BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Satkunendrarajah K, Karadimas SK, Laliberte AM, Montandon G, Fehlings MG. Cervical excitatory neurons sustain breathing after spinal cord injury. Nature 2018;562:419-22. [DOI: 10.1038/s41586-018-0595-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Michel-flutot P, Efthimiadi L, Djerbal L, Deramaudt TB, Bonay M, Vinit S. AMPK-Nrf2 Signaling Pathway in Phrenic Motoneurons following Cervical Spinal Cord Injury. Antioxidants 2022;11:1665. [DOI: 10.3390/antiox11091665] [Reference Citation Analysis]
2 Michel-Flutot P, Jesus I, Vanhee V, Bourcier CH, Emam L, Ouguerroudj A, Lee KZ, Zholudeva LV, Lane MA, Mansart A, Bonay M, Vinit S. Effects of Chronic High-Frequency rTMS Protocol on Respiratory Neuroplasticity Following C2 Spinal Cord Hemisection in Rats. Biology (Basel) 2022;11:473. [PMID: 35336846 DOI: 10.3390/biology11030473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
3 Deng L, Ravenscraft B, Xu XM. Exploring propriospinal neuron-mediated neural circuit plasticity using recombinant viruses after spinal cord injury. Exp Neurol 2021;:113962. [PMID: 34953895 DOI: 10.1016/j.expneurol.2021.113962] [Reference Citation Analysis]
4 Rana S, Sunshine MD, Greer JJ, Fuller DD. Ampakines Stimulate Diaphragm Activity after Spinal Cord Injury. J Neurotrauma 2021;38:3467-82. [PMID: 34806433 DOI: 10.1089/neu.2021.0301] [Reference Citation Analysis]
5 Van Steenbergen V, Bareyre FM. Chemogenetic approaches to unravel circuit wiring and related behavior after spinal cord injury. Exp Neurol 2021;345:113839. [PMID: 34389362 DOI: 10.1016/j.expneurol.2021.113839] [Reference Citation Analysis]
6 Allen LL, Nichols NL, Asa ZA, Emery AT, Ciesla MC, Santiago JV, Holland AE, Mitchell GS, Gonzalez-Rothi EJ. Phrenic motor neuron survival below cervical spinal cord hemisection. Exp Neurol 2021;:113832. [PMID: 34363808 DOI: 10.1016/j.expneurol.2021.113832] [Reference Citation Analysis]
7 Malone IG, Nosacka RL, Nash MA, Otto KJ, Dale EA. Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 2021;126:607-26. [PMID: 34232771 DOI: 10.1152/jn.00625.2020] [Reference Citation Analysis]
8 Cheng L, Sami A, Ghosh B, Goudsward HJ, Smith GM, Wright MC, Li S, Lepore AC. Respiratory axon regeneration in the chronically injured spinal cord. Neurobiol Dis 2021;155:105389. [PMID: 33975016 DOI: 10.1016/j.nbd.2021.105389] [Reference Citation Analysis]
9 Gonzalez-Rothi EJ, Lee KZ. Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury. Exp Neurol 2021;342:113751. [PMID: 33974878 DOI: 10.1016/j.expneurol.2021.113751] [Reference Citation Analysis]
10 Hachem LD, Fehlings MG. Pathophysiology of Spinal Cord Injury. Neurosurg Clin N Am 2021;32:305-13. [PMID: 34053718 DOI: 10.1016/j.nec.2021.03.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Teng YD, Zafonte RD. Prelude to the special issue on novel neurocircuit, cellular and molecular targets for developing functional rehabilitation therapies of neurotrauma. Exp Neurol 2021;341:113689. [PMID: 33745921 DOI: 10.1016/j.expneurol.2021.113689] [Reference Citation Analysis]
12 Zhao C, Xing Z, Zhang C, Fan Y, Liu H. Nanopharmaceutical-based regenerative medicine: a promising therapeutic strategy for spinal cord injury. J Mater Chem B 2021;9:2367-83. [PMID: 33662083 DOI: 10.1039/d0tb02740e] [Reference Citation Analysis]
13 Strattan LE, Britsch DRS, Calulot CM, Maggard RSJ, Abner EL, Johnson LA, Alilain WJ. Novel Influences of Sex and APOE Genotype on Spinal Plasticity and Recovery of Function after Spinal Cord Injury. eNeuro 2021;8:ENEURO. [PMID: 33536234 DOI: 10.1523/ENEURO.0464-20.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Michel-flutot P, Mansart A, Deramaudt TB, Jesus I, Lee K, Bonay M, Vinit S. Permanent diaphragmatic deficits and spontaneous respiratory plasticity in a mouse model of incomplete cervical spinal cord injury. Respiratory Physiology & Neurobiology 2021;284:103568. [DOI: 10.1016/j.resp.2020.103568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Zholudeva LV, Abraira VE, Satkunendrarajah K, McDevitt TC, Goulding MD, Magnuson DSK, Lane MA. Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease. J Neurosci 2021;41:845-54. [PMID: 33472820 DOI: 10.1523/JNEUROSCI.1654-20.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Jesus I, Michel-Flutot P, Deramaudt TB, Paucard A, Vanhee V, Vinit S, Bonay M. Effects of aerobic exercise training on muscle plasticity in a mouse model of cervical spinal cord injury. Sci Rep 2021;11:112. [PMID: 33420246 DOI: 10.1038/s41598-020-80478-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wollman LB, Streeter KA, Fusco AF, Gonzalez-Rothi EJ, Sandhu MS, Greer JJ, Fuller DD. Ampakines stimulate phrenic motor output after cervical spinal cord injury. Exp Neurol 2020;334:113465. [PMID: 32949571 DOI: 10.1016/j.expneurol.2020.113465] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
