BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019;22:106-19. [PMID: 30559475 DOI: 10.1038/s41593-018-0288-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 18.3] [Reference Citation Analysis]
Number Citing Articles
1 Vanderheyden WM, Fang B, Flores CC, Jager J, Gerstner JR. The transcriptional repressor Rev-erbα regulates circadian expression of the astrocyte Fabp7 mRNA. Curr Res Neurobiol 2021;2:100009. [PMID: 34056625 DOI: 10.1016/j.crneur.2021.100009] [Reference Citation Analysis]
2 Wu X, Bai F, Wang Y, Zhang L, Liu L, Chen Y, Li H, Zhang T. Circadian Rhythm Disorders and Corresponding Functional Brain Abnormalities in Young Female Nurses: A Preliminary Study. Front Neurol 2021;12:664610. [PMID: 33995261 DOI: 10.3389/fneur.2021.664610] [Reference Citation Analysis]
3 Chen S, Yao J, Hu Y, Chen H, Liu P, Wang W, Zeng Y, Zhuang C, Zeng S, Li Y, Yang L, Huang Z, Huang K, Lai Z, Hu Y, Cai P, Chen L, Wu S. Control of Behavioral Arousal and Defense by a Glutamatergic Midbrain-Amygdala Pathway in Mice. Front Neurosci 2022;16:850193. [DOI: 10.3389/fnins.2022.850193] [Reference Citation Analysis]
4 Alhadeff AL, Goldstein N, Park O, Klima ML, Vargas A, Betley JN. Natural and Drug Rewards Engage Distinct Pathways that Converge on Coordinated Hypothalamic and Reward Circuits. Neuron 2019;103:891-908.e6. [PMID: 31277924 DOI: 10.1016/j.neuron.2019.05.050] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
5 Gompf HS, Anaclet C. The neuroanatomy and neurochemistry of sleep-wake control. Curr Opin Physiol 2020;15:143-51. [PMID: 32647777 DOI: 10.1016/j.cophys.2019.12.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
6 Eban-Rothschild A, Borniger JC, Rothschild G, Giardino WJ, Morrow JG, de Lecea L. Arousal State-Dependent Alterations in VTA-GABAergic Neuronal Activity. eNeuro 2020;7:ENEURO. [PMID: 32054621 DOI: 10.1523/ENEURO.0356-19.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
7 Wang JWJL, Lombardi F, Zhang X, Anaclet C, Ivanov PC. Non-equilibrium critical dynamics of bursts in θ and δ rhythms as fundamental characteristic of sleep and wake micro-architecture. PLoS Comput Biol 2019;15:e1007268. [PMID: 31725712 DOI: 10.1371/journal.pcbi.1007268] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
8 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
9 Nagaeva E, Zubarev I, Bengtsson Gonzales C, Forss M, Nikouei K, de Miguel E, Elsilä L, Linden AM, Hjerling-Leffler J, Augustine GJ, Korpi ER. Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area. Elife 2020;9:e59328. [PMID: 32749220 DOI: 10.7554/eLife.59328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Sundar M, Patel D, Young Z, Leong KC. Oxytocin and Addiction: Potential Glutamatergic Mechanisms. Int J Mol Sci 2021;22:2405. [PMID: 33673694 DOI: 10.3390/ijms22052405] [Reference Citation Analysis]
11 Yu X, Ma Y, Harding EC, Yustos R, Vyssotski AL, Franks NP, Wisden W. Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness. Sleep 2019;42:zsz031. [PMID: 30722053 DOI: 10.1093/sleep/zsz031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Brizuela M, Ootsuka Y. Inhibition of the dorsomedial hypothalamus substantially decreases brown adipose tissue sympathetic discharge induced by activation of the lateral habenula. Auton Neurosci 2021;230:102745. [PMID: 33220531 DOI: 10.1016/j.autneu.2020.102745] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Zhang Z, Beier C, Weil T, Hattar S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun 2021;12:5115. [PMID: 34433830 DOI: 10.1038/s41467-021-25378-w] [Reference Citation Analysis]
14 Yang B, Ao Y, Liu Y, Zhang X, Li Y, Tang F, Xu H. Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 2021;46:1487-501. [PMID: 33710536 DOI: 10.1007/s11064-021-03291-4] [Reference Citation Analysis]
