BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu J, Wang J, Wang X, Gao M, Guo B, Gao M, Liu J, Yu Y, Wang L, Kong W, An Y, Liu Z, Sun X, Huang Z, Zhou H, Zhang N, Zheng R, Xie Z. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat Biotechnol 2021;39:1444-52. [PMID: 34140681 DOI: 10.1038/s41587-021-00946-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
Number Citing Articles
1 Huang J, Xu Y, Xue Y, Huang Y, Li X, Chen X, Xu Y, Zhang D, Zhang P, Zhao J, Ji J. Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences. Nat Biomed Eng 2023. [PMID: 36635418 DOI: 10.1038/s41551-022-00991-2] [Reference Citation Analysis]
2 Chen S, Yang Y, Zhou H, Sun Q, Su R. DNN-PNN: A parallel deep neural network model to improve anticancer drug sensitivity. Methods 2023;209:1-9. [PMID: 36410694 DOI: 10.1016/j.ymeth.2022.11.002] [Reference Citation Analysis]
3 Du W, Yang X, Wu D, Ma F, Zhang B, Bao C, Huo Y, Jiang J, Chen X, Wang Y. Fusing 2D and 3D molecular graphs as unambiguous molecular descriptors for conformational and chiral stereoisomers. Brief Bioinform 2023;24. [PMID: 36528804 DOI: 10.1093/bib/bbac560] [Reference Citation Analysis]
4 Li Y, Wu X, Yang P, Jiang G, Luo Y. Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis. Genomics Proteomics Bioinformatics 2022:S1672-0229(22)00144-9. [PMID: 36462630 DOI: 10.1016/j.gpb.2022.11.003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Gu Y, Zheng S, Yin Q, Jiang R, Li J. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction. Computers in Biology and Medicine 2022;150:106127. [DOI: 10.1016/j.compbiomed.2022.106127] [Reference Citation Analysis]
6 Chen X, Xu H, Qi Q, Sun C, Jin J, Zhao H, Wang X, Weng W, Wang S, Sui X, Wang Z, Dai C, Peng M, Wang D, Hao Z, Huang Y, Wang X, Duan L, Zhu Y, Hong N, Yang F. AI-based chest CT semantic segmentation algorithm enables semi-automated lung cancer surgery planning by recognizing anatomical variants of pulmonary vessels. Front Oncol 2022;12:1021084. [DOI: 10.3389/fonc.2022.1021084] [Reference Citation Analysis]
7 Liu Q, Qi H, Duan S, Xu Y, Zhang H. Frontiers and future perspectives of neuroimmunology. Fundamental Research 2022. [DOI: 10.1016/j.fmre.2022.10.002] [Reference Citation Analysis]
8 Yan YC, Xu ZH, Wang J, Yu WB. Uncovering the pharmacology of Ginkgo biloba folium in the cell-type-specific targets of Parkinson's disease. Front Pharmacol 2022;13:1007556. [PMID: 36249800 DOI: 10.3389/fphar.2022.1007556] [Reference Citation Analysis]
9 Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang C, Ying Y, Dou X, Chen Y, Xiao F, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong Q, Liu Q, Zou W, Tian X, Xiao Z, Liu Y, Liu J, Song M, Han JJ, Liu G. The landscape of aging. Sci China Life Sci 2022. [DOI: 10.1007/s11427-022-2161-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Yang B, Li K, Zhong X, Zou J. Implementation of deep learning in drug design. MedComm – Future Medicine 2022;1. [DOI: 10.1002/mef2.18] [Reference Citation Analysis]
11 Jia Z, Song X, Shi J, Wang W, He K. Gene Signature-Based Drug Repositioning. Drug Repurposing - Molecular Aspects and Therapeutic Applications 2022. [DOI: 10.5772/intechopen.101377] [Reference Citation Analysis]
12 Gu Y, Zheng S, Xu Z, Yin Q, Li L, Li J. An efficient curriculum learning-based strategy for molecular graph learning. Briefings in Bioinformatics. [DOI: 10.1093/bib/bbac099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Masuda T, Mimori K. Artificial intelligence-assisted drug repurposing via “chemical-induced gene expression ranking”. Patterns 2022;3:100470. [DOI: 10.1016/j.patter.2022.100470] [Reference Citation Analysis]
14 Jiang L, Jiang C, Yu X, Fu R, Jin S, Liu X. DeepTTA: a transformer-based model for predicting cancer drug response. Brief Bioinform 2022:bbac100. [PMID: 35348595 DOI: 10.1093/bib/bbac100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Oakley F. Interrogating mechanisms of liver fibrosis with omics. Nat Rev Gastroenterol Hepatol 2022;19:89-90. [PMID: 34903888 DOI: 10.1038/s41575-021-00567-6] [Reference Citation Analysis]
16 Lin W, Wu L, Zhang Y, Wen Y, Yan B, Dai C, Liu K, He S, Bo X. An enhanced cascade-based deep forest model for drug combination prediction. Briefings in Bioinformatics. [DOI: 10.1093/bib/bbab562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Turzo SBA, Hantz ER, Lindert S. Applications of machine learning in computer-aided drug discovery. QRB Discovery 2022;3:e14. [DOI: 10.1017/qrd.2022.12] [Reference Citation Analysis]
18 Ren S, Tao Y, Yu K, Xue Y, Schwartz R, Lu X. De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization.. [DOI: 10.1101/2021.10.11.462450] [Reference Citation Analysis]
19 Kim J, Park S, Min D, Kim W. Comprehensive Survey of Recent Drug Discovery Using Deep Learning. Int J Mol Sci 2021;22:9983. [PMID: 34576146 DOI: 10.3390/ijms22189983] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]