BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020;19:239-52. [PMID: 32060419 DOI: 10.1038/s41573-019-0056-x] [Cited by in Crossref: 106] [Cited by in F6Publishing: 111] [Article Influence: 53.0] [Reference Citation Analysis]
Number Citing Articles
1 Guo T, Xiao J, Li L, Xu W, Yuan Y, Yin Y, Zhang X. rM2e-ΔPly protein immunization induces protection against influenza viruses and its co-infection with Streptococcus pneumoniae in mice. Molecular Immunology 2022;152:86-96. [DOI: 10.1016/j.molimm.2022.10.006] [Reference Citation Analysis]
2 Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opinion on Emerging Drugs 2022. [DOI: 10.1080/14728214.2022.2149734] [Reference Citation Analysis]
3 Wittwer K, Zimmer G, Rommel M, Krebs Y, Rezinciuc S, Sawatsky B, Pfaller CK. Non-neutralizing antibody responses to vesicular stomatitis virus-vectored influenza A virus vaccines correlate with protection.. [DOI: 10.1101/2022.11.02.514911] [Reference Citation Analysis]
4 Agus DB, Nguyen A, Sall AA, Bell J. COVID-19 and other adult vaccines can drive global disease prevention. The Lancet 2022. [DOI: 10.1016/s0140-6736(22)02084-0] [Reference Citation Analysis]
5 Demirden SF, Alptekin K, Kimiz-gebologlu I, Oncel SS. Influenza Vaccine: An Engineering Vision from Virological Importance to Production. Biotechnol Bioproc E 2022. [DOI: 10.1007/s12257-022-0115-8] [Reference Citation Analysis]
6 Wu F, Qin M, Wang H, Sun X. Nanovaccines to combat virus‐related diseases. WIREs Nanomed Nanobiotechnol 2022. [DOI: 10.1002/wnan.1857] [Reference Citation Analysis]
7 Myers ML, Gallagher JR, Woolfork DD, Stradtmann-carvalho RK, Maldonado-puga S, Bock KW, Boyoglu-barnum S, Syeda H, Creanga A, Alves DA, Kanekiyo M, Harris AK. Impact of adjuvant: Trivalent vaccine with quadrivalent-like protection against heterologous Yamagata-lineage influenza B virus. Front Immunol 2022;13:1002286. [DOI: 10.3389/fimmu.2022.1002286] [Reference Citation Analysis]
8 Haldar S. Recent Developments in Single-Virus Fusion Assay. J Membr Biol 2022. [PMID: 36173449 DOI: 10.1007/s00232-022-00270-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Zhu H, Li X, Ren X, Chen H, Qian P. Improving cross-protection against influenza virus in mice using a nanoparticle vaccine of mini-HA. Vaccine 2022:S0264-410X(22)01165-3. [PMID: 36175214 DOI: 10.1016/j.vaccine.2022.09.058] [Reference Citation Analysis]
10 Liu C, Liu D, Yue X, Zhong X, Wu X, Chang H, Wang B, Wan M, Deng L. Chimeric Virus-like Particles Co-Displaying Hemagglutinin Stem and the C-Terminal Fragment of DnaK Confer Heterologous Influenza Protection in Mice. Viruses 2022;14:2109. [DOI: 10.3390/v14102109] [Reference Citation Analysis]
11 Myers ML, Gallagher JR, Kim AJ, Payne WH, Bock KW, Torian U, Moore IN, Harris AK. Commercial influenza vaccines vary in both the structural arrangements of HA complexes and in induction of antibodies to cross-reactive HA epitopes.. [DOI: 10.1101/2022.09.22.509041] [Reference Citation Analysis]
12 Starostina EV, Sharabrin SV, Rudometov AP, Litvinova VR, Borgoyakova MB, Bazhan SI, Ilyichev AA, Karpenko LI. Immune response against DNA- and mRNA vaccines encoding artificial influenza virus immunogens. Russian Journal of Immunology 2022;25:321-326. [DOI: 10.46235/1028-7221-1103-ira] [Reference Citation Analysis]
13 Bo Y, Wang H. Materials‐based vaccines for infectious diseases. WIREs Nanomed Nanobiotechnol 2022;14. [DOI: 10.1002/wnan.1824] [Reference Citation Analysis]
14 Britto C, Alter G. The next frontier in vaccine design: blending immune correlates of protection into rational vaccine design. Curr Opin Immunol 2022;78:102234. [PMID: 35973352 DOI: 10.1016/j.coi.2022.102234] [Reference Citation Analysis]