15 Vlasov K, Pei J, Nehs CJ, Guidera JA, Zhang ER, Kenny JD, Houle TT, Brenner GJ, Taylor NE, Solt K. Activation of GABAergic Neurons in the Rostromedial Tegmental Nucleus and Other Brainstem Regions Promotes Sedation and Facilitates Sevoflurane Anesthesia in Mice. Anesth Analg 2021;132:e50-5. [PMID: 33560660 DOI: 10.1213/ANE.0000000000005387] [Reference Citation Analysis]
16 An S, Li X, Deng L, Zhao P, Ding Z, Han Y, Luo Y, Liu X, Li A, Luo Q, Feng Z, Gong H. A Whole-Brain Connectivity Map of VTA and SNc Glutamatergic and GABAergic Neurons in Mice. Front Neuroanat 2021;15:818242. [PMID: 35002641 DOI: 10.3389/fnana.2021.818242] [Reference Citation Analysis]
17 Yu X, Ba W, Zhao G, Ma Y, Harding EC, Yin L, Wang D, Li H, Zhang P, Shi Y, Yustos R, Vyssotski AL, Dong H, Franks NP, Wisden W. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry 2020. [PMID: 32555422 DOI: 10.1038/s41380-020-0810-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Chaturvedi R, Stork T, Yuan C, Freeman MR, Emery P. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Curr Biol 2022:S0960-9822(22)00336-0. [PMID: 35303417 DOI: 10.1016/j.cub.2022.02.066] [Reference Citation Analysis]
19 Rasouli B, Rashvand M, Mousavi Z, Haghparast A. Role of orexin receptors within the dentate gyrus in antinociception induced by chemical stimulation of the lateral hypothalamus in an animal model of inflammatory pain. Peptides 2020;134:170401. [DOI: 10.1016/j.peptides.2020.170401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Harding EC, Franks NP, Wisden W. The Temperature Dependence of Sleep. Front Neurosci 2019;13:336. [PMID: 31105512 DOI: 10.3389/fnins.2019.00336] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
21 Midroit M, Chalençon L, Renier N, Milton A, Thevenet M, Sacquet J, Breton M, Forest J, Noury N, Richard M, Raineteau O, Ferdenzi C, Fournel A, Wesson DW, Bensafi M, Didier A, Mandairon N. Neural processing of the reward value of pleasant odorants. Curr Biol 2021;31:1592-1605.e9. [PMID: 33607032 DOI: 10.1016/j.cub.2021.01.066] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
22 Bian WJ, Brewer CL, Kauer JA, de Lecea L. Adolescent sleep shapes social novelty preference in mice. Nat Neurosci 2022. [PMID: 35618950 DOI: 10.1038/s41593-022-01076-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Nollet M, Wisden W, Franks NP. Sleep deprivation and stress: a reciprocal relationship. Interface Focus 2020;10:20190092. [PMID: 32382403 DOI: 10.1098/rsfs.2019.0092] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
24 Fougère M, van der Zouwen CI, Boutin J, Ryczko D. Heterogeneous expression of dopaminergic markers and Vglut2 in mouse mesodiencephalic dopaminergic nuclei A8-A13. J Comp Neurol 2021;529:1273-92. [PMID: 32869307 DOI: 10.1002/cne.25020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
25 Paul EJ, Tossell K, Ungless MA. Transcriptional profiling aligned with in situ expression image analysis reveals mosaically expressed molecular markers for GABA neuron sub-groups in the ventral tegmental area. Eur J Neurosci 2019;50:3732-49. [PMID: 31374129 DOI: 10.1111/ejn.14534] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
26 Li YD, Luo YJ, Xu W, Ge J, Cherasse Y, Wang YQ, Lazarus M, Qu WM, Huang ZL. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol Psychiatry 2021;26:2912-28. [PMID: 33057171 DOI: 10.1038/s41380-020-00906-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Ma C, Zhong P, Liu D, Barger ZK, Zhou L, Chang WC, Kim B, Dan Y. Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit. Neuron 2019;103:323-334.e7. [PMID: 31178114 DOI: 10.1016/j.neuron.2019.05.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
