BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019;22:642-56. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Cited by in Crossref: 94] [Cited by in F6Publishing: 73] [Article Influence: 31.3] [Reference Citation Analysis]
Number Citing Articles
1 Owens-french J, Li S, Francois M, Leigh Townsend R, Daniel M, Soulier H, Turner A, de Lecea L, Münzberg H, Morrison C, Qualls-creekmore E. Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice. Behavioural Brain Research 2022. [DOI: 10.1016/j.bbr.2022.113773] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020;20:55. [PMID: 33006677 DOI: 10.1007/s11910-020-01075-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021;44:zsaa278. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Sotelo MI, Tyan J, Markunas C, Sulaman BA, Horwitz L, Lee H, Morrow JG, Rothschild G, Duan B, Eban-Rothschild A. Lateral hypothalamic neuronal ensembles regulate pre-sleep nest-building behavior. Curr Biol 2022:S0960-9822(21)01740-1. [PMID: 35051354 DOI: 10.1016/j.cub.2021.12.053] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
5 Wallén-Mackenzie Å, Dumas S, Papathanou M, Martis Thiele MM, Vlcek B, König N, Björklund ÅK. Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures. Commun Biol 2020;3:338. [PMID: 32620779 DOI: 10.1038/s42003-020-1028-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Zhou X, Zhong S, Peng H, Liu J, Ding W, Sun L, Ma Q, Liu Z, Chen R, Wu Q, Wang X. Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. Nat Commun 2020;11:4063. [PMID: 32792525 DOI: 10.1038/s41467-020-17890-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
7 Inada K, Hagihara M, Tsujimoto K, Abe T, Konno A, Hirai H, Kiyonari H, Miyamichi K. Plasticity of neural connections underlying oxytocin-mediated parental behaviors of male mice. Neuron 2022:S0896-6273(22)00304-X. [PMID: 35443152 DOI: 10.1016/j.neuron.2022.03.033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ren J, Isakova A, Friedmann D, Zeng J, Grutzner SM, Pun A, Zhao GQ, Kolluru SS, Wang R, Lin R, Li P, Li A, Raymond JL, Luo Q, Luo M, Quake SR, Luo L. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. Elife 2019;8:e49424. [PMID: 31647409 DOI: 10.7554/eLife.49424] [Cited by in Crossref: 51] [Cited by in F6Publishing: 31] [Article Influence: 17.0] [Reference Citation Analysis]
9 Fujikawa T. Central regulation of glucose metabolism in an insulin-dependent and -independent manner. J Neuroendocrinol 2021;33:e12941. [PMID: 33599044 DOI: 10.1111/jne.12941] [Reference Citation Analysis]
10 Park SH, Weber F. Neural and Homeostatic Regulation of REM Sleep. Front Psychol 2020;11:1662. [PMID: 32793050 DOI: 10.3389/fpsyg.2020.01662] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
11 Mickelsen LE, Flynn WF, Springer K, Wilson L, Beltrami EJ, Bolisetty M, Robson P, Jackson AC. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. Elife 2020;9:e58901. [PMID: 33119507 DOI: 10.7554/eLife.58901] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
12 Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2021;120:401-16. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
13 Laing BT, Siemian JN, Sarsfield S, Aponte Y. Fluorescence microendoscopy for in vivo deep-brain imaging of neuronal circuits. J Neurosci Methods 2021;348:109015. [PMID: 33259847 DOI: 10.1016/j.jneumeth.2020.109015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Huang C, Rosencrans RF, Bugescu R, Vieira CP, Hu P, Adu-Agyeiwaah Y, Gamble KL, Longhini ALF, Fuller PM, Leinninger GM, Grant MB. Depleting hypothalamic somatostatinergic neurons recapitulates diabetic phenotypes in mouse brain, bone marrow, adipose and retina. Diabetologia 2021;64:2575-88. [PMID: 34430981 DOI: 10.1007/s00125-021-05549-6] [Reference Citation Analysis]