15 Sangesland M, Torrents de la Peña A, Boyoglu-Barnum S, Ronsard L, Mohamed FAN, Moreno TB, Barnes RM, Rohrer D, Lonberg N, Ghebremichael M, Kanekiyo M, Ward A, Lingwood D. Allelic polymorphism controls autoreactivity and vaccine elicitation of human broadly neutralizing antibodies against influenza virus. Immunity 2022:S1074-7613(22)00339-9. [PMID: 35952670 DOI: 10.1016/j.immuni.2022.07.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Biavasco R, De Giovanni M. The Relative Positioning of B and T Cell Epitopes Drives Immunodominance. Vaccines (Basel) 2022;10:1227. [PMID: 36016115 DOI: 10.3390/vaccines10081227] [Reference Citation Analysis]
17 Chaparian RR, Harding AT, Hamele CE, Riebe K, Karlsson A, Sempowski GD, Heaton NS, Heaton BE, Schultz-cherry S. A Virion-Based Combination Vaccine Protects against Influenza and SARS-CoV-2 Disease in Mice. J Virol. [DOI: 10.1128/jvi.00689-22] [Reference Citation Analysis]
18 Si L, Shen Q, Li J, Chen L, Shen J, Xiao X, Bai H, Feng T, Ye AY, Li L, Zhang C, Li Z, Wang P, Oh CY, Nurani A, Niu S, Zhang C, Wei X, Yuan W, Liao H, Huang X, Wang N, Tian WX, Tian H, Li L, Liu X, Plebani R. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat Biotechnol 2022. [PMID: 35788567 DOI: 10.1038/s41587-022-01381-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Miranda MNS, Pingarilho M, Pimentel V, Torneri A, Seabra SG, Libin PJK, Abecasis AB. A Tale of Three Recent Pandemics: Influenza, HIV and SARS-CoV-2. Front Microbiol 2022;13:889643. [PMID: 35722303 DOI: 10.3389/fmicb.2022.889643] [Reference Citation Analysis]
20 Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov 2022. [PMID: 35725925 DOI: 10.1038/s41573-022-00495-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Hernandez-Davies JE, Dollinger EP, Pone EJ, Felgner J, Liang L, Strohmeier S, Jan S, Albin TJ, Jain A, Nakajima R, Jasinskas A, Krammer F, Esser-Kahn A, Felgner PL, Nie Q, Davies DH. Magnitude and breadth of antibody cross-reactivity induced by recombinant influenza hemagglutinin trimer vaccine is enhanced by combination adjuvants. Sci Rep 2022;12:9198. [PMID: 35654904 DOI: 10.1038/s41598-022-12727-y] [Reference Citation Analysis]
22 Huang K, Ying T, Wu Y. Single-Domain Antibodies as Therapeutics for Respiratory RNA Virus Infections. Viruses 2022;14:1162. [PMID: 35746634 DOI: 10.3390/v14061162] [Reference Citation Analysis]
23 Batty CJ, Gallovic MD, Williams J, Ross TM, Bachelder EM, Ainslie KM. Multiplexed Electrospray Enables High Throughput Production of cGAMP Microparticles to Serve as an Adjuvant for a Broadly Acting Influenza Vaccine. Int J Pharm 2022;:121839. [PMID: 35623484 DOI: 10.1016/j.ijpharm.2022.121839] [Reference Citation Analysis]
24 Domazet-lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes 2022;13:719. [DOI: 10.3390/genes13050719] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
25 Barman S, Soni D, Brook B, Nanishi E, Dowling DJ. Precision Vaccine Development: Cues From Natural Immunity. Front Immunol 2021;12:662218. [PMID: 35222350 DOI: 10.3389/fimmu.2021.662218] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
26 Teplensky MH, Distler ME, Kusmierz CD, Evangelopoulos M, Gula H, Elli D, Tomatsidou A, Nicolaescu V, Gelarden I, Yeldandi A, Batlle D, Missiakas D, Mirkin CA. Spherical nucleic acids as an infectious disease vaccine platform. Proc Natl Acad Sci U S A 2022;119:e2119093119. [PMID: 35312341 DOI: 10.1073/pnas.2119093119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Mintaev RR, Glazkova DV, Orlova OV, Bogoslovskaya EV, Shipulin GA. Development of a Universal Epitope-Based Influenza Vaccine and Evaluation of Its Effectiveness in Mice. Vaccines 2022;10:534. [DOI: 10.3390/vaccines10040534] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Allen JD, Ross TM. Bivalent H1 and H3 COBRA Recombinant Hemagglutinin Vaccines Elicit Seroprotective Antibodies against H1N1 and H3N2 Influenza Viruses from 2009 to 2019. J Virol 2022;:e0165221. [PMID: 35289635 DOI: 10.1128/jvi.01652-21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Biavasco R, De Giovanni M. Relative positioning of B and T cell epitopes drives immunodominance.. [DOI: 10.1101/2022.02.17.480954] [Reference Citation Analysis]
