BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Silva CG, Peyre E, Nguyen L. Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat Rev Neurosci 2019;20:318-29. [DOI: 10.1038/s41583-019-0148-y] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 13.5] [Reference Citation Analysis]
Number Citing Articles
1 Yamada S, Tokunaga A, Sakakibara SI. Inka2 expression in smooth muscle cells and its involvement in cell migration. Biochem Biophys Res Commun 2023;643:55-60. [PMID: 36586159 DOI: 10.1016/j.bbrc.2022.12.068] [Reference Citation Analysis]
2 Urenda J, Del Dosso A, Birtelle M, Quadrato G. Present and future modeling of human psychiatric connectopathies with brain organoids. Biological Psychiatry 2022. [DOI: 10.1016/j.biopsych.2022.12.017] [Reference Citation Analysis]
3 Soans KG, Ramos AP, Sidhaye J, Krishna A, Solomatina A, Hoffmann KB, Schlüßler R, Guck J, Sbalzarini IF, Modes CD, Norden C. Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Curr Biol 2022;32:4817-4831.e9. [PMID: 36208624 DOI: 10.1016/j.cub.2022.09.034] [Reference Citation Analysis]
4 Goo BS, Mun DJ, Kim S, Nhung TTM, Lee SB, Woo Y, Kim SJ, Suh BK, Park SJ, Lee H, Park K, Jang H, Rah J, Yoon K, Baek ST, Park S, Park SK. Schizophrenia-associated Mitotic Arrest Deficient-1 (MAD1) regulates the polarity of migrating neurons in the developing neocortex. Mol Psychiatry 2022. [DOI: 10.1038/s41380-022-01856-5] [Reference Citation Analysis]
5 Arjun Mckinney A, Petrova R, Panagiotakos G. Calcium and activity-dependent signaling in the developing cerebral cortex. Development 2022;149. [DOI: 10.1242/dev.198853] [Reference Citation Analysis]
6 Qu Y, An O, Yang H, Toh Y, En JCJ. FEZ1 participates in human embryonic brain development by modulating neuronal progenitor subpopulation specification and migration.. [DOI: 10.1101/2022.07.11.499073] [Reference Citation Analysis]
7 Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022;16:929469. [DOI: 10.3389/fnins.2022.929469] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Vaid S, Huttner WB. Progenitor-Based Cell Biological Aspects of Neocortex Development and Evolution. Front Cell Dev Biol 2022;10:892922. [DOI: 10.3389/fcell.2022.892922] [Reference Citation Analysis]
9 Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci. [DOI: 10.1038/s41583-022-00585-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Shinmyo Y, Hamabe-Horiike T, Saito K, Kawasaki H. Investigation of the Mechanisms Underlying the Development and Evolution of the Cerebral Cortex Using Gyrencephalic Ferrets. Front Cell Dev Biol 2022;10:847159. [PMID: 35386196 DOI: 10.3389/fcell.2022.847159] [Reference Citation Analysis]
11 Zhang N, Fang S, Bi Y. Circular gap forming device and two-dimensional area calculation for in vitro cell migration study. Cell Tissue Bank 2022. [PMID: 35318538 DOI: 10.1007/s10561-022-10000-0] [Reference Citation Analysis]
12 Wu D, Richards LJ, Zhao Z, Cao Z, Luo W, Shao W, Shi SH, Miller MI, Mori S, Blackshaw S, Zhang J. A diffusion MRI-based spatiotemporal continuum of the embryonic mouse brain for probing gene-neuroanatomy connections. Proc Natl Acad Sci U S A 2022;119:e2111869119. [PMID: 35165149 DOI: 10.1073/pnas.2111869119] [Reference Citation Analysis]
13 Nagayama K, Hanzawa T. Cell type-specific orientation and migration responses for a microgrooved surface with shallow grooves. Biomed Mater Eng 2022. [PMID: 35180105 DOI: 10.3233/BME-211356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Soans KG, Ramos AP, Sidhaye J, Krishna A, Solomatina A, Hoffmann KB, Schlüßler R, Guck J, Sbalzarini IF, Modes CD, Norden C. Matrix topology guides collective cell migration in vivo.. [DOI: 10.1101/2022.01.31.478442] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Forero Echeverry A, Cappello S. Cerebral Organoids in Developmental Neuroscience. Neuroscience in the 21st Century 2022. [DOI: 10.1007/978-1-4614-6434-1_179-1] [Reference Citation Analysis]
