BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol 2021. [PMID: 34373622 DOI: 10.1038/s41577-021-00588-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Siering O, Cattaneo R, Pfaller CK. C Proteins: Controllers of Orderly Paramyxovirus Replication and of the Innate Immune Response. Viruses 2022;14:137. [PMID: 35062341 DOI: 10.3390/v14010137] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Liu X, Ding S, Liu P. The Roles of Gasdermin D in Coronavirus Infection and Evasion. Front Microbiol 2021;12:784009. [PMID: 34899666 DOI: 10.3389/fmicb.2021.784009] [Reference Citation Analysis]
3 Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022;13:857490. [PMID: 35422818 DOI: 10.3389/fimmu.2022.857490] [Reference Citation Analysis]
4 Romeo FJ, Barbagelata L, Chiabrando JG, Damonte JI, Moras E, Aguilar-Gallardo JS, Lorente-Ros M, Lobo LM, Masson W. The Effect of Colchicine on Mortality, Mechanical Ventilation, and Length of Stay in Patients With COVID-19 Infection: An Updated Systematic Review and Meta-analysis of Randomized Clinical Trials. Am J Ther 2022. [PMID: 35446263 DOI: 10.1097/MJT.0000000000001511] [Reference Citation Analysis]
5 Hulme KD, Noye EC, Short KR, Labzin LI. Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front Immunol 2021;12:770066. [PMID: 34777390 DOI: 10.3389/fimmu.2021.770066] [Reference Citation Analysis]
6 Saeedi-boroujeni A, Nashibi R, Ghadiri AA, Nakajima M, Salmanzadeh S, Mahmoudian-sani M, Hanafi MG, Sharhani A, Khodadadi A. Tranilast as an Adjunctive Therapy in Hospitalized Patients with Severe COVID- 19: A Randomized Controlled Trial. Archives of Medical Research 2022. [DOI: 10.1016/j.arcmed.2022.03.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 López-Cortés A, Guerrero S, Ortiz-Prado E, Yumiceba V, Vera-Guapi A, León Cáceres Á, Simbaña-Rivera K, Gómez-Jaramillo AM, Echeverría-Garcés G, García-Cárdenas JM, Guevara-Ramírez P, Cabrera-Andrade A, Puig San Andrés L, Cevallos-Robalino D, Bautista J, Armendáriz-Castillo I, Pérez-Villa A, Abad-Sojos A, Ramos-Medina MJ, León-Sosa A, Abarca E, Pérez-Meza ÁA, Nieto-Jaramillo K, Jácome AV, Morillo A, Arias-Erazo F, Fuenmayor-González L, Quiñones LA, Kyriakidis NC. Pulmonary Inflammatory Response in Lethal COVID-19 Reveals Potential Therapeutic Targets and Drugs in Phases III/IV Clinical Trials. Front Pharmacol 2022;13:833174. [PMID: 35422702 DOI: 10.3389/fphar.2022.833174] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Hilligan KL, Namasivayam S, Clancy CS, O'Mard D, Oland SD, Robertson SJ, Baker PJ, Castro E, Garza NL, Lafont BAP, Johnson R, Ronchese F, Mayer-Barber KD, Best SM, Sher A. Intravenous administration of BCG protects mice against lethal SARS-CoV-2 challenge. J Exp Med 2022;219:e20211862. [PMID: 34889942 DOI: 10.1084/jem.20211862] [Reference Citation Analysis]
9 Luo M, Ballester MP, Soffientini U, Jalan R, Mehta G. SARS-CoV-2 infection and liver involvement. Hepatol Int 2022. [PMID: 35767172 DOI: 10.1007/s12072-022-10364-1] [Reference Citation Analysis]
10 Hilligan KL, Namasivayam S, Clancy CS, O'Mard D, Oland SD, Robertson SJ, Baker PJ, Castro E, Garza NL, Lafont BAP, Johnson R, Ronchese F, Mayer-Barber KD, Best SM, Sher A. Intravenous administration of BCG protects mice against lethal SARS-CoV-2 challenge. bioRxiv 2021:2021. [PMID: 34494021 DOI: 10.1101/2021.08.30.458273] [Reference Citation Analysis]