30 Yang J, Tseng J, Yu G, Luo Y, Huang CF, Hong Y, Chuang T. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022;14:423. [DOI: 10.3390/pharmaceutics14020423] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Milder FJ, Jongeneelen M, Ritschel T, Bouchier P, Bisschop IJM, de Man M, Veldman D, Le L, Kaufmann B, Bakkers MJG, Juraszek J, Brandenburg B, Langedijk JPM. Universal stabilization of the influenza hemagglutinin by structure-based redesign of the pH switch regions. Proc Natl Acad Sci USA 2022;119:e2115379119. [DOI: 10.1073/pnas.2115379119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Houser KV, Chen GL, Carter C, Crank MC, Nguyen TA, Burgos Florez MC, Berkowitz NM, Mendoza F, Hendel CS, Gordon IJ, Coates EE, Vazquez S, Stein J, Case CL, Lawlor H, Carlton K, Gaudinski MR, Strom L, Hofstetter AR, Liang CJ, Narpala S, Hatcher C, Gillespie RA, Creanga A, Kanekiyo M, Raab JE, Andrews SF, Zhang Y, Yang ES, Wang L, Leung K, Kong WP, Freyn AW, Nachbagauer R, Palese P, Bailer RT, McDermott AB, Koup RA, Gall JG, Arnold F, Mascola JR, Graham BS, Ledgerwood JE; VRC 316 Study Team. Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat Med 2022. [PMID: 35115706 DOI: 10.1038/s41591-021-01660-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
33 Nakamura T, Isoda N, Sakoda Y, Harashima H. Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. J Control Release 2022:S0168-3659(22)00068-2. [PMID: 35122872 DOI: 10.1016/j.jconrel.2022.01.046] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
34 Antanasijevic A, Schulze AJ, Reddy VS, Ward AB. High-resolution structural analysis of enterovirus-reactive polyclonal antibodies in complex with whole virions.. [DOI: 10.1101/2022.01.31.478566] [Reference Citation Analysis]
35 Dong C, Wang Y, Zhu W, Ma Y, Kim J, Wei L, Gonzalez GX, Wang BZ. Polycationic HA/CpG Nanoparticles Induce Cross-Protective Influenza Immunity in Mice. ACS Appl Mater Interfaces 2022. [PMID: 35084819 DOI: 10.1021/acsami.1c19192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Huda MN, Nurunnabi M. Potential Application of Exosomes in Vaccine Development and Delivery. Pharm Res 2022. [PMID: 35028802 DOI: 10.1007/s11095-021-03143-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Kang M, Zanin M, Wong S. Subtype H3N2 Influenza A Viruses: An Unmet Challenge in the Western Pacific. Vaccines 2022;10:112. [DOI: 10.3390/vaccines10010112] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
38 Thomas S, Abraham A, Callaghan PJ, Rappuoli R. Challenges for Vaccinologists in the First Half of the Twenty-First Century. Methods Mol Biol 2022;2410:3-25. [PMID: 34914040 DOI: 10.1007/978-1-0716-1884-4_1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Nelson SA, Sant AJ. Potentiating Lung Mucosal Immunity Through Intranasal Vaccination. Front Immunol 2021;12:808527. [PMID: 34970279 DOI: 10.3389/fimmu.2021.808527] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
40 Khalaj-hedayati A, Chua CLL, Smooker P, Lee KW. Universal influenza vaccine technologies and recombinant virosome production. Methods in Microbiology 2022. [DOI: 10.1016/bs.mim.2022.04.001] [Reference Citation Analysis]
41 Weinberger B. Vaccines and Vaccination Strategies for Older Adults. Healthy Ageing and Longevity 2022. [DOI: 10.1007/978-3-030-87532-9_7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Terrier O, Si-Tahar M, Ducatez M, Chevalier C, Pizzorno A, Le Goffic R, Crépin T, Simon G, Naffakh N. Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathog 2021;17:e1010106. [PMID: 34969061 DOI: 10.1371/journal.ppat.1010106] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