16 Forero Echeverry A, Cappello S. Cerebral Organoids in Developmental Neuroscience. Neuroscience in the 21st Century 2022. [DOI: 10.1007/978-3-030-88832-9_179] [Reference Citation Analysis]
17 Kim JY, Pleasure SJ, Paredes MF. Cell Migration in the Mammalian Cortex. Neuroscience in the 21st Century 2022. [DOI: 10.1007/978-1-4614-6434-1_191-1] [Reference Citation Analysis]
18 Kim JY, Pleasure SJ, Paredes MF. Cell Migration in the Mammalian Cortex. Neuroscience in the 21st Century 2022. [DOI: 10.1007/978-3-030-88832-9_191] [Reference Citation Analysis]
19 Birey F, Li MY, Gordon A, Thete MV, Valencia AM, Revah O, Paşca AM, Geschwind DH, Paşca SP. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell 2021:S1934-5909(21)00483-5. [PMID: 34990580 DOI: 10.1016/j.stem.2021.11.011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
20 Yang J, Qiu L, Chen X. Neuronal primary cilia regulate pyramidal cell positioning to the deep and superficial sublayers in the hippocampal CA1.. [DOI: 10.1101/2021.12.21.473383] [Reference Citation Analysis]
21 Wei C, Sun M, Sun X, Meng H, Li Q, Gao K, Yue W, Wang L, Zhang D, Li J. RhoGEF Trio Regulates Radial Migration of Projection Neurons via Its Distinct Domains. Neurosci Bull 2021. [PMID: 34914033 DOI: 10.1007/s12264-021-00804-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Harkany T, Cinquina V. Physiological Rules of Endocannabinoid Action During Fetal and Neonatal Brain Development. Cannabis Cannabinoid Res 2021;6:381-8. [PMID: 34619043 DOI: 10.1089/can.2021.0096] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Sekiya T, Holley MC. Cell Transplantation to Restore Lost Auditory Nerve Function is a Realistic Clinical Opportunity. Cell Transplant 2021;30:9636897211035076. [PMID: 34498511 DOI: 10.1177/09636897211035076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
24 Kalebic N, Namba T. Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution. Development 2021;148:dev199417. [PMID: 34499710 DOI: 10.1242/dev.199417] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
25 Świtońska-Kurkowska K, Krist B, Delimata J, Figiel M. Juvenile Huntington's Disease and Other PolyQ Diseases, Update on Neurodevelopmental Character and Comparative Bioinformatic Review of Transcriptomic and Proteomic Data. Front Cell Dev Biol 2021;9:642773. [PMID: 34277598 DOI: 10.3389/fcell.2021.642773] [Reference Citation Analysis]
26 Li C, Konishi H, Nishiwaki K, Sato K, Miyata T, Kiyama H. A mouse model of microglia-specific ablation in the embryonic central nervous system. Neurosci Res 2021:S0168-0102(21)00143-7. [PMID: 34157360 DOI: 10.1016/j.neures.2021.06.002] [Reference Citation Analysis]
27 Sokpor G, Kerimoglu C, Nguyen H, Pham L, Rosenbusch J, Wagener R, Nguyen HP, Fischer A, Staiger JF, Tuoc T. Loss of BAF Complex in Developing Cortex Perturbs Radial Neuronal Migration in a WNT Signaling-Dependent Manner. Front Mol Neurosci 2021;14:687581. [PMID: 34220450 DOI: 10.3389/fnmol.2021.687581] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
28 Birey F, Li M, Gordon A, Thete MV, Valencia AM, Revah O, Pașca AM, Geschwind DH, Pașca SP. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome.. [DOI: 10.1101/2021.06.14.448277] [Reference Citation Analysis]
29 Shohayeb B, Muzar Z, Cooper HM. Conservation of neural progenitor identity and the emergence of neocortical neuronal diversity. Semin Cell Dev Biol 2021:S1084-9521(21)00133-6. [PMID: 34083116 DOI: 10.1016/j.semcdb.2021.05.024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
30 Kong R, Yang Q, Gordon E, Xue A, Yan X, Orban C, Zuo XN, Spreng N, Ge T, Holmes A, Eickhoff S, Yeo BTT. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior. Cereb Cortex 2021:bhab101. [PMID: 33942058 DOI: 10.1093/cercor/bhab101] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