11 Junqueira C, Crespo Â, Ranjbar S, de Lacerda LB, Lewandrowski M, Ingber J, Parry B, Ravid S, Clark S, Schrimpf MR, Ho F, Beakes C, Margolin J, Russell N, Kays K, Boucau J, Das Adhikari U, Vora SM, Leger V, Gehrke L, Henderson LA, Janssen E, Kwon D, Sander C, Abraham J, Goldberg MB, Wu H, Mehta G, Bell S, Goldfeld AE, Filbin MR, Lieberman J. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 2022. [PMID: 35385861 DOI: 10.1038/s41586-022-04702-4] [Cited by in Crossref: 43] [Cited by in F6Publishing: 24] [Article Influence: 43.0] [Reference Citation Analysis]
12 Jiang Y, Zhao T, Zhou X, Xiang Y, Gutierrez‐castrellon P, Ma X. Inflammatory pathways in COVID‐19: Mechanism and therapeutic interventions. MedComm 2022;3. [DOI: 10.1002/mco2.154] [Reference Citation Analysis]
13 Sohaei D, Hollenberg M, Janket SJ, Diamandis EP, Poda G, Prassas I. The therapeutic relevance of the Kallikrein-Kinin axis in SARS-cov-2-induced vascular pathology. Crit Rev Clin Lab Sci 2022;:1-16. [PMID: 35930434 DOI: 10.1080/10408363.2022.2102578] [Reference Citation Analysis]
14 Xiong X, Zuo Y, Cheng L, Yin Z, Hu T, Guo M, Han Z, Ge X, Li W, Wang Y, Wang D, Wang C, Zhang L, Zhang Y, Liu Q, Chen F, Lei P. Modafinil Reduces Neuronal Pyroptosis and Cognitive Decline After Sleep Deprivation. Front Neurosci 2022;16:816752. [DOI: 10.3389/fnins.2022.816752] [Reference Citation Analysis]
15 Tan TH, Patton E, Munro CA, Corzo-Leon DE, Porter AJ, Palliyil S. Monoclonal Human Antibodies That Recognise the Exposed N and C Terminal Regions of the Often-Overlooked SARS-CoV-2 ORF3a Transmembrane Protein. Viruses 2021;13:2201. [PMID: 34835009 DOI: 10.3390/v13112201] [Reference Citation Analysis]
16 Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol 2022. [PMID: 35354968 DOI: 10.1038/s41579-022-00713-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 13.0] [Reference Citation Analysis]
17 Jing H, Zuo N, Novakovic VA, Shi J. The Central Role of Extracellular Vesicles in the Mechanisms of Thrombosis in COVID-19 Patients With Cancer and Therapeutic Strategies. Front Cell Dev Biol 2021;9:792335. [PMID: 35096822 DOI: 10.3389/fcell.2021.792335] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Surolia R, Antony VB. Pathophysiological Role of Vimentin Intermediate Filaments in Lung Diseases. Front Cell Dev Biol 2022;10:872759. [DOI: 10.3389/fcell.2022.872759] [Reference Citation Analysis]
19 Coll RC, Schroder K, Pelegrín P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol Sci 2022:S0165-6147(22)00083-9. [PMID: 35513901 DOI: 10.1016/j.tips.2022.04.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
20 Gupta R. Could anakinra outmatch dexamethasone/tocilizumab in COVID-19? Bull Natl Res Cent 2022;46. [DOI: 10.1186/s42269-022-00781-5] [Reference Citation Analysis]
21 Yong Y, Zhang L, Hu Y, Wu J, Yan L, Pan Y, Tang Y, Yu L, Law BY, Yu C, Zhou J, Li M, Qin D, Zhou X, Wu A. Targeting autophagy regulation in NLRP3 inflammasome-mediated lung inflammation in COVID-19. Clinical Immunology 2022. [DOI: 10.1016/j.clim.2022.109093] [Reference Citation Analysis]