43 Brindha Devi A, Sarala R. Efficacy of the commercial plant products acting against influenza-a review. Futur J Pharm Sci 2021;7:238. [PMID: 34926706 DOI: 10.1186/s43094-021-00385-2] [Reference Citation Analysis]
44 Tang W, Zhang Y, Zhu G. Pulmonary delivery of mucosal nanovaccines. Nanoscale 2021. [PMID: 34918733 DOI: 10.1039/d1nr06512b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Dong C, Wang B. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. Advanced NanoBiomed Research 2022;2:2100122. [DOI: 10.1002/anbr.202100122] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Patel MM, York IA, Monto AS, Thompson MG, Fry AM. Immune-mediated attenuation of influenza illness after infection: opportunities and challenges. The Lancet Microbe 2021;2:e715-25. [DOI: 10.1016/s2666-5247(21)00180-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
47 Machado BAS, Hodel KVS, Fonseca LMDS, Mascarenhas LAB, Andrade LPCDS, Rocha VPC, Soares MBP, Berglund P, Duthie MS, Reed SG, Badaró R. The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccines (Basel) 2021;9:1345. [PMID: 34835276 DOI: 10.3390/vaccines9111345] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
48 Li M, Guo P, Chen C, Feng H, Zhang W, Gu C, Wen G, Rao VB, Tao P. Bacteriophage T4 Vaccine Platform for Next-Generation Influenza Vaccine Development. Front Immunol 2021;12:745625. [PMID: 34712234 DOI: 10.3389/fimmu.2021.745625] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
49 Thornlow DN, Macintyre AN, Oguin TH, Karlsson AB, Stover EL, Lynch HE, Sempowski GD, Schmidt AG. Altering the Immunogenicity of Hemagglutinin Immunogens by Hyperglycosylation and Disulfide Stabilization. Front Immunol 2021;12:737973. [PMID: 34691043 DOI: 10.3389/fimmu.2021.737973] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
50 Shibuya M, Tamiya S, Kawai A, Hirai T, Cragg MS, Yoshioka Y. Synergistic effect of non-neutralizing antibodies and interferon-γ for cross-protection against influenza. iScience 2021;24:103131. [PMID: 34622175 DOI: 10.1016/j.isci.2021.103131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
51 Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021;10:e1345. [PMID: 34667600 DOI: 10.1002/cti2.1345] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
52 Ye L, Schnepf D, Ohnemus A, Ong LC, Gad HH, Hartmann R, Lycke N, Staeheli P. Interferon-λ Improves the Efficacy of Intranasally or Rectally Administered Influenza Subunit Vaccines by a Thymic Stromal Lymphopoietin-Dependent Mechanism. Front Immunol 2021;12:749325. [PMID: 34659250 DOI: 10.3389/fimmu.2021.749325] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Weinberger B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immun Ageing 2021;18:38. [PMID: 34627326 DOI: 10.1186/s12979-021-00249-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
54 Becker T, Elbahesh H, Reperant LA, Rimmelzwaan GF, Osterhaus ADME. Influenza Vaccines: Successes and Continuing Challenges. J Infect Dis 2021;224:S405-19. [PMID: 34590139 DOI: 10.1093/infdis/jiab269] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
55 Lee S, Ryu JH. Influenza Viruses: Innate Immunity and mRNA Vaccines. Front Immunol 2021;12:710647. [PMID: 34531860 DOI: 10.3389/fimmu.2021.710647] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
56 Zhang J, Xiao T, Cai Y, Chen B. Structure of SARS-CoV-2 spike protein. Curr Opin Virol 2021;50:173-82. [PMID: 34534731 DOI: 10.1016/j.coviro.2021.08.010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 37] [Article Influence: 31.0] [Reference Citation Analysis]