15 Anderson A, Lundeberg J. sepal: Identifying Transcript Profiles with Spatial Patterns by Diffusion-based Modeling. Bioinformatics 2021:btab164. [PMID: 33704427 DOI: 10.1093/bioinformatics/btab164] [Reference Citation Analysis]
16 Wang Y, Eddison M, Fleishman G, Weigert M, Xu S, Wang T, Rokicki K, Goina C, Henry FE, Lemire AL, Schmidt U, Yang H, Svoboda K, Myers EW, Saalfeld S, Korff W, Sternson SM, Tillberg PW. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 2021;184:6361-6377.e24. [PMID: 34875226 DOI: 10.1016/j.cell.2021.11.024] [Reference Citation Analysis]
17 Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The Physiological Control of Eating: Signals, Neurons, and Networks. Physiol Rev 2021. [PMID: 34486393 DOI: 10.1152/physrev.00028.2020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 10.0] [Reference Citation Analysis]
18 Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2021;229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Morris EL, Patton AP, Chesham JE, Crisp A, Adamson A, Hastings MH. Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network. EMBO J 2021;40:e108614. [PMID: 34487375 DOI: 10.15252/embj.2021108614] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Kalsbeek A, Buijs RM. Organization of the neuroendocrine and autonomic hypothalamic paraventricular nucleus. Handb Clin Neurol 2021;180:45-63. [PMID: 34225948 DOI: 10.1016/B978-0-12-820107-7.00004-5] [Reference Citation Analysis]
21 Jung S, Lee M, Kim DY, Son C, Ahn BH, Heo G, Park J, Kim M, Park HE, Koo DJ, Park JH, Lee JW, Choe HK, Kim SY. A forebrain neural substrate for behavioral thermoregulation. Neuron 2021:S0896-6273(21)00712-1. [PMID: 34687664 DOI: 10.1016/j.neuron.2021.09.039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Cleary CM, Milla BM, Kuo FS, James S, Flynn WF, Robson P, Mulkey DK. Somatostatin-expressing parafacial neurons are CO2/H+ sensitive and regulate baseline breathing. Elife 2021;10:e60317. [PMID: 34013884 DOI: 10.7554/eLife.60317] [Reference Citation Analysis]
23 Fougère M, van der Zouwen CI, Boutin J, Ryczko D. Heterogeneous expression of dopaminergic markers and Vglut2 in mouse mesodiencephalic dopaminergic nuclei A8-A13. J Comp Neurol 2021;529:1273-92. [PMID: 32869307 DOI: 10.1002/cne.25020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
24 Negishi K, Payant MA, Schumacker KS, Wittmann G, Butler RM, Lechan RM, Steinbusch HWM, Khan AM, Chee MJ. Distributions of hypothalamic neuron populations coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. J Comp Neurol 2020;528:1833-55. [PMID: 31950494 DOI: 10.1002/cne.24857] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Mohammad H, Senol E, Graf M, Lee CY, Li Q, Liu Q, Yeo XY, Wang M, Laskaratos A, Xu F, Luo SX, Jung S, Augustine GJ, Fu Y. A neural circuit for excessive feeding driven by environmental context in mice. Nat Neurosci 2021;24:1132-41. [PMID: 34168339 DOI: 10.1038/s41593-021-00875-9] [Reference Citation Analysis]
26 Schiffino FL, Siemian JN, Petrella M, Laing BT, Sarsfield S, Borja CB, Gajendiran A, Zuccoli ML, Aponte Y. Activation of a lateral hypothalamic-ventral tegmental circuit gates motivation. PLoS One 2019;14:e0219522. [PMID: 31291348 DOI: 10.1371/journal.pone.0219522] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