28 Lazarus M, Oishi Y, Bjorness TE, Greene RW. Gating and the Need for Sleep: Dissociable Effects of Adenosine A1 and A2A Receptors. Front Neurosci 2019;13:740. [PMID: 31379490 DOI: 10.3389/fnins.2019.00740] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 6.7] [Reference Citation Analysis]
29 Hill E, Dale N, Wall MJ. Moderate Changes in CO2 Modulate the Firing of Neurons in the VTA and Substantia Nigra. iScience 2020;23:101343. [PMID: 32683315 DOI: 10.1016/j.isci.2020.101343] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
30 Brown RE, Spratt TJ, Kaplan GB. Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022:S0361-9230(22)00116-2. [PMID: 35550156 DOI: 10.1016/j.brainresbull.2022.05.002] [Reference Citation Analysis]
31 Wisden W, Franks NP. The stillness of sleep. Science 2020;367:366-7. [PMID: 31974235 DOI: 10.1126/science.aba4485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Bouarab C, Thompson B, Polter AM. VTA GABA Neurons at the Interface of Stress and Reward. Front Neural Circuits 2019;13:78. [PMID: 31866835 DOI: 10.3389/fncir.2019.00078] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
33 Okechukwu CE. The neurophysiologic basis of the human sleep–wake cycle and the physiopathology of the circadian clock: a narrative review. Egypt J Neurol Psychiatry Neurosurg 2022;58. [DOI: 10.1186/s41983-022-00468-8] [Reference Citation Analysis]
34 Lew CH, Petersen C, Neylan TC, Grinberg LT. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. Sleep Med Rev 2021;60:101541. [PMID: 34500400 DOI: 10.1016/j.smrv.2021.101541] [Reference Citation Analysis]
35 Li J, Li H, Wang D, Guo Y, Zhang X, Ran M, Yang C, Yang Q, Dong H. Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats. British Journal of Anaesthesia 2019;123:497-505. [DOI: 10.1016/j.bja.2019.07.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
36 McCarty R, Josephs T, Kovtun O, Rosenthal SJ. Enlightened: addressing circadian and seasonal changes in photoperiod in animal models of bipolar disorder. Transl Psychiatry 2021;11:373. [PMID: 34226504 DOI: 10.1038/s41398-021-01494-5] [Reference Citation Analysis]
37 Sotelo MI, Tyan J, Dzera J, Eban-rothschild A. Sleep and motivated behaviors, from physiology to pathology. Current Opinion in Physiology 2020;15:159-66. [DOI: 10.1016/j.cophys.2020.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
38 Chachlaki K, Prevot V. Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 2020;177:5437-58. [PMID: 31347144 DOI: 10.1111/bph.14800] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
39 Joyce MR, Holton KF. Neurotoxicity in Gulf War Illness and the potential role of glutamate. NeuroToxicology 2020;80:60-70. [DOI: 10.1016/j.neuro.2020.06.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
40 Zhong P, Zhang Z, Barger Z, Ma C, Liu D, Ding X, Dan Y. Control of Non-REM Sleep by Midbrain Neurotensinergic Neurons. Neuron 2019;104:795-809.e6. [PMID: 31582313 DOI: 10.1016/j.neuron.2019.08.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
41 Zhao Y, Zhang Y, Tao S, Huang Z, Qu W, Yang S. Whole-Brain Monosynaptic Afferents to Rostromedial Tegmental Nucleus Gamma-Aminobutyric Acid-Releasing Neurons in Mice. Front Neurosci 2022;16:914300. [DOI: 10.3389/fnins.2022.914300] [Reference Citation Analysis]
42 Stamatakis AM, Resendez SL, Chen KS, Favero M, Liang-Guallpa J, Nassi JJ, Neufeld SQ, Visscher K, Ghosh KK. Miniature microscopes for manipulating and recording in vivo brain activity. Microscopy (Oxf) 2021;70:399-414. [PMID: 34283242 DOI: 10.1093/jmicro/dfab028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Mei Y, Zhang QW, Gu Q, Liu Z, He X, Tian Y. Pillar[5]arene-Based Fluorescent Sensor Array for Biosensing of Intracellular Multi-neurotransmitters through Host-Guest Recognitions. J Am Chem Soc 2022. [PMID: 35099950 DOI: 10.1021/jacs.1c12959] [Reference Citation Analysis]