57 Bok K, Sitar S, Graham BS, Mascola JR. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity 2021;54:1636-51. [PMID: 34348117 DOI: 10.1016/j.immuni.2021.07.017] [Cited by in Crossref: 66] [Cited by in F6Publishing: 34] [Article Influence: 66.0] [Reference Citation Analysis]
58 Schön K, Lepenies B, Goyette-Desjardins G. Impact of Protein Glycosylation on the Design of Viral Vaccines. Adv Biochem Eng Biotechnol 2021;175:319-54. [PMID: 32935143 DOI: 10.1007/10_2020_132] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
59 Nelson SA, Dileepan T, Rasley A, Jenkins MK, Fischer NO, Sant AJ. Intranasal Nanoparticle Vaccination Elicits a Persistent, Polyfunctional CD4 T Cell Response in the Murine Lung Specific for a Highly Conserved Influenza Virus Antigen That Is Sufficient To Mediate Protection from Influenza Virus Challenge. J Virol 2021;95:e0084121. [PMID: 34076479 DOI: 10.1128/JVI.00841-21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
60 Narkhede YB, Gonzalez KJ, Strauch EM. Targeting Viral Surface Proteins through Structure-Based Design. Viruses 2021;13:1320. [PMID: 34372526 DOI: 10.3390/v13071320] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
61 Monschein T, Zrzavy T, Löbermann M, Winkelmann A, Berger T, Rommer P, Hartung HP, Zettl UK. [The corona pandemic and multiple sclerosis: vaccinations and their implications for patients-Part 2: vaccine technologies]. Nervenarzt 2021. [PMID: 34232358 DOI: 10.1007/s00115-021-01154-5] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Mezhenskaya D, Isakova-Sivak I, Matyushenko V, Donina S, Rekstin A, Sivak K, Yakovlev K, Katelnikova A, Kryshen K, Makarov V, Rudenko L. Universal Live-Attenuated Influenza Vaccine Candidates Expressing Multiple M2e Epitopes Protect Ferrets against a High-Dose Heterologous Virus Challenge. Viruses 2021;13:1280. [PMID: 34209093 DOI: 10.3390/v13071280] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
63 Liu X, Luo W, Zhang B, Lee YG, Shahriar I, Srinivasarao M, Low PS. Design of Neuraminidase-Targeted Imaging and Therapeutic Agents for the Diagnosis and Treatment of Influenza Virus Infections. Bioconjug Chem 2021. [PMID: 34161726 DOI: 10.1021/acs.bioconjchem.1c00255] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Röbl-Mathieu M, Kunstein A, Liese J, Mertens T, Wojcinski M. Vaccination in Pregnancy. Dtsch Arztebl Int 2021;118:262-8. [PMID: 34114547 DOI: 10.3238/arztebl.m2021.0020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
65 Li M, Guo P, Chen C, Feng H, Zhang W, Gu C, Wen G, Rao VB, Tao P. Bacteriophage T4 Vaccine Platform for Next-generation Influenza Vaccine Development.. [DOI: 10.1101/2021.06.14.448336] [Reference Citation Analysis]
66 Devi AB, Sarala R. Substantial effect of phytochemical constituents against the pandemic disease influenza-a review. Futur J Pharm Sci 2021;7:120. [PMID: 34150912 DOI: 10.1186/s43094-021-00269-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
67 B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021;118:2845-69. [PMID: 33913510 DOI: 10.1002/bit.27803] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
68 Kim KH, Lee YT, Park Y, Ko EJ, Jung YJ, Kim YJ, Jo EK, Kang SM. BCG Cell Wall Skeleton As a Vaccine Adjuvant Protects Both Infant and Old-Aged Mice from Influenza Virus Infection. Biomedicines 2021;9:516. [PMID: 34063125 DOI: 10.3390/biomedicines9050516] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Starostina EV, Sharabrin SV, Antropov DN, Stepanov GA, Shevelev GY, Lemza AE, Rudometov AP, Borgoyakova MB, Rudometova NB, Marchenko VY, Danilchenko NV, Chikaev AN, Bazhan SI, Ilyichev AA, Karpenko LI. Construction and Immunogenicity of Modified mRNA-Vaccine Variants Encoding Influenza Virus Antigens. Vaccines (Basel) 2021;9:452. [PMID: 34063689 DOI: 10.3390/vaccines9050452] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