22 García-Villalba J, Hurtado-Navarro L, Peñín-Franch A, Molina-López C, Martínez-Alarcón L, Angosto-Bazarra D, Baroja-Mazo A, Pelegrin P. Soluble P2X7 Receptor Is Elevated in the Plasma of COVID-19 Patients and Correlates With Disease Severity. Front Immunol 2022;13:894470. [PMID: 35663992 DOI: 10.3389/fimmu.2022.894470] [Reference Citation Analysis]
23 Wei J, Shang R, Wang J, Zhu S, Yin J, Chen Y, Zhao Y, Chen G. ACE2 overexpressing mesenchymal stem cells alleviates COVID-19 lung injury by inhibiting pyroptosis. iScience 2022;25:104046. [PMID: 35287354 DOI: 10.1016/j.isci.2022.104046] [Reference Citation Analysis]
24 Sefik E, Qu R, Junqueira C, Kaffe E, Mirza H, Zhao J, Brewer JR, Han A, Steach HR, Israelow B, Blackburn HN, Velazquez SE, Chen YG, Halene S, Iwasaki A, Meffre E, Nussenzweig M, Lieberman J, Wilen CB, Kluger Y, Flavell RA. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022;606:585-93. [PMID: 35483404 DOI: 10.1038/s41586-022-04802-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
25 Zhou Z, Zhang X, Lei X, Xiao X, Jiao T, Ma R, Dong X, Jiang Q, Wang W, Shi Y, Zheng T, Rao J, Xiang Z, Ren L, Deng T, Jiang Z, Dou Z, Wei W, Wang J. Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Signal Transduct Target Ther 2021;6:382. [PMID: 34732709 DOI: 10.1038/s41392-021-00800-3] [Reference Citation Analysis]
26 Cui H, Liu J, Zhang L. The high expression of key components of inflammasome and pyroptosis might lead to severe COVID-19 infection in cancer patients. Journal of Infection 2022. [DOI: 10.1016/j.jinf.2022.01.043] [Reference Citation Analysis]
27 Cornelius DC, Wang X, Griffin A, Morris R, Wallace K. Preeclampsia and COVID-19: the Role of Inflammasome Activation. Curr Hypertens Rep 2022. [PMID: 35704142 DOI: 10.1007/s11906-022-01195-4] [Reference Citation Analysis]
28 Sur S, Steele R, Isbell TS, Ray R, Ray RB. Circulatory Exosomes from COVID-19 Patients Trigger NLRP3 Inflammasome in Endothelial Cells. mBio 2022;:e0095122. [PMID: 35587188 DOI: 10.1128/mbio.00951-22] [Reference Citation Analysis]
29 Almulla AF, Supasitthumrong T, Tunvirachaisakul C, Algon AAA, Al-Hakeim HK, Maes M. The tryptophan catabolite or kynurenine pathway in COVID-19 and critical COVID-19: a systematic review and meta-analysis. BMC Infect Dis 2022;22:615. [PMID: 35840908 DOI: 10.1186/s12879-022-07582-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021;12:652252. [PMID: 34630377 DOI: 10.3389/fimmu.2021.652252] [Reference Citation Analysis]
31 Sobas M, Podolak-Dawidziak M, Lewandowski K, Bator M, Wróbel T. Primary Immune Thrombocytopenia and Essential Thrombocythemia: So Different and yet Somehow Similar-Cases Series and a Review of the Literature. Int J Mol Sci 2021;22:10918. [PMID: 34681577 DOI: 10.3390/ijms222010918] [Reference Citation Analysis]
