BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Canning CG, Allen NE, Nackaerts E, Paul SS, Nieuwboer A, Gilat M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol 2020;16:409-25. [DOI: 10.1038/s41582-020-0370-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Lukacs MJ, Salim S, Katchabaw MJ, Yeung E, Walton DM. Virtual reality in physical rehabilitation: a narrative review and critical reflection. Physical Therapy Reviews. [DOI: 10.1080/10833196.2022.2105077] [Reference Citation Analysis]
2 Gallou-Guyot M, Nuic D, Mandigout S, Compagnat M, Welter ML, Daviet JC, Perrochon A. Effectiveness of home-based rehabilitation using active video games on quality of life, cognitive and motor functions in people with Parkinson's disease: a systematic review. Disabil Rehabil 2022;:1-12. [PMID: 34982599 DOI: 10.1080/09638288.2021.2022780] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Hawkins KE, Paul SS, Chiarovano E, Curthoys IS. Using virtual reality to assess vestibulo-visual interaction in people with Parkinson's disease compared to healthy controls. Exp Brain Res 2021;239:3553-64. [PMID: 34562106 DOI: 10.1007/s00221-021-06219-0] [Reference Citation Analysis]
4 Lu Y, Ge Y, Chen W, Xing W, Wei L, Zhang C, Yang Y. The effectiveness of virtual reality for rehabilitation of Parkinson disease: an overview of systematic reviews with meta-analyses. Syst Rev 2022;11. [DOI: 10.1186/s13643-022-01924-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Fears NE, Templin TN, Sherrod GM, Bugnariu NL, Patterson RM, Miller HL. Autistic Children Use Less Efficient Goal-Directed Whole Body Movements Compared to Neurotypical Development. J Autism Dev Disord 2022. [PMID: 35441912 DOI: 10.1007/s10803-022-05523-0] [Reference Citation Analysis]
6 Horsak B, Simonlehner M, Schöffer L, Dumphart B, Jalaeefar A, Husinsky M. Overground Walking in a Fully Immersive Virtual Reality: A Comprehensive Study on the Effects on Full-Body Walking Biomechanics. Front Bioeng Biotechnol 2021;9:780314. [PMID: 34957075 DOI: 10.3389/fbioe.2021.780314] [Reference Citation Analysis]
7 Leitner MC, Hawelka S. Visual field improvement in neglect after virtual reality intervention: a single-case study. Neurocase 2021;:1-11. [PMID: 34278959 DOI: 10.1080/13554794.2021.1951302] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Möller JC, Zutter D, Riener R. Technology-Based Neurorehabilitation in Parkinson’s Disease—A Narrative Review. CTN 2021;5:23. [DOI: 10.3390/ctn5030023] [Reference Citation Analysis]
9 Guo Y, Yang J, Liu Y, Chen X, Yang G. Detection and assessment of Parkinson's disease based on gait analysis: A survey. Front Aging Neurosci 2022;14:916971. [DOI: 10.3389/fnagi.2022.916971] [Reference Citation Analysis]
10 Weber A, Friemert D, Hartmann U, Epro G, Seeley J, Werth J, Nickel P, Karamanidis K. Obstacle avoidance training in virtual environments leads to limb-specific locomotor adaptations but not to interlimb transfer in healthy young adults. J Biomech 2021;120:110357. [PMID: 33725521 DOI: 10.1016/j.jbiomech.2021.110357] [Reference Citation Analysis]
11 Kashif M, Ahmad A, Bandpei MAM, Syed HA, Raza A, Sana V. A Randomized Controlled Trial of Motor Imagery Combined with Virtual Reality Techniques in Patients with Parkinson’s Disease. JPM 2022;12:450. [DOI: 10.3390/jpm12030450] [Reference Citation Analysis]