70 Chaparian RR, Harding AT, Riebe K, Karlsson A, Sempowski GD, Heaton NS, Heaton BE. Influenza viral particles harboring the SARS-CoV-2 spike RBD as a combination respiratory disease vaccine.. [DOI: 10.1101/2021.04.30.441968] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Shibuya M, Tamiya S, Kawai A, Yoshioka Y. Nasal-subcutaneous prime-boost regimen for inactivated whole-virus influenza vaccine efficiently protects mice against both upper and lower respiratory tract infections. Biochem Biophys Res Commun 2021;554:166-72. [PMID: 33798943 DOI: 10.1016/j.bbrc.2021.03.099] [Reference Citation Analysis]
72 Boyoglu-Barnum S, Ellis D, Gillespie RA, Hutchinson GB, Park YJ, Moin SM, Acton OJ, Ravichandran R, Murphy M, Pettie D, Matheson N, Carter L, Creanga A, Watson MJ, Kephart S, Ataca S, Vaile JR, Ueda G, Crank MC, Stewart L, Lee KK, Guttman M, Baker D, Mascola JR, Veesler D, Graham BS, King NP, Kanekiyo M. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 2021;592:623-8. [PMID: 33762730 DOI: 10.1038/s41586-021-03365-x] [Cited by in Crossref: 68] [Cited by in F6Publishing: 75] [Article Influence: 68.0] [Reference Citation Analysis]
73 Darricarrère N, Qiu Y, Kanekiyo M, Creanga A, Gillespie RA, Moin SM, Saleh J, Sancho J, Chou TH, Zhou Y, Zhang R, Dai S, Moody A, Saunders KO, Crank MC, Mascola JR, Graham BS, Wei CJ, Nabel GJ. Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Sci Transl Med 2021;13:eabe5449. [PMID: 33658355 DOI: 10.1126/scitranslmed.abe5449] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 26.0] [Reference Citation Analysis]
74 Tung Yep A, Takeuchi Y, Engelhardt OG, Hufton SE. Broad Reactivity Single Domain Antibodies against Influenza Virus and Their Applications to Vaccine Potency Testing and Immunotherapy. Biomolecules 2021;11:407. [PMID: 33802072 DOI: 10.3390/biom11030407] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
75 Luo Z, Girton AW, Heaton BE, Heaton NS. Engineered influenza virions reveal the contributions of non-hemagglutinin structural proteins to vaccine mediated protection. J Virol 2021:JVI. [PMID: 33658342 DOI: 10.1128/JVI.02021-20] [Reference Citation Analysis]
76 Allen JD, Ross TM. Next generation methodology for updating HA vaccines against emerging human seasonal influenza A(H3N2) viruses. Sci Rep 2021;11:4554. [PMID: 33654128 DOI: 10.1038/s41598-020-79590-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
77 Salvesen HA, Whitelaw CBA. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manag 2021;7:23. [PMID: 33648602 DOI: 10.1186/s40813-021-00196-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
78 Sangesland M, Lingwood D. Antibody Focusing to Conserved Sites of Vulnerability: The Immunological Pathways for 'Universal' Influenza Vaccines. Vaccines (Basel) 2021;9:125. [PMID: 33562627 DOI: 10.3390/vaccines9020125] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
79 Schmidt A, Lapuente D. T Cell Immunity against Influenza: The Long Way from Animal Models Towards a Real-Life Universal Flu Vaccine. Viruses 2021;13:199. [PMID: 33525620 DOI: 10.3390/v13020199] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
80 Démoulins T, Ruggli N, Gerber M, Thomann-Harwood LJ, Ebensen T, Schulze K, Guzmán CA, McCullough KC. Self-Amplifying Pestivirus Replicon RNA Encoding Influenza Virus Nucleoprotein and Hemagglutinin Promote Humoral and Cellular Immune Responses in Pigs. Front Immunol 2020;11:622385. [PMID: 33584723 DOI: 10.3389/fimmu.2020.622385] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