32 Junqueira C, Crespo Ã, Ranjbar S, Lewandrowski M, Ingber J, de Lacerda LB, Parry B, Ravid S, Clark S, Ho F, Vora SM, Leger V, Beakes C, Margolin J, Russell N, Kays K, Gehrke L, Adhikari UD, Henderson L, Janssen E, Kwon D, Sander C, Abraham J, Filbin M, Goldberg MB, Wu H, Mehta G, Bell S, Goldfeld AE, Lieberman J. SARS-CoV-2 infects blood monocytes to activate NLRP3 and AIM2 inflammasomes, pyroptosis and cytokine release. Res Sq 2021:rs. [PMID: 34401873 DOI: 10.21203/rs.3.rs-153628/v1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Bucci T, Galardo G, Gandini O, Vicario T, Paganelli C, Cerretti S, Bucci C, Pugliese F, Pastori D; Research On Medical patients Admitted to the Emergency Department (ROMA-ED) study group. Fibrosis-4 (FIB-4) Index and mortality in COVID-19 patients admitted to the emergency department. Intern Emerg Med 2022. [PMID: 35624344 DOI: 10.1007/s11739-022-02997-9] [Reference Citation Analysis]
34 Newton K, Dixit VM, Kayagaki N. Dying cells fan the flames of inflammation. Science 2021;374:1076-80. [PMID: 34822265 DOI: 10.1126/science.abi5934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Soehnlein O, Tall AR. AIMing 2 treat atherosclerosis. Nat Rev Cardiol 2022. [PMID: 35882998 DOI: 10.1038/s41569-022-00755-0] [Reference Citation Analysis]
36 Nathan C. Nonresolving inflammation redux. Immunity 2022;55:592-605. [PMID: 35417674 DOI: 10.1016/j.immuni.2022.03.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Amin S, Aktar S, Rahman MM, Hassan Chowdhury MM. NLRP3 inflammasome activation in COVID-19: an interlink between risk factors and disease severity. Microbes Infect 2021;:104913. [PMID: 34838941 DOI: 10.1016/j.micinf.2021.104913] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
38 Zoulikha M, Huang F, Wu Z, He W. COVID-19 inflammation and implications in drug delivery. J Control Release 2022;346:260-74. [PMID: 35469984 DOI: 10.1016/j.jconrel.2022.04.027] [Reference Citation Analysis]
39 Declercq J, De Leeuw E, Lambrecht BN. Inflammasomes and IL-1 family cytokines in SARS-CoV-2 infection: From prognostic marker to therapeutic agent. Cytokine 2022. [DOI: 10.1016/j.cyto.2022.155934] [Reference Citation Analysis]
40 Garcia-Gasalla M, Berman-Riu M, Pons J, Rodríguez A, Iglesias A, Martínez-Pomar N, Llompart-Alabern I, Riera M, Ferré Beltrán A, Figueras-Castilla A, Murillas J, Ferrer JM. Hyperinflammatory State and Low T1 Adaptive Immune Response in Severe and Critical Acute COVID-19 Patients. Front Med (Lausanne) 2022;9:828678. [PMID: 35425776 DOI: 10.3389/fmed.2022.828678] [Reference Citation Analysis]
41 Xu W, Huang Y. Regulation of Inflammatory Cell Death by Phosphorylation. Front Immunol 2022;13:851169. [PMID: 35300338 DOI: 10.3389/fimmu.2022.851169] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Yu L, Zhang X, Ye S, Lian H, Wang H, Ye J. Obesity and COVID-19: Mechanistic Insights From Adipose Tissue. J Clin Endocrinol Metab 2022;107:1799-811. [PMID: 35262698 DOI: 10.1210/clinem/dgac137] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Vojdani A, Vojdani E, Rosenberg AZ, Shoenfeld Y. The Role of Exposomes in the Pathophysiology of Autoimmune Diseases II: Pathogens. Pathophysiology 2022;29:243-80. [DOI: 10.3390/pathophysiology29020020] [Reference Citation Analysis]
44 Maes M, Tedesco Junior WLD, Lozovoy MAB, Mori MTE, Danelli T, Almeida ERD, Tejo AM, Tano ZN, Reiche EMV, Simão ANC. In COVID-19, NLRP3 inflammasome genetic variants are associated with critical disease and these effects are partly mediated by the sickness symptom complex: a nomothetic network approach. Mol Psychiatry 2022. [PMID: 35022530 DOI: 10.1038/s41380-021-01431-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