44 Liu D, Li W, Ma C, Zheng W, Yao Y, Tso CF, Zhong P, Chen X, Song JH, Choi W, Paik SB, Han H, Dan Y. A common hub for sleep and motor control in the substantia nigra. Science 2020;367:440-5. [PMID: 31974254 DOI: 10.1126/science.aaz0956] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 11.0] [Reference Citation Analysis]
45 Hill E, Dale N, Wall MJ. CO2-Sensitive Connexin Hemichannels in Neurons and Glia: Three Different Modes of Signalling? Int J Mol Sci 2021;22:7254. [PMID: 34298872 DOI: 10.3390/ijms22147254] [Reference Citation Analysis]
46 Solt K, Akeju O. The brain rhythms that detach us from reality. Nature 2020;586:31-2. [PMID: 32939081 DOI: 10.1038/d41586-020-02505-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Yamagata T, Kahn MC, Prius-Mengual J, Meijer E, Šabanović M, Guillaumin MCC, van der Vinne V, Huang YG, McKillop LE, Jagannath A, Peirson SN, Mann EO, Foster RG, Vyazovskiy VV. The hypothalamic link between arousal and sleep homeostasis in mice. Proc Natl Acad Sci U S A 2021;118:e2101580118. [PMID: 34903646 DOI: 10.1073/pnas.2101580118] [Reference Citation Analysis]
48 Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y. An Excitatory Circuit in the Perioculomotor Midbrain for Non-REM Sleep Control. Cell 2019;177:1293-1307.e16. [PMID: 31031008 DOI: 10.1016/j.cell.2019.03.041] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
49 Cai P, Chen H, Tang W, Hu Y, Chen S, Lu J, Lin Z, Huang S, Hu L, Su W, Li Q, Lin Z, Kang T, Yan X, Liu P, Chen L, Yin D, Wu S, Li H, Yu C. A glutamatergic basal forebrain to midbrain circuit mediates wakefulness and defensive behavior. Neuropharmacology 2022. [DOI: 10.1016/j.neuropharm.2022.108979] [Reference Citation Analysis]
50 Reitz SL, Wasilczuk AZ, Beh GH, Proekt A, Kelz MB. Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over Sleep and Volatile Anesthetic-Induced Unconsciousness. Curr Biol 2021;31:394-405.e4. [PMID: 33188746 DOI: 10.1016/j.cub.2020.10.050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
51 Woodward TJ, Tesic V, Stamenic TT, Jevtovic-Todorovic V, Todorovic SM. Pharmacological Antagonism of T-Type Calcium Channels Constrains Rebound Burst Firing in Two Distinct Subpopulations of GABA Neurons in the Rat Ventral Tegmental Area: Implications for α-Lipoic Acid. Front Pharmacol 2019;10:1402. [PMID: 31849661 DOI: 10.3389/fphar.2019.01402] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
52 Eacret D, Veasey SC, Blendy JA. Bidirectional Relationship between Opioids and Disrupted Sleep: Putative Mechanisms. Mol Pharmacol 2020;98:445-53. [PMID: 32198209 DOI: 10.1124/mol.119.119107] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
53 Sun YY, Wang Z, Zhou HY, Huang HC. Sleep-Wake Disorders in Alzheimer's Disease: A Review. ACS Chem Neurosci 2022;13:1467-78. [PMID: 35507669 DOI: 10.1021/acschemneuro.2c00097] [Reference Citation Analysis]
54 Rahaman SM, Chowdhury S, Mukai Y, Ono D, Yamaguchi H, Yamanaka A. Functional Interaction Between GABAergic Neurons in the Ventral Tegmental Area and Serotonergic Neurons in the Dorsal Raphe Nucleus. Front Neurosci 2022;16:877054. [DOI: 10.3389/fnins.2022.877054] [Reference Citation Analysis]
55 Wang RF, Guo H, Jiang SY, Liu ZL, Qu WM, Huang ZL, Wang L. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice. J Neurosci Res 2021;99:1689-703. [PMID: 33713502 DOI: 10.1002/jnr.24828] [Reference Citation Analysis]
56 Hughes RN, Watson GDR, Petter EA, Kim N, Bakhurin KI, Yin HH. Precise Coordination of Three-Dimensional Rotational Kinematics by Ventral Tegmental Area GABAergic Neurons. Curr Biol 2019;29:3244-3255.e4. [PMID: 31564491 DOI: 10.1016/j.cub.2019.08.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