81 Campbell AP, Ogokeh C, Weinberg GA, Boom JA, Englund JA, Williams JV, Halasa NB, Selvarangan R, Staat MA, Klein EJ, McNeal M, Michaels MG, Sahni LC, Stewart LS, Szilagyi PG, Harrison CJ, Lively JY, Rha B, Patel M. Effect of Vaccination on Preventing Influenza-Associated Hospitalizations Among Children During a Severe Season Associated with B/Victoria Viruses, 2019-2020. Clin Infect Dis 2021:ciab060. [PMID: 33502489 DOI: 10.1093/cid/ciab060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
82 Patel MM, Uyeki TM. Influenza Vaccine for Patients With High-risk Cardiovascular Disease. JAMA 2021;325:33-5. [PMID: 33275140 DOI: 10.1001/jama.2020.23948] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
83 Zottig X, Al-Halifa S, Côté-Cyr M, Calzas C, Le Goffic R, Chevalier C, Archambault D, Bourgault S. Self-assembled peptide nanorod vaccine confers protection against influenza A virus. Biomaterials 2021;269:120672. [PMID: 33476893 DOI: 10.1016/j.biomaterials.2021.120672] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
84 Lo CW, Pi CC, Chen YT, Chen HW. Vigna radiata (L.) R. Wilczek Extract Inhibits Influenza A Virus by Targeting Viral Attachment, Penetration, Assembly, and Release. Front Pharmacol 2020;11:584973. [PMID: 33324216 DOI: 10.3389/fphar.2020.584973] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
85 Lindahl G. Subdominance in Antibody Responses: Implications for Vaccine Development. Microbiol Mol Biol Rev 2020;85:e00078-20. [PMID: 33239435 DOI: 10.1128/MMBR.00078-20] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
86 Han A, Czajkowski L, Rosas LA, Cervantes-Medina A, Xiao Y, Gouzoulis M, Lumbard K, Hunsberger S, Reed S, Athota R, Baus HA, Lwin A, Sadoff J, Taubenberger JK, Memoli MJ. Safety and Efficacy of CR6261 in an Influenza A H1N1 Healthy Human Challenge Model. Clin Infect Dis 2020:ciaa1725. [PMID: 33211860 DOI: 10.1093/cid/ciaa1725] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
87 Rockman S, Laurie KL, Parkes S, Wheatley A, Barr IG. New Technologies for Influenza Vaccines. Microorganisms 2020;8:E1745. [PMID: 33172191 DOI: 10.3390/microorganisms8111745] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
88 Toy R, Keenum MC, Pradhan P, Phang K, Chen P, Chukwu C, Nguyen LAH, Liu J, Jain S, Kozlowski G, Hosten J, Suthar MS, Roy K. TLR7 and RIG-I dual-adjuvant loaded nanoparticles drive broadened and synergistic responses in dendritic cells in vitro and generate unique cellular immune responses in influenza vaccination. J Control Release 2021;330:866-77. [PMID: 33160004 DOI: 10.1016/j.jconrel.2020.10.060] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
89 Cianci R, Newton EE, Pagliari D. Efforts to Improve the Seasonal Influenza Vaccine. Vaccines 2020;8:645. [DOI: 10.3390/vaccines8040645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
90 Behrouzi B, Araujo Campoverde MV, Liang K, Talbot HK, Bogoch II, McGeer A, Fröbert O, Loeb M, Vardeny O, Solomon SD, Udell JA. Influenza Vaccination to Reduce Cardiovascular Morbidity and Mortality in Patients With COVID-19: JACC State-of-the-Art Review. J Am Coll Cardiol 2020;76:1777-94. [PMID: 33032740 DOI: 10.1016/j.jacc.2020.08.028] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 18.0] [Reference Citation Analysis]
91 Bouwman W, Verhaegh W, Holtzer L, van de Stolpe A. Measurement of Cellular Immune Response to Viral Infection and Vaccination. Front Immunol 2020;11:575074. [PMID: 33193365 DOI: 10.3389/fimmu.2020.575074] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
92 Heiss K, Heidepriem J, Fischer N, Weber LK, Dahlke C, Jaenisch T, Loeffler FF. Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. J Proteome Res 2020;19:4339-54. [PMID: 32892628 DOI: 10.1021/acs.jproteome.0c00484] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
93 Lofano G, Mallett CP, Bertholet S, O'Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020;5:88. [PMID: 33024579 DOI: 10.1038/s41541-020-00238-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