45 Li X, Zhang P, Yin Z, Xu F, Yang Z, Jin J, Qu J, Liu Z, Qi H, Yao C, Shuai J. Caspase-1 and Gasdermin D Afford the Optimal Targets with Distinct Switching Strategies in NLRP1b Inflammasome-Induced Cell Death. Research 2022;2022:1-17. [DOI: 10.34133/2022/9838341] [Reference Citation Analysis]
46 Chen C, Xu P. Activation and Pharmacological Regulation of Inflammasomes. Biomolecules 2022;12:1005. [DOI: 10.3390/biom12071005] [Reference Citation Analysis]
47 Bombaci G, Sarangdhar MA, Andina N, Tardivel A, Yu EC, Mackie GM, Pugh M, Ozan VB, Banz Y, Spinetti T, Hirzel C, Youd E, Schefold JC, Taylor G, Gazdhar A, Bonadies N, Angelillo-scherrer A, Schneider P, Maslowski KM, Allam R. LRR-protein RNH1 dampens the inflammasome activation and is associated with COVID-19 severity. Life Sci Alliance 2022;5:e202101226. [DOI: 10.26508/lsa.202101226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Davis MJ, Martin RE, Pinheiro GM, Hoke ES, Moyer S, Mayer-barber KD, Chang YC, Kwon-chung KJ. MDA5 signaling induces type 1 IFN- and IL-1-dependent lung vascular permeability which protects mice from opportunistic fungal infection. Front Immunol 2022;13:931194. [DOI: 10.3389/fimmu.2022.931194] [Reference Citation Analysis]
49 Caruso F, Pedersen JZ, Incerpi S, Kaur S, Belli S, Florea R, Rossi M. Mechanism of Caspase-1 Inhibition by Four Anti-inflammatory Drugs Used in COVID-19 Treatment. IJMS 2022;23:1849. [DOI: 10.3390/ijms23031849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Wittmann N, Behrendt AK, Mishra N, Bossaller L, Meyer-Bahlburg A. Instructions for Flow Cytometric Detection of ASC Specks as a Readout of Inflammasome Activation in Human Blood. Cells 2021;10:2880. [PMID: 34831104 DOI: 10.3390/cells10112880] [Reference Citation Analysis]
51 Zhao L, Li L, Xue M, Liu X, Jiang C, Wang W, Tang L, Feng L, Liu P. Gasdermin D Inhibits Coronavirus Infection by Promoting the Noncanonical Secretion of Beta Interferon. mBio 2022;:e0360021. [PMID: 35100869 DOI: 10.1128/mbio.03600-21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
52 Jung E, Lee G. Korean Red Ginseng, a regulator of NLRP3 inflammasome, in the COVID-19 pandemic. Journal of Ginseng Research 2022. [DOI: 10.1016/j.jgr.2022.02.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Yang Y, Zhong Z, Xiao Y, Chen H, Kozlov AV. The Activation of AMPK/NRF2 Pathway in Lung Epithelial Cells Is Involved in the Protective Effects of Kinsenoside on Lipopolysaccharide-Induced Acute Lung Injury. Oxidative Medicine and Cellular Longevity 2022;2022:1-14. [DOI: 10.1155/2022/3589277] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Kim NE, Song YJ. Coordinated regulation of interferon and inflammasome signaling pathways by SARS-CoV-2 proteins. J Microbiol 2022;60:300-7. [PMID: 35089584 DOI: 10.1007/s12275-022-1502-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
55 Richardson PJ, Robinson BWS, Smith DP, Stebbing J. The AI-Assisted Identification and Clinical Efficacy of Baricitinib in the Treatment of COVID-19. Vaccines (Basel) 2022;10:951. [PMID: 35746559 DOI: 10.3390/vaccines10060951] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]