31 Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021;9:661759. [PMID: 33996819 DOI: 10.3389/fcell.2021.661759] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
32 Sukumaran SK, Paul P, Guttal V, Holla B, Vemula A, Bhatt H, Bisht P, Mathew K, Nadella RK, Varghese AM, Vijayalakshmi K, Purushottam M, Jain S, Sud R, Viswanath B, ADBS Consortium. Abnormalities in migration of neural precursor cells in familial bipolar disorder.. [DOI: 10.1101/2021.04.22.21254208] [Reference Citation Analysis]
33 Umemura M, Kaneko Y, Tanabe R, Takahashi Y. ATF5 deficiency causes abnormal cortical development. Sci Rep 2021;11:7295. [PMID: 33790322 DOI: 10.1038/s41598-021-86442-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Klingler E, Francis F, Jabaudon D, Cappello S. Mapping the molecular and cellular complexity of cortical malformations. Science 2021;371:eaba4517. [PMID: 33479124 DOI: 10.1126/science.aba4517] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 16.5] [Reference Citation Analysis]
35 Świtońska-kurkowska K, Krist B, Delimata JM, Figiel M. Juvenile Huntington’s Disease and Other PolyQ diseases, Update on Neurodevelopmental Character and Comparative Bioinformatic Review of Transcriptomic Data.. [DOI: 10.1101/2021.02.19.431958] [Reference Citation Analysis]
36 Severino M, Geraldo AF, Utz N, Tortora D, Pogledic I, Klonowski W, Triulzi F, Arrigoni F, Mankad K, Leventer RJ, Mancini GMS, Barkovich JA, Lequin MH, Rossi A. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020;143:2874-94. [PMID: 32779696 DOI: 10.1093/brain/awaa174] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 33.5] [Reference Citation Analysis]
37 Seo J, Lanara C, Choi JY, Kim J, Cho H, Chang YT, Kang K, Stratakis E, Choi IS. Neuronal Migration on Silicon Microcone Arrays with Different Pitches. Adv Healthc Mater 2021;10:e2000583. [PMID: 32815647 DOI: 10.1002/adhm.202000583] [Reference Citation Analysis]
38 Kong R, Yang Q, Gordon E, Xue A, Yan X, Orban C, Zuo X, Spreng N, Ge T, Holmes A, Eickhoff S, Yeo BT. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior.. [DOI: 10.1101/2021.01.16.426943] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
39 Hanganu-Opatz IL, Butt SJB, Hippenmeyer S, De Marco García NV, Cardin JA, Voytek B, Muotri AR. The Logic of Developing Neocortical Circuits in Health and Disease. J Neurosci 2021;41:813-22. [PMID: 33431633 DOI: 10.1523/JNEUROSCI.1655-20.2020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
40 Geraldo AF, Rossi A, Severino M. Malformations of Cortical Development. Pediatric Neuroradiology 2021. [DOI: 10.1007/978-3-662-46258-4_6-1] [Reference Citation Analysis]
41 Gonda Y, Namba T, Hanashima C. Beyond Axon Guidance: Roles of Slit-Robo Signaling in Neocortical Formation. Front Cell Dev Biol 2020;8:607415. [PMID: 33425915 DOI: 10.3389/fcell.2020.607415] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
42 Meyerink BL, Tiwari NK, Pilaz LJ. Ariadne's Thread in the Developing Cerebral Cortex: Mechanisms Enabling the Guiding Role of the Radial Glia Basal Process during Neuron Migration. Cells 2020;10:E3. [PMID: 33375033 DOI: 10.3390/cells10010003] [Reference Citation Analysis]
43 Zhang L, Jing H, Li H, Chen W, Luo B, Zhang H, Dong Z, Li L, Su H, Xiong WC, Mei L. Neddylation is critical to cortical development by regulating Wnt/β-catenin signaling. Proc Natl Acad Sci U S A 2020;117:26448-59. [PMID: 33020269 DOI: 10.1073/pnas.2005395117] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
44 Peregrina C, Del Toro D. FLRTing Neurons in Cortical Migration During Cerebral Cortex Development. Front Cell Dev Biol 2020;8:578506. [PMID: 33043013 DOI: 10.3389/fcell.2020.578506] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