12 Jiang S, Wang Y, Tang Y, Lu X, Guo D. Environmental Enrichment Protects Against Sepsis-Associated Encephalopathy-Induced Learning and Memory Deficits by Enhancing the Synthesis and Release of Vasopressin in the Supraoptic Nucleus. JIR 2022;Volume 15:363-79. [DOI: 10.2147/jir.s345108] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Xu X, Zhu J, Lv Z. Artistic Color Virtual Reality Implementation Based on Similarity Image Restoration. Complexity 2021;2021:1-12. [DOI: 10.1155/2021/7572654] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 López-Blanco R, Sorrentino Rodriguez A, Cubo E, Gabilondo Í, Ezpeleta D, Labrador-Espinosa MA, Sánchez-Ferro Á, Tejero C, Matarazzo M; por el Comité Ad-Hoc de Nuevas Tecnologías de la SEN. Impact of new technologies on neurology in Spain. Review by the New Technologies Ad-Hoc Committee of the Spanish Society of Neurology. Neurologia (Engl Ed) 2020:S0213-4853(20)30429-1. [PMID: 33358062 DOI: 10.1016/j.nrl.2020.10.015] [Reference Citation Analysis]
15 Cai J, Liu A, Wang Y, Tan SN, Chomiak T, Burt J, Camicioli R, Hu B, Mckeown MJ, Ba F. Walking exercise alters pedunculopontine nucleus connectivity in Parkinson’s disease in a dose-dependent manner. Front Neurosci 2022;16:930810. [DOI: 10.3389/fnins.2022.930810] [Reference Citation Analysis]
16 Zheng SY, Li HX, Xu RC, Miao WT, Dai MY, Ding ST, Liu HD. Potential roles of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res Rev 2021;69:101347. [PMID: 33905953 DOI: 10.1016/j.arr.2021.101347] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
17 Besharat A, Imsdahl SI, Yamagami M, Nhan N, Bellatin O, Burden SA, Cummer K, Pradhan SD, Kelly VE. Virtual reality doorway and hallway environments alter gait kinematics in people with Parkinson disease and freezing. Gait Posture 2021;92:442-8. [PMID: 34996008 DOI: 10.1016/j.gaitpost.2021.12.013] [Reference Citation Analysis]
18 Chen B, Liang RQ, Chen RY, Xu FY. The effect of virtual reality training on the daily participation of patients: A meta-analysis. Complement Ther Med 2021;58:102676. [PMID: 33561530 DOI: 10.1016/j.ctim.2021.102676] [Reference Citation Analysis]
19 Elena P, Demetris S, Christina M, Marios P. Differences Between Exergaming Rehabilitation and Conventional Physiotherapy on Quality of Life in Parkinson's Disease: A Systematic Review and Meta-Analysis. Front Neurol 2021;12:683385. [PMID: 34434157 DOI: 10.3389/fneur.2021.683385] [Reference Citation Analysis]
20 Morris ME, Slade SC, Bruce C, McGinley JL, Bloem BR. Enablers to Exercise Participation in Progressive Supranuclear Palsy: Health Professional Perspectives. Front Neurol 2020;11:635341. [PMID: 33633662 DOI: 10.3389/fneur.2020.635341] [Reference Citation Analysis]
21 Paszkiewicz A, Salach M, Strzałka D, Budzik G, Nikodem A, Wójcik H, Witek M. VR Education Support System—A Case Study of Digital Circuits Design. Energies 2022;15:277. [DOI: 10.3390/en15010277] [Reference Citation Analysis]
22 Scott H, Griffin C, Coggins W, Elberson B, Abdeldayem M, Virmani T, Larson-prior LJ, Petersen E. Virtual Reality in the Neurosciences: Current Practice and Future Directions. Front Surg 2022;8:807195. [DOI: 10.3389/fsurg.2021.807195] [Reference Citation Analysis]
23 Jeong DC, Kim SSY, Xu JJ, Miller LC. Protean Kinematics: A Blended Model of VR Physics. Front Psychol 2021;12:705170. [PMID: 34497562 DOI: 10.3389/fpsyg.2021.705170] [Reference Citation Analysis]