94 Dong J, Xiao M, Ma Q, Zhang G, Zhao W, Kong M, Zhang Y, Qiu L, Hu W. Design and synthesis of pinane oxime derivatives as novel anti-influenza agents. Bioorg Chem 2020;102:104106. [PMID: 32739481 DOI: 10.1016/j.bioorg.2020.104106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
95 Duffy D. Understanding immune variation for improved translational medicine. Curr Opin Immunol 2020;65:83-8. [PMID: 32745736 DOI: 10.1016/j.coi.2020.06.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
96 Zheng A, Sun W, Xiong X, Freyn AW, Peukes J, Strohmeier S, Nachbagauer R, Briggs JAG, Krammer F, Palese P. Enhancing Neuraminidase Immunogenicity of Influenza A Viruses by Rewiring RNA Packaging Signals. J Virol 2020;94:e00742-20. [PMID: 32493826 DOI: 10.1128/JVI.00742-20] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
97 Biswas M, Yamazaki T, Chiba J, Akashi-Takamura S. Broadly Neutralizing Antibodies for Influenza: Passive Immunotherapy and Intranasal Vaccination. Vaccines (Basel) 2020;8:E424. [PMID: 32751206 DOI: 10.3390/vaccines8030424] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
98 Toy R, Keenum MC, Pradhan P, Phang K, Chen P, Chukwu C, Nguyen A, Liu J, Jain S, Kozlowski G, Hosten J, Suthar MS, Roy K. TLR7 and RIG-I dual-adjuvant loaded nanoparticles drive broadened and synergistic responses in dendritic cells in vitro and generate unique cellular immune responses in influenza vaccination.. [DOI: 10.1101/2020.07.17.207423] [Reference Citation Analysis]
99 Geppe NA, Gorelov AV, Shamsheva OV, Sitnikov IG, Sitnikova EP, Steshin VY, Melnikova IM, Chernaya NL, Votyakova OI, Ehgamova IN, Lukashova LV, Yakovleva LV, Kovalenko TV, Velikoretskaya MD, Kudryashova MA. Prevention of acute respiratory viral infections and influenza in children during the peaks of seasonal morbidity: the results of the international double-blind placebo-controlled randomized clinical trial. Ross vestn perinatol pediatr 2020;65:109-120. [DOI: 10.21508/1027-4065-2020-65-3-109-120] [Reference Citation Analysis]
100 Kojima M, Mawatari K, Emoto T, Nishisaka-Nonaka R, Bui TKN, Shimohata T, Uebanso T, Akutagawa M, Kinouchi Y, Wada T, Okamoto M, Ito H, Tojo K, Daidoji T, Nakaya T, Takahashi A. Irradiation by a Combination of Different Peak-Wavelength Ultraviolet-Light Emitting Diodes Enhances the Inactivation of Influenza A Viruses. Microorganisms 2020;8:E1014. [PMID: 32650492 DOI: 10.3390/microorganisms8071014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
101 Irvine DJ, Aung A, Silva M. Controlling timing and location in vaccines. Adv Drug Deliv Rev 2020;158:91-115. [PMID: 32598970 DOI: 10.1016/j.addr.2020.06.019] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 33.5] [Reference Citation Analysis]
102 Sato-Kaneko F, Yao S, Lao FS, Shpigelman J, Messer K, Pu M, Shukla NM, Cottam HB, Chan M, Chu PJ, Burkhart D, Schoener R, Matsutani T, Carson DA, Corr M, Hayashi T. A Novel Synthetic Dual Agonistic Liposomal TLR4/7 Adjuvant Promotes Broad Immune Responses in an Influenza Vaccine With Minimal Reactogenicity. Front Immunol 2020;11:1207. [PMID: 32636840 DOI: 10.3389/fimmu.2020.01207] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
103 Bouwman W, Verhaegh W, Holtzer L, van de Stolpe A. Quantitative measurement of activity of JAK-STAT signaling pathways in blood samples and immune cells to predict innate and adaptive cellular immune response to viral infection and accelerate vaccine development.. [DOI: 10.1101/2020.05.13.092759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
104 Kuraoka M, Adachi Y, Takahashi Y. Hide and seek: interplay between influenza viruses and B cells. Int Immunol 2020;32:605-11. [PMID: 32304215 DOI: 10.1093/intimm/dxaa028] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]