45 Hasenpusch-Theil K, Laclef C, Colligan M, Fitzgerald E, Howe K, Carroll E, Abrams SR, Reiter JF, Schneider-Maunoury S, Theil T. A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. Elife 2020;9:e58162. [PMID: 32840212 DOI: 10.7554/eLife.58162] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
46 Burdakov D, Karnani MM. Ultra-sparse Connectivity within the Lateral Hypothalamus. Curr Biol 2020;30:4063-4070.e2. [PMID: 32822604 DOI: 10.1016/j.cub.2020.07.061] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
47 Kalebic N, Huttner WB. Basal Progenitor Morphology and Neocortex Evolution. Trends Neurosci 2020;43:843-53. [PMID: 32828546 DOI: 10.1016/j.tins.2020.07.009] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 12.3] [Reference Citation Analysis]
48 Pilaz L, Joshi K, Liu J, Tsunekawa Y, Alsina F, Sethi S, Suzuki I, Vanderhaeghen P, Polleux F, Silver D. Subcellular mRNA localization and local translation of Arhgap11a in radial glial cells regulates cortical development.. [DOI: 10.1101/2020.07.30.229724] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
49 Zhu Z, Chai Y, Hu H, Li W, Li WJ, Dong MQ, Wu JW, Wang ZX, Ou G. Spatial confinement of receptor activity by tyrosine phosphatase during directional cell migration. Proc Natl Acad Sci U S A 2020;117:14270-9. [PMID: 32513699 DOI: 10.1073/pnas.2003019117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
50 Sidhaye J, Knoblich JA. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death Differ 2021;28:52-67. [PMID: 32483384 DOI: 10.1038/s41418-020-0566-4] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 19.0] [Reference Citation Analysis]
51 Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, Chambery A, Russo R, Ayo-Martin AC, Giordano M, Hoffmann A, Ciusani E, Canafoglia L, Götz M, Di Giaimo R, Cappello S. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med 2020;12:e11419. [PMID: 32378798 DOI: 10.15252/emmm.201911419] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
52 Hasenpusch-theil K, Laclef C, Colligan M, Fitzgerald E, Howe K, Carroll E, Abrams SR, Reiter JF, Schneider-maunoury S, Theil T. A transient role of primary cilia in controlling direct versus indirect neurogenesis in the developing cerebral cortex.. [DOI: 10.1101/2020.04.28.065615] [Reference Citation Analysis]
53 Burdakov D, Karnani MM. Ultra-sparse connectivity within the lateral hypothalamus.. [DOI: 10.1101/2020.04.25.061564] [Reference Citation Analysis]
54 Nakazawa N, Kengaku M. Mechanical Regulation of Nuclear Translocation in Migratory Neurons. Front Cell Dev Biol 2020;8:150. [PMID: 32226788 DOI: 10.3389/fcell.2020.00150] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
55 Akter M, Kaneko N, Herranz-Pérez V, Nakamura S, Oishi H, García-Verdugo JM, Sawamoto K. Dynamic Changes in the Neurogenic Potential in the Ventricular-Subventricular Zone of Common Marmoset during Postnatal Brain Development. Cereb Cortex 2020;30:4092-109. [PMID: 32108222 DOI: 10.1093/cercor/bhaa031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
56 Ojeda J, Ávila A. Early Actions of Neurotransmitters During Cortex Development and Maturation of Reprogrammed Neurons. Front Synaptic Neurosci 2019;11:33. [PMID: 31824293 DOI: 10.3389/fnsyn.2019.00033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
57 Borrell V. Recent advances in understanding neocortical development. F1000Res 2019;8:F1000 Faculty Rev-1791. [PMID: 31681469 DOI: 10.12688/f1000research.20332.1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
58 Stoufflet J, Chaulet M, Doulazmi M, Fouquet C, Dubacq C, Metin C, Trembleau A, Vincent P, Caille I. Primary cilium-dependent cAMP/PKA signaling at the centrosome regulates neuronal migration.. [DOI: 10.1101/765925] [Reference Citation Analysis]
59 Aboitiz F, Montiel JF. Morphological evolution of the vertebrate forebrain: From mechanical to cellular processes. Evolution & Development 2019;21:330-41. [DOI: 10.1111/ede.12308] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]