Analysis]
36 Moreno A. Molecular mechanisms of forgetting. Eur J Neurosci. [DOI: 10.1111/ejn.14839] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
37 Sallet J, Noonan MP, Thomas A, O'Reilly JX, Anderson J, Papageorgiou GK, Neubert FX, Ahmed B, Smith J, Bell AH, Buckley MJ, Roumazeilles L, Cuell S, Walton ME, Krug K, Mars RB, Rushworth MFS. Behavioral flexibility is associated with changes in structure and function distributed across a frontal cortical network in macaques. PLoS Biol 2020;18:e3000605. [PMID: 32453728 DOI: 10.1371/journal.pbio.3000605] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
38 Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020;190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Venkatesan S, Subramaniam S, Rajeev P, Chopra Y, Jose M, Nair D. Differential Scaling of Synaptic Molecules within Functional Zones of an Excitatory Synapse during Homeostatic Plasticity. eNeuro 2020;7:ENEURO. [PMID: 32184300 DOI: 10.1523/ENEURO.0407-19.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
40 Cheyne JE, Montgomery JM. The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am J Physiol Cell Physiol 2020;318:C1264-83. [PMID: 32320288 DOI: 10.1152/ajpcell.00416.2019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
41 Fernández de Sevilla D, Núñez A, Buño W. Muscarinic Receptors, from Synaptic Plasticity to its Role in Network Activity. Neuroscience 2021;456:60-70. [PMID: 32278062 DOI: 10.1016/j.neuroscience.2020.04.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
42 Kedia S, Ramakrishna P, Netrakanti PR, Jose M, Sibarita JB, Nadkarni S, Nair D. Real-time nanoscale organization of amyloid precursor protein. Nanoscale 2020;12:8200-15. [PMID: 32255447 DOI: 10.1039/d0nr00052c] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
43 Mikuni T, Uchigashima M. Methodological approaches to understand the molecular mechanism of structural plasticity of dendritic spines. Eur J Neurosci 2021;54:6902-11. [PMID: 32248570 DOI: 10.1111/ejn.14734] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 Schiera G, Di Liegro CM, Di Liegro I. Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles. Int J Mol Sci 2019;21:E266. [PMID: 31906013 DOI: 10.3390/ijms21010266] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]