24 Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S. Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 2021;137:74-92. [PMID: 33607346 DOI: 10.1016/j.cortex.2020.12.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Arroyo-Ferrer A, Sánchez-Cuesta FJ, González-Zamorano Y, Del Castillo MD, Sastre-Barrios C, Ríos-Lago M, Romero JP. Validation of Cognitive Rehabilitation as a Balance Rehabilitation Strategy in Patients with Parkinson's Disease: Study Protocol for a Randomized Controlled Trial. Medicina (Kaunas) 2021;57:314. [PMID: 33810477 DOI: 10.3390/medicina57040314] [Reference Citation Analysis]
26 Allen NE, Canning CG, Almeida LRS, Bloem BR, Keus SH, Löfgren N, Nieuwboer A, Verheyden GS, Yamato TP, Sherrington C; Cochrane Movement Disorders Group. Interventions for preventing falls in Parkinson's disease. Cochrane Database of Systematic Reviews 2022;2022. [DOI: 10.1002/14651858.cd011574.pub2] [Reference Citation Analysis]
27 Ketterer J, Ringhof S, Gehring D, Gollhofer A. Sinusoidal Optic Flow Perturbations Reduce Transient but Not Continuous Postural Stability: A Virtual Reality-Based Study. Front Physiol 2022;13:803185. [DOI: 10.3389/fphys.2022.803185] [Reference Citation Analysis]
28 Vu JP, Yamin G, Reyes Z, Shin A, Young A, Litvan I, Xie P, Obrzut S. Assessment of Motor Dysfunction with Virtual Reality in Patients Undergoing [123I]FP-CIT SPECT/CT Brain Imaging. Tomography 2021;7:95-106. [PMID: 33810475 DOI: 10.3390/tomography7020009] [Reference Citation Analysis]
29 Adhikary S, Ghosh A. e-BMI: A gait based smart remote BMI monitoring framework implementing edge computing and incremental machine learning. Smart Health 2022;24:100277. [DOI: 10.1016/j.smhl.2022.100277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Birenboim A, Ben-Nun Bloom P, Levit H, Omer I. The Study of Walking, Walkability and Wellbeing in Immersive Virtual Environments. Int J Environ Res Public Health 2021;18:E364. [PMID: 33418896 DOI: 10.3390/ijerph18020364] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
31 Pang MY. Physiotherapy management of Parkinson's disease. J Physiother 2021;67:163-76. [PMID: 34154949 DOI: 10.1016/j.jphys.2021.06.004] [Reference Citation Analysis]
32 Janeh O, Steinicke F. A Review of the Potential of Virtual Walking Techniques for Gait Rehabilitation. Front Hum Neurosci 2021;15:717291. [PMID: 34803632 DOI: 10.3389/fnhum.2021.717291] [Reference Citation Analysis]
33 Calafiore D, Invernizzi M, Ammendolia A, Marotta N, Fortunato F, Paolucci T, Ferraro F, Curci C, Cwirlej-Sozanska A, de Sire A. Efficacy of Virtual Reality and Exergaming in Improving Balance in Patients With Multiple Sclerosis: A Systematic Review and Meta-Analysis. Front Neurol 2021;12:773459. [PMID: 34956054 DOI: 10.3389/fneur.2021.773459] [Reference Citation Analysis]
34 Nuara A, Fabbri-Destro M, Scalona E, Lenzi SE, Rizzolatti G, Avanzini P. Telerehabilitation in response to constrained physical distance: an opportunity to rethink neurorehabilitative routines. J Neurol 2021. [PMID: 33449202 DOI: 10.1007/s00415-021-10397-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 Mekbib DB, Debeli DK, Zhang L, Fang S, Shao Y, Yang W, Han J, Jiang H, Zhu J, Zhao Z, Cheng R, Ye X, Zhang J, Xu D. A novel fully immersive virtual reality environment for upper extremity rehabilitation in patients with stroke. Ann N Y Acad Sci 2021;1493:75-89. [PMID: 33442915 DOI: 10.1111/nyas.14554] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Finley JM, Gotsis M, Lympouridis V, Jain S, Kim A, Fisher BE. Design and Development of a Virtual Reality-Based Mobility Training Game for People With Parkinson's Disease. Front Neurol 2020;11:577713. [PMID: 33519665 DOI: 10.3389/fneur.2020.577713] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]