27 Berrios J, Li C, Madara JC, Garfield AS, Steger JS, Krashes MJ, Lowell BB. Food cue regulation of AGRP hunger neurons guides learning. Nature 2021;595:695-700. [PMID: 34262177 DOI: 10.1038/s41586-021-03729-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Ryvkin J, Bentzur A, Shmueli A, Tannenbaum M, Shallom O, Dokarker S, Benichou JIC, Levi M, Shohat-Ophir G. Transcriptome Analysis of NPFR Neurons Reveals a Connection Between Proteome Diversity and Social Behavior. Front Behav Neurosci 2021;15:628662. [PMID: 33867948 DOI: 10.3389/fnbeh.2021.628662] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Beul SF, Hilgetag CC. Systematic modelling of the development of laminar projection origins in the cerebral cortex: Interactions of spatio-temporal patterns of neurogenesis and cellular heterogeneity. PLoS Comput Biol 2020;16:e1007991. [PMID: 33048930 DOI: 10.1371/journal.pcbi.1007991] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Burdakov D, Karnani MM. Ultra-sparse Connectivity within the Lateral Hypothalamus. Curr Biol 2020;30:4063-4070.e2. [PMID: 32822604 DOI: 10.1016/j.cub.2020.07.061] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021;37:934-46. [PMID: 33847915 DOI: 10.1007/s12264-021-00674-z] [Reference Citation Analysis]
32 Prasad AA, Xie C, Chaichim C, Nguyen JH, McClusky HE, Killcross S, Power JM, McNally GP. Complementary Roles for Ventral Pallidum Cell Types and Their Projections in Relapse. J Neurosci 2020;40:880-93. [PMID: 31818977 DOI: 10.1523/JNEUROSCI.0262-19.2019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 5.7] [Reference Citation Analysis]
33 Capdevila C, Calderon RI, Bush EC, Sheldon-Collins K, Sims PA, Yan KS. Single-Cell Transcriptional Profiling of the Intestinal Epithelium. Methods Mol Biol 2020;2171:129-53. [PMID: 32705639 DOI: 10.1007/978-1-0716-0747-3_8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Rezitis J, Herzog H, Ip CK. Neuropeptide Y interaction with dopaminergic and serotonergic pathways: interlinked neurocircuits modulating hedonic eating behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2022;113:110449. [PMID: 34592387 DOI: 10.1016/j.pnpbp.2021.110449] [Reference Citation Analysis]
35 Timshel PN, Thompson JJ, Pers TH. Genetic mapping of etiologic brain cell types for obesity. Elife 2020;9:e55851. [PMID: 32955435 DOI: 10.7554/eLife.55851] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
36 Kim DW, Liu K, Wang ZQ, Zhang YS, Bathini A, Brown MP, Lin SH, Washington PW, Sun C, Lindtner S, Lee B, Wang H, Shimogori T, Rubenstein JLR, Blackshaw S. Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. Commun Biol 2021;4:95. [PMID: 33479483 DOI: 10.1038/s42003-020-01616-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
37 Kim DW, Yao Z, Graybuck LT, Kim TK, Nguyen TN, Smith KA, Fong O, Yi L, Koulena N, Pierson N, Shah S, Lo L, Pool AH, Oka Y, Pachter L, Cai L, Tasic B, Zeng H, Anderson DJ. Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior. Cell 2019;179:713-728.e17. [PMID: 31626771 DOI: 10.1016/j.cell.2019.09.020] [Cited by in Crossref: 73] [Cited by in F6Publishing: 55] [Article Influence: 36.5] [Reference Citation Analysis]
38 Guo K, Luo J, Feng D, Wu L, Wang X, Xia L, Tao K, Wu X, Cui W, He Y, Wang B, Zhao Z, Zhang Z. Single-Cell RNA Sequencing With Combined Use of Bulk RNA Sequencing to Reveal Cell Heterogeneity and Molecular Changes at Acute Stage of Ischemic Stroke in Mouse Cortex Penumbra Area. Front Cell Dev Biol 2021;9:624711. [PMID: 33692998 DOI: 10.3389/fcell.2021.624711] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Sobrino V, Avendaño MS, Perdices-López C, Jimenez-Puyer M, Tena-Sempere M. Kisspeptins and the neuroendocrine control of reproduction: Recent progress and new frontiers in kisspeptin research. Front Neuroendocrinol 2022;65:100977. [PMID: 34999056 DOI: 10.1016/j.yfrne.2021.100977] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
