BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kather JN, Calderaro J. Development of AI-based pathology biomarkers in gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol 2020;17:591-2. [DOI: 10.1038/s41575-020-0343-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Muti HS, Heij LR, Keller G, Kohlruss M, Langer R, Dislich B, Cheong JH, Kim YW, Kim H, Kook MC, Cunningham D, Allum WH, Langley RE, Nankivell MG, Quirke P, Hayden JD, West NP, Irvine AJ, Yoshikawa T, Oshima T, Huss R, Grosser B, Roviello F, d'Ignazio A, Quaas A, Alakus H, Tan X, Pearson AT, Luedde T, Ebert MP, Jäger D, Trautwein C, Gaisa NT, Grabsch HI, Kather JN. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study. Lancet Digit Health 2021;3:e654-64. [PMID: 34417147 DOI: 10.1016/S2589-7500(21)00133-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27(40): 6794-6824 [PMID: 34790008 DOI: 10.3748/wjg.v27.i40.6794] [Reference Citation Analysis]
3 Schrammen PL, Ghaffari Laleh N, Echle A, Truhn D, Schulz V, Brinker TJ, Brenner H, Chang-Claude J, Alwers E, Brobeil A, Kloor M, Heij LR, Jäger D, Trautwein C, Grabsch HI, Quirke P, West NP, Hoffmeister M, Kather JN. Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology. J Pathol 2021. [PMID: 34561876 DOI: 10.1002/path.5800] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zhu Q, Hou Q, Huang S, Ou Q, Huo D, Vázquez-Baeza Y, Cen C, Cantu V, Estaki M, Chang H, Belda-Ferre P, Kim HC, Chen K, Knight R, Zhang J. Compositional and genetic alterations in Graves' disease gut microbiome reveal specific diagnostic biomarkers. ISME J 2021. [PMID: 34079079 DOI: 10.1038/s41396-021-01016-7] [Reference Citation Analysis]
5 Kuntz S, Krieghoff-Henning E, Kather JN, Jutzi T, Höhn J, Kiehl L, Hekler A, Alwers E, von Kalle C, Fröhling S, Utikal JS, Brenner H, Hoffmeister M, Brinker TJ. Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review. Eur J Cancer 2021;155:200-15. [PMID: 34391053 DOI: 10.1016/j.ejca.2021.07.012] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Yamada S, Jeon R, Garmany A, Behfar A, Terzic A. Screening for regenerative therapy responders in heart failure. Biomark Med 2021;15:775-83. [PMID: 34169733 DOI: 10.2217/bmm-2020-0683] [Reference Citation Analysis]
7 Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2020;11:604967. [PMID: 33584676 DOI: 10.3389/fimmu.2020.604967] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
8 Klein S, Duda DG. Machine Learning for Future Subtyping of the Tumor Microenvironment of Gastro-Esophageal Adenocarcinomas. Cancers (Basel) 2021;13:4919. [PMID: 34638408 DOI: 10.3390/cancers13194919] [Reference Citation Analysis]
9 Calderaro J, Kather JN. Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers. Gut. 2020;. [PMID: 33214163 DOI: 10.1136/gutjnl-2020-322880] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
10 Jang HJ, Lee A, Kang J, Song IH, Lee SH. Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach. World J Gastroenterol 2021; 27(44): 7687-7704 [PMID: 34908807 DOI: 10.3748/wjg.v27.i44.7687] [Reference Citation Analysis]
11 Su X, Jing G, Zhang Y, Wu S. Method development for cross-study microbiome data mining: Challenges and opportunities. Comput Struct Biotechnol J 2020;18:2075-80. [PMID: 32802279 DOI: 10.1016/j.csbj.2020.07.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]