18 Reinhardt DR, Stehlik KE, Satkunendrarajah K, Kroner A. Bilateral cervical contusion spinal cord injury: A mouse model to evaluate sensorimotor function. Exp Neurol 2020;331:113381. [PMID: 32561411 DOI: 10.1016/j.expneurol.2020.113381] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Zavvarian MM, Hong J, Fehlings MG. The Functional Role of Spinal Interneurons Following Traumatic Spinal Cord Injury. Front Cell Neurosci 2020;14:127. [PMID: 32528250 DOI: 10.3389/fncel.2020.00127] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
20 Akter F, Yu X, Qin X, Yao S, Nikrouz P, Syed YA, Kotter M. The Pathophysiology of Degenerative Cervical Myelopathy and the Physiology of Recovery Following Decompression. Front Neurosci 2020;14:138. [PMID: 32425740 DOI: 10.3389/fnins.2020.00138] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
21 Fahad EM, Hashm ZM, Nema IM. Cervical spinal stenosis and risk of pulmonary dysfunction. Int J Crit Illn Inj Sci 2020;10:16-9. [PMID: 32322549 DOI: 10.4103/IJCIIS.IJCIIS_83_19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Nguyen DAT, Boswell-Ruys CL, McCaughey EJ, Gandevia SC, Hudson AL, Butler JE. Absence of inspiratory premotor potentials during quiet breathing in cervical spinal cord injury. J Appl Physiol (1985) 2020;128:660-6. [PMID: 32078470 DOI: 10.1152/japplphysiol.00831.2019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Sunshine MD, Sutor TW, Fox EJ, Fuller DD. Targeted activation of spinal respiratory neural circuits. Exp Neurol 2020;328:113256. [PMID: 32087253 DOI: 10.1016/j.expneurol.2020.113256] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Jensen VN, Alilain WJ, Crone SA. Role of Propriospinal Neurons in Control of Respiratory Muscles and Recovery of Breathing Following Injury. Front Syst Neurosci 2019;13:84. [PMID: 32009911 DOI: 10.3389/fnsys.2019.00084] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
25 Charsar BA, Brinton MA, Locke K, Chen AY, Ghosh B, Urban MW, Komaravolu S, Krishnamurthy K, Smit R, Pasinelli P, Wright MC, Smith GM, Lepore AC. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury. FASEB J 2019;33:13775-93. [PMID: 31577916 DOI: 10.1096/fj.201901730R] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
26 Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury. ACS Nano 2019;13:10015-28. [PMID: 31454225 DOI: 10.1021/acsnano.9b01892] [Cited by in Crossref: 139] [Cited by in F6Publishing: 131] [Article Influence: 46.3] [Reference Citation Analysis]
27 Streeter KA, Sunshine MD, Patel SR, Gonzalez-Rothi EJ, Reier PJ, Baekey DM, Fuller DD. Mid-cervical interneuron networks following high cervical spinal cord injury. Respir Physiol Neurobiol 2020;271:103305. [PMID: 31553921 DOI: 10.1016/j.resp.2019.103305] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
28 Katoh H, Yokota K, Fehlings MG. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds. Front Cell Neurosci 2019;13:248. [PMID: 31244609 DOI: 10.3389/fncel.2019.00248] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 14.0] [Reference Citation Analysis]
29 Yokota K, Kubota K, Kobayakawa K, Saito T, Hara M, Kijima K, Maeda T, Katoh H, Ohkawa Y, Nakashima Y, Okada S. Pathological changes of distal motor neurons after complete spinal cord injury. Mol Brain 2019;12:4. [PMID: 30626449 DOI: 10.1186/s13041-018-0422-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
30 Seven YB, Mitchell GS. Mechanisms of compensatory plasticity for respiratory motor neuron death. Respir Physiol Neurobiol 2019;265:32-9. [PMID: 30625378 DOI: 10.1016/j.resp.2019.01.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Whalley K. Keep breathing. Nat Rev Neurosci 2018;19:711. [PMID: 30374151 DOI: 10.1038/s41583-018-0085-1] [Reference Citation Analysis]