40 Seifinejad A, Li S, Mikhail C, Vassalli A, Pradervand S, Arribat Y, Pezeshgi Modarres H, Allen B, John RM, Amati F, Tafti M. Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. Proc Natl Acad Sci U S A 2019;116:17061-70. [PMID: 31375626 DOI: 10.1073/pnas.1902148116] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
41 Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021;120:28-47. [PMID: 33171144 DOI: 10.1016/j.neubiorev.2020.10.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
42 Stengel A, Taché Y. Central somatostatin signaling and regulation of food intake. Ann N Y Acad Sci 2019;1455:98-104. [PMID: 31237362 DOI: 10.1111/nyas.14178] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
43 Zhao Y, Zhang Y, Tao S, Huang Z, Qu W, Yang S. Whole-Brain Monosynaptic Afferents to Rostromedial Tegmental Nucleus Gamma-Aminobutyric Acid-Releasing Neurons in Mice. Front Neurosci 2022;16:914300. [DOI: 10.3389/fnins.2022.914300] [Reference Citation Analysis]
44 Borgland SL. Releasing the brake on eating. Science 2019;364:1233-4. [PMID: 31249046 DOI: 10.1126/science.aay0204] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Thoeni S, Loureiro M, O’connor EC, Lüscher C. Depression of Accumbal to Lateral Hypothalamic Synapses Gates Overeating. Neuron 2020;107:158-172.e4. [DOI: 10.1016/j.neuron.2020.03.029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
46 Wang RF, Guo H, Jiang SY, Liu ZL, Qu WM, Huang ZL, Wang L. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice. J Neurosci Res 2021;99:1689-703. [PMID: 33713502 DOI: 10.1002/jnr.24828] [Reference Citation Analysis]
47 Smith C, Patterson-cross R, Woodward O, Lewis J, Chiarugi D, Merkle F, Gribble F, Reimann F, Adriaenssens A. A comparative transcriptomic analysis of Glucagon-like peptide-1 receptor- and glucose-dependent insulinotropic polypeptide-expressing cells in the hypothalamus. Appetite 2022. [DOI: 10.1016/j.appet.2022.106022] [Reference Citation Analysis]
48 Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM, Yamaguchi H, Bian WJ, Purmann C, Pattni R, Urban AE, Mourrain P, Kauer JA, Scherrer G, de Lecea L. Hyperexcitable arousal circuits drive sleep instability during aging. Science 2022;375:eabh3021. [PMID: 35201886 DOI: 10.1126/science.abh3021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
49 Zhou X, Lu Y, Zhao F, Dong J, Ma W, Zhong S, Wang M, Wang B, Zhao Y, Shi Y, Ma Q, Lu T, Zhang J, Wang X, Wu Q. Deciphering the spatial-temporal transcriptional landscape of human hypothalamus development. Cell Stem Cell 2021:S1934-5909(21)00457-4. [PMID: 34879244 DOI: 10.1016/j.stem.2021.11.009] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Oh SG, Hwang YG, Lee HS. LIM homeobox 6 (Lhx6)+ neurons in the ventral zona incerta project to the core portion of the lateral supramammillary nucleus in the rat. Brain Res 2020;1748:147125. [PMID: 32931819 DOI: 10.1016/j.brainres.2020.147125] [Reference Citation Analysis]
51 Zhou X, Risold PY, Alvarez-Bolado G. Development of the GABAergic and glutamatergic neurons of the lateral hypothalamus. J Chem Neuroanat 2021;116:101997. [PMID: 34182088 DOI: 10.1016/j.jchemneu.2021.101997] [Reference Citation Analysis]
52 Bracey EF, Burdakov D. Fast sensory representations in the lateral hypothalamus and their roles in brain function. Physiology & Behavior 2020;222:112952. [DOI: 10.1016/j.physbeh.2020.112952] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