57 Lai YY, Kodama T, Hsieh KC, Nguyen D, Siegel JM. Substantia nigra pars reticulata-mediated sleep and motor activity regulation. Sleep 2021;44:zsaa151. [PMID: 32808987 DOI: 10.1093/sleep/zsaa151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
59 Chowdhury S, Matsubara T, Miyazaki T, Ono D, Fukatsu N, Abe M, Sakimura K, Sudo Y, Yamanaka A. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice. Elife 2019;8:e44928. [PMID: 31159923 DOI: 10.7554/eLife.44928] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
60 Fu Y, Wei J, Li B, Gao L, Xia P, Wen Y, Xu S. CGA ameliorates cognitive decline by regulating the PI3K/AKT signaling pathway and neurotransmitter systems in rats with multi-infarct dementia. Exp Ther Med 2020;20:70. [PMID: 32963600 DOI: 10.3892/etm.2020.9198] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
61 Honda T, Takata Y, Cherasse Y, Mizuno S, Sugiyama F, Takahashi S, Funato H, Yanagisawa M, Lazarus M, Oishi Y. Ablation of Ventral Midbrain/Pons GABA Neurons Induces Mania-like Behaviors with Altered Sleep Homeostasis and Dopamine D2R-mediated Sleep Reduction. iScience 2020;23:101240. [PMID: 32563157 DOI: 10.1016/j.isci.2020.101240] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
62 Kurihara K, Mishima T, Fujioka S, Tsuboi Y. Efficacy and safety evaluation of safinamide as an add-on treatment to levodopa for parkinson's disease. Expert Opin Drug Saf 2021;:1-11. [PMID: 34597253 DOI: 10.1080/14740338.2022.1988926] [Reference Citation Analysis]
63 Stucynski JA, Schott AL, Baik J, Chung S, Weber F. Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Curr Biol 2021:S0960-9822(21)01419-6. [PMID: 34735794 DOI: 10.1016/j.cub.2021.10.030] [Reference Citation Analysis]
64 Ono D, Mukai Y, Hung CJ, Chowdhury S, Sugiyama T, Yamanaka A. The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Sci Adv 2020;6:eabd0384. [PMID: 33158870 DOI: 10.1126/sciadv.abd0384] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
65 Lyons DG, Rihel J. Sleep Circuits and Physiology in Non-Mammalian Systems. Curr Opin Physiol 2020;15:245-55. [PMID: 34738047 DOI: 10.1016/j.cophys.2020.03.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
66 Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2021;:10738584211052263. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Reference Citation Analysis]
67 Yanagihara S, Ikebuchi M, Mori C, Tachibana RO, Okanoya K. Arousal State-Dependent Alterations in Neural Activity in the Zebra Finch VTA/SNc. Front Neurosci 2020;14:897. [PMID: 32973441 DOI: 10.3389/fnins.2020.00897] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
68 Shields AK, Suarez M, Wakabayashi KT, Bass CE. Activation of VTA GABA neurons disrupts reward seeking by altering temporal processing. Behav Brain Res 2021;410:113292. [PMID: 33836166 DOI: 10.1016/j.bbr.2021.113292] [Reference Citation Analysis]
69 Liu Y, Li Y, Yang B, Yu M, Zhang X, Bi L, Xu H. Glutamatergic Neurons of the Paraventricular Nucleus are Critical for the Control of Wakefulness. Neuroscience 2020;446:137-44. [PMID: 32860935 DOI: 10.1016/j.neuroscience.2020.08.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
70 Walker WH 2nd, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019;20:E2780. [PMID: 31174326 DOI: 10.3390/ijms20112780] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
71 Zhao YN, Yan YD, Wang CY, Qu WM, Jhou TC, Huang ZL, Yang SR. The Rostromedial Tegmental Nucleus: Anatomical Studies and Roles in Sleep and Substance Addictions in Rats and Mice. Nat Sci Sleep 2020;12:1215-23. [PMID: 33380853 DOI: 10.2147/NSS.S278026] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
73 Zhong YH, Jiang S, Qu WM, Zhang W, Huang ZL, Chen CR. Saikosaponin a promotes sleep by decreasing neuronal activities in the lateral hypothalamus. J Sleep Res 2021;:e13484. [PMID: 34510626 DOI: 10.1111/jsr.13484] [Reference Citation Analysis]