53 Perez-Bonilla P, Santiago-Colon K, Leinninger GM. Lateral hypothalamic area neuropeptides modulate ventral tegmental area dopamine neurons and feeding. Physiol Behav 2020;223:112986. [PMID: 32492498 DOI: 10.1016/j.physbeh.2020.112986] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Garcia A, Coss A, Luis-Islas J, Puron-Sierra L, Luna M, Villavicencio M, Gutierrez R. Lateral Hypothalamic GABAergic Neurons Encode and Potentiate Sucrose's Palatability. Front Neurosci 2020;14:608047. [PMID: 33551725 DOI: 10.3389/fnins.2020.608047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Guillaumin MCC, Burdakov D. Neuropeptides as Primary Mediators of Brain Circuit Connectivity. Front Neurosci 2021;15:644313. [PMID: 33776641 DOI: 10.3389/fnins.2021.644313] [Reference Citation Analysis]
56 Siemian JN, Arenivar MA, Sarsfield S, Borja CB, Erbaugh LJ, Eagle AL, Robison AJ, Leinninger G, Aponte Y. An excitatory lateral hypothalamic circuit orchestrating pain behaviors in mice. Elife 2021;10:e66446. [PMID: 34042586 DOI: 10.7554/eLife.66446] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Rossi MA, Basiri ML, Liu Y, Hashikawa Y, Hashikawa K, Fenno LE, Kim YS, Ramakrishnan C, Deisseroth K, Stuber GD. Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area. Neuron 2021;109:3823-3837.e6. [PMID: 34624220 DOI: 10.1016/j.neuron.2021.09.020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Kodani Y, Kawata M, Suga H, Kaneko YS, Nakashima A, Kameyama T, Saito K, Nagasaki H. Characterization of Hypothalamic MCH Neuron Development in a 3D Differentiation System of Mouse Embryonic Stem Cells. eNeuro 2022;9:ENEURO. [PMID: 35437265 DOI: 10.1523/ENEURO.0442-21.2022] [Reference Citation Analysis]
59 Siemian JN, Borja CB, Sarsfield S, Kisner A, Aponte Y. Lateral hypothalamic fast-spiking parvalbumin neurons modulate nociception through connections in the periaqueductal gray area. Sci Rep 2019;9:12026. [PMID: 31427712 DOI: 10.1038/s41598-019-48537-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
60 Huisman C, Cho H, Brock O, Lim SJ, Youn SM, Park Y, Kim S, Lee SK, Delogu A, Lee JW. Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators. Nat Commun 2019;10:3696. [PMID: 31420539 DOI: 10.1038/s41467-019-11667-y] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
61 Schroeder LE, Furdock R, Quiles CR, Kurt G, Perez-Bonilla P, Garcia A, Colon-Ortiz C, Brown J, Bugescu R, Leinninger GM. Mapping the populations of neurotensin neurons in the male mouse brain. Neuropeptides 2019;76:101930. [PMID: 31079844 DOI: 10.1016/j.npep.2019.05.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
62 Zhang Y, Stoelzel C, Ezrokhi M, Tsai TH, Cincotta AH. Activation State of the Supramammillary Nucleus Regulates Body Composition and Peripheral Fuel Metabolism. Neuroscience 2021;466:125-47. [PMID: 33991623 DOI: 10.1016/j.neuroscience.2021.05.005] [Reference Citation Analysis]
63 Ma T, Wong SZH, Lee B, Ming GL, Song H. Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron 2021;109:1150-1167.e6. [PMID: 33600763 DOI: 10.1016/j.neuron.2021.01.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
64 Cleary CM, James S, Maher BJ, Mulkey DK. Disordered breathing in a Pitt-Hopkins syndrome model involves Phox2b-expressing parafacial neurons and aberrant Nav1.8 expression. Nat Commun 2021;12:5962. [PMID: 34645823 DOI: 10.1038/s41467-021-26263-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
66 Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife 2020;9:e54275. [PMID: 32314734 DOI: 10.7554/eLife.54275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
67 Wee CL, Song EY, Johnson RE, Ailani D, Randlett O, Kim JY, Nikitchenko M, Bahl A, Yang CT, Ahrens MB, Kawakami K, Engert F, Kunes S. A bidirectional network for appetite control in larval zebrafish. Elife 2019;8:e43775. [PMID: 31625906 DOI: 10.7554/eLife.43775] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
68 Bargagna-Mohan P, Schultz G, Rheaume B, Trakhtenberg EF, Robson P, Pal-Ghosh S, Stepp MA, Given KS, Macklin WB, Mohan R. Corneal nonmyelinating Schwann cells illuminated by single-cell transcriptomics and visualized by protein biomarkers. J Neurosci Res 2021;99:731-49. [PMID: 33197966 DOI: 10.1002/jnr.24757] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
69 Godfrey N, Borgland SL. Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology 2019;154:4-12. [DOI: 10.1016/j.neuropharm.2019.05.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
70 Koekkoek LL, Slomp M, Castel J, Mutersbaugh M, Linville I, Serlie MJ, Luquet SH, la Fleur SE. Disruption of lateral hypothalamic calorie detection by a free choice high fat diet. FASEB J 2021;35:e21804. [PMID: 34383974 DOI: 10.1096/fj.202100762R] [Reference Citation Analysis]
71 Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021;44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Reference Citation Analysis]
72 Winnubst J, Spruston N, Harris JA. Linking axon morphology to gene expression: a strategy for neuronal cell-type classification. Curr Opin Neurobiol 2020;65:70-6. [PMID: 33181399 DOI: 10.1016/j.conb.2020.10.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
73 Rodriguez-Romaguera J, Namboodiri VMK, Basiri ML, Stamatakis AM, Stuber GD. Developments from Bulk Optogenetics to Single-Cell Strategies to Dissect the Neural Circuits that Underlie Aberrant Motivational States. Cold Spring Harb Perspect Med 2020:a039792. [PMID: 32513671 DOI: 10.1101/cshperspect.a039792] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
74 Gao XB, Horvath TL. From molecule to behavior: hypocretin/orexin revisited from a sex-dependent perspective. Endocr Rev 2021:bnab042. [PMID: 34792130 DOI: 10.1210/endrev/bnab042] [Reference Citation Analysis]
75 Borniger JC, de Lecea L. Peripheral Lipopolyssacharide Rapidly Silences REM-Active LHGABA Neurons. Front Behav Neurosci 2021;15:649428. [PMID: 33716686 DOI: 10.3389/fnbeh.2021.649428] [Reference Citation Analysis]
76 Izawa S, Yoneshiro T, Kondoh K, Nakagiri S, Okamatsu-Ogura Y, Terao A, Minokoshi Y, Yamanaka A, Kimura K. Melanin-concentrating hormone-producing neurons in the hypothalamus regulate brown adipose tissue and thus contribute to energy expenditure. J Physiol 2021. [PMID: 33899241 DOI: 10.1113/JP281241] [Reference Citation Analysis]
77 Singh A, de Araujo AM, Krieger JP, Vergara M, Ip CK, de Lartigue G. Demystifying functional role of cocaine- and amphetamine-related transcript (CART) peptide in control of energy homeostasis: A twenty-five year expedition. Peptides 2021;140:170534. [PMID: 33757831 DOI: 10.1016/j.peptides.2021.170534] [Reference Citation Analysis]
78 Prasad AA, McNally GP. The ventral pallidum and relapse in alcohol seeking. Br J Pharmacol 2020;177:3855-64. [PMID: 32557550 DOI: 10.1111/bph.15160] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
79 Beekly BG, Frankel WC, Berg T, Allen SJ, Garcia-Galiano D, Vanini G, Elias CF. Dissociated Pmch and Cre Expression in Lactating Pmch-Cre BAC Transgenic Mice. Front Neuroanat 2020;14:60. [PMID: 32982701 DOI: 10.3389/fnana.2020.00060] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