74 Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022. [PMID: 35362070 DOI: 10.1097/ALN.0000000000004148] [Reference Citation Analysis]
75 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
76 Gretenkord S, Olthof BMJ, Stylianou M, Rees A, Gartside SE, LeBeau FEN. Electrical stimulation of the ventral tegmental area evokes sleep-like state transitions under urethane anaesthesia in the rat medial prefrontal cortex via dopamine D1 -like receptors. Eur J Neurosci 2020;52:2915-30. [PMID: 31891427 DOI: 10.1111/ejn.14665] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
77 Wang D, Guo Q, Zhou Y, Xu Z, Hu SW, Kong XX, Yu YM, Yang JX, Zhang H, Ding HL, Cao JL. GABAergic Neurons in the Dorsal-Intermediate Lateral Septum Regulate Sleep-Wakefulness and Anesthesia in Mice. Anesthesiology 2021. [PMID: 34259824 DOI: 10.1097/ALN.0000000000003868] [Reference Citation Analysis]
78 Nagai J, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, Hastings MH, Haydon PG, Rowitch D, Shaham S, Khakh BS. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 2021;109:576-96. [PMID: 33385325 DOI: 10.1016/j.neuron.2020.12.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
79 Khaleghzadeh-ahangar H, Rashvand M, Haghparast A. Role of D1- and D2-like dopamine receptors within the dentate gyrus in antinociception induced by chemical stimulation of the lateral hypothalamus in an animal model of acute pain. Physiology & Behavior 2021;229:113214. [DOI: 10.1016/j.physbeh.2020.113214] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Franks NP, Wisden W. The inescapable drive to sleep: Overlapping mechanisms of sleep and sedation. Science 2021;374:556-9. [PMID: 34709918 DOI: 10.1126/science.abi8372] [Reference Citation Analysis]
81 Guo J, Ran M, Gao Z, Zhang X, Wang D, Li H, Zhao S, Sun W, Dong H, Hu J. Cell-type-specific imaging of neurotransmission reveals a disrupted excitatory-inhibitory cortical network in isoflurane anaesthesia. EBioMedicine 2021;65:103272. [PMID: 33691246 DOI: 10.1016/j.ebiom.2021.103272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Yin L, Li L, Deng J, Wang D, Guo Y, Zhang X, Li H, Zhao S, Zhong H, Dong H. Optogenetic/Chemogenetic Activation of GABAergic Neurons in the Ventral Tegmental Area Facilitates General Anesthesia via Projections to the Lateral Hypothalamus in Mice. Front Neural Circuits 2019;13:73. [PMID: 31798420 DOI: 10.3389/fncir.2019.00073] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
83 Nagaeva E, Zubarev I, Bengtsson Gonzales C, Forss M, Nikouei K, de Miguel E, Elsilä L, Linden AM, Hjerling-Leffler J, Augustine GJ, Korpi ER. Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area. Elife 2020;9:e59328. [PMID: 32749220 DOI: 10.7554/eLife.59328] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
84 Castillo Díaz F, Caffino L, Fumagalli F. Bidirectional role of dopamine in learning and memory-active forgetting. Neurosci Biobehav Rev 2021;131:953-63. [PMID: 34655655 DOI: 10.1016/j.neubiorev.2021.10.011] [Reference Citation Analysis]
85 Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020;167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
86 Pak K, Kim J, Kim K, Kim SJ, Kim IJ. Sleep and Neuroimaging. Nucl Med Mol Imaging 2020;54:98-104. [PMID: 32377261 DOI: 10.1007/s13139-020-00636-9] [Reference Citation Analysis]
87 Liu WL, Wu BF, Shang JH, Wang XF, Zhao YL, Huang AX. Moringa oleifera seed ethanol extract and its active component kaempferol potentiate pentobarbital-induced sleeping behaviours in mice via a GABAergic mechanism. Pharm Biol 2022;60:810-24. [PMID: 35587996 DOI: 10.1080/13880209.2022.2056207] [Reference Citation Analysis]