80 Torz L, Niss K, Lundh S, Rekling JC, Quintana CD, Frazier SED, Mercer AJ, Cornea A, Bertelsen CV, Gerstenberg MK, Hansen AMK, Guldbrandt M, Lykkesfeldt J, John LM, Villaescusa JC, Petersen N. NPFF Decreases Activity of Human Arcuate NPY Neurons: A Study in Embryonic-Stem-Cell-Derived Model. Int J Mol Sci 2022;23:3260. [PMID: 35328681 DOI: 10.3390/ijms23063260] [Reference Citation Analysis]
81 Lee H, Yamazaki R, Wang D, Arthaud S, Fort P, Denardo LA, Luppi P. Targeted recombination in active populations as a new mouse genetic model to study sleep‐active neuronal populations: Demonstration that Lhx6+ neurons in the ventral zona incerta are activated during paradoxical sleep hypersomnia. J Sleep Res 2020;29. [DOI: 10.1111/jsr.12976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
82 Huang WK, Wong SZH, Pather SR, Nguyen PTT, Zhang F, Zhang DY, Zhang Z, Lu L, Fang W, Chen L, Fernandes A, Su Y, Song H, Ming GL. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 2021;28:1657-1670.e10. [PMID: 33961804 DOI: 10.1016/j.stem.2021.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
83 Kim DW, Washington PW, Wang ZQ, Lin SH, Sun C, Ismail BT, Wang H, Jiang L, Blackshaw S. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat Commun 2020;11:4360. [PMID: 32868762 DOI: 10.1038/s41467-020-18231-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
84 Siemian JN, Arenivar MA, Sarsfield S, Borja CB, Russell CN, Aponte Y. Lateral hypothalamic LEPR neurons drive appetitive but not consummatory behaviors. Cell Rep 2021;36:109615. [PMID: 34433027 DOI: 10.1016/j.celrep.2021.109615] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Kurt G, Kodur N, Quiles CR, Reynolds C, Eagle A, Mayer T, Brown J, Makela A, Bugescu R, Seo HD, Carroll QE, Daniels D, Robison A, Mazei-robison M, Leinninger G. Time to Drink: Activating Lateral Hypothalamic Area Neurotensin Neurons Promotes Intake of Fluid Over Food in a Time-Dependent Manner. Physiology & Behavior 2022. [DOI: 10.1016/j.physbeh.2022.113707] [Reference Citation Analysis]
86 Besnard A, Leroy F. Top-down regulation of motivated behaviors via lateral septum sub-circuits. Mol Psychiatry 2022. [PMID: 35581296 DOI: 10.1038/s41380-022-01599-3] [Reference Citation Analysis]
87 Serafin EK, Paranjpe A, Brewer CL, Baccei ML. Single-nucleus characterization of adult mouse spinal dynorphin-lineage cells and identification of persistent transcriptional effects of neonatal hindpaw incision. Pain 2021;162:203-18. [PMID: 33045156 DOI: 10.1097/j.pain.0000000000002007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Li Y, Wang X, Lu L, Wang M, Zhai Y, Tai X, Dilimulati D, Lei X, Xu J, Zhang C, Fu Y, Qu S, Li Q, Zhang C. Identification of novel GPCR partners of the central melanocortin signaling. Mol Metab 2021;:101317. [PMID: 34400348 DOI: 10.1016/j.molmet.2021.101317] [Reference Citation Analysis]
89 Sabatini PV, Wang J, Rupp AC, Affinati AH, Flak JN, Li C, Olson DP, Myers MG. tTARGIT AAVs mediate the sensitive and flexible manipulation of intersectional neuronal populations in mice. Elife 2021;10:e66835. [PMID: 33704065 DOI: 10.7554/eLife.66835] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
90 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
91 Wu G, Heck I, Zhang N, Phaup G, Zhang X, Wu Y, Stalla DE, Weng Z, Sun H, Li H, Zhang Z, Ding S, Li DP, Zhang Y. Wireless, battery-free push-pull microsystem for membrane-free neurochemical sampling in freely moving animals. Sci Adv 2022;8:eabn2277. [PMID: 35196090 DOI: 10.1126/sciadv.abn2277] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
92 Daviu N, Bains JS. Should I Stay or Should I Go? CRHPVN Neurons Gate State Transitions in Stress-Related Behaviors. Endocrinology 2021;162:bqab061. [PMID: 33787875 DOI: 10.1210/endocr/bqab061] [Reference Citation Analysis]