BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kakkar A, Traverso G, Farokhzad OC, Weissleder R, Langer R. Evolution of macromolecular complexity in drug delivery systems. Nat Rev Chem 2017;1:63. [PMID: 31286060 DOI: 10.1038/s41570-017-0063] [Cited by in Crossref: 182] [Cited by in F6Publishing: 190] [Article Influence: 36.4] [Reference Citation Analysis]
Number Citing Articles
1 Mao J, Xu Z, Lin W. Nanoscale metal–organic frameworks for photodynamic therapy and radiotherapy. Current Opinion in Chemical Engineering 2022;38:100871. [DOI: 10.1016/j.coche.2022.100871] [Reference Citation Analysis]
2 Malekmohammadi S, Mohammed R, Samadian H, Zarebkohan A, García-fernández A, Kokil G, Sharifi F, Esmaeili J, Bhia M, Razavi M, Bodaghi M, Kumeria T, Martínez-máñez R. Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Materials Today Chemistry 2022;26:101144. [DOI: 10.1016/j.mtchem.2022.101144] [Reference Citation Analysis]
3 Deridder L, Rubinson DA, Langer R, Traverso G. The past, present, and future of chemotherapy with a focus on individualization of drug dosing. Journal of Controlled Release 2022;352:840-860. [DOI: 10.1016/j.jconrel.2022.10.043] [Reference Citation Analysis]
4 Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. Adv Sci (Weinh) 2022;:e2203808. [PMID: 36253094 DOI: 10.1002/advs.202203808] [Reference Citation Analysis]
5 Celentano W, Pizzocri M, Moncalvo F, Pessina F, Matteoli M, Cellesi F, Passoni L. Functional Poly(ε-caprolactone)/Poly(ethylene glycol) Copolymers with Complex Topologies for Doxorubicin Delivery to a Proteinase-Rich Tumor Environment. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00897] [Reference Citation Analysis]
6 Saini P, Kaur G, Singh J, Singh H. Applications of Biodegradable Polymers and Plastics. Biodegradable Materials and Their Applications 2022. [DOI: 10.1002/9781119905301.ch24] [Reference Citation Analysis]
7 Sun S, Lv A, Li S, Zhao C, Chen Q, Li Z, Wang Y, Wu A, Lin H. Biomolecule-based Stimuli-responsive Nanohybrids for Tumor-specific and Cascade-enhanced Synergistic Therapy. Acta Biomater 2022:S1742-7061(22)00515-3. [PMID: 36028197 DOI: 10.1016/j.actbio.2022.08.038] [Reference Citation Analysis]
8 Farhat W, Yeung V, Ross A, Kahale F, Boychev N, Kuang L, Chen L, Ciolino JB. Advances in biomaterials for the treatment of retinoblastoma. Biomater Sci 2022. [PMID: 35959730 DOI: 10.1039/d2bm01005d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Gil CJ, Li L, Hwang B, Cadena M, Theus AS, Finamore TA, Bauser-Heaton H, Mahmoudi M, Roeder RK, Serpooshan V. Tissue engineered drug delivery vehicles: Methods to monitor and regulate the release behavior. J Control Release 2022;349:143-55. [PMID: 35508223 DOI: 10.1016/j.jconrel.2022.04.044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Kryuk TV, Tyurina TG, Kudryavtseva TA. Mechanosynthesis of Sulfanilamide Matrix Forms. Pharm Chem J 2022;56:493-6. [DOI: 10.1007/s11094-022-02664-5] [Reference Citation Analysis]
11 Yang* G, Liu* Y, Zhao C. Colloidal Self‐assembly of Block Copolymers for Drug Loading and Controlled Release. Functional Materials from Colloidal Self‐Assembly 2022. [DOI: 10.1002/9783527828722.ch13] [Reference Citation Analysis]
12 Sis MJ, Ye Z, La Costa K, Webber MJ. Energy Landscapes of Supramolecular Peptide-Drug Conjugates Directed by Linker Selection and Drug Topology. ACS Nano 2022. [PMID: 35639629 DOI: 10.1021/acsnano.2c02804] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Javia A, Vanza J, Bardoliwala D, Ghosh S, Misra A, Patel M, Thakkar H. Polymer-drug conjugates: Design principles, emerging synthetic strategies and clinical overview. Int J Pharm 2022;:121863. [PMID: 35643347 DOI: 10.1016/j.ijpharm.2022.121863] [Reference Citation Analysis]
14 Müllner M. Molecular polymer bottlebrushes in nanomedicine: therapeutic and diagnostic applications. Chem Commun (Camb) 2022. [PMID: 35445672 DOI: 10.1039/d2cc01601j] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022;13:4239-69. [PMID: 35509461 DOI: 10.1039/d2sc01003h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
16 Rofeal M, Abdelmalek F, Steinbüchel A. Naturally-Sourced Antibacterial Polymeric Nanomaterials with Special Reference to Modified Polymer Variants. Int J Mol Sci 2022;23:4101. [PMID: 35456918 DOI: 10.3390/ijms23084101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 De R, Mahata MK, Kim KT. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. Adv Sci (Weinh) 2022;9:e2105373. [PMID: 35112798 DOI: 10.1002/advs.202105373] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
18 Du E, Tang Y, Zhang Q, Song Z, Tao Y, Zhang Y. Enhancing the Cellular Uptake of Macromolecules via Enzyme-Instructed Self-Assembly. Langmuir 2022. [PMID: 35360902 DOI: 10.1021/acs.langmuir.2c00101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Aktas N, Alpaslan D, Dudu TE. Polymeric Organo-Hydrogels: Novel Biomaterials for Medical, Pharmaceutical, and Drug Delivery Platforms. Front Mater 2022;9:845700. [DOI: 10.3389/fmats.2022.845700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Prossnitz AN, Pun SH. Modulating Boronic Ester Stability in Block Copolymer Micelles via the Neighbor Effect of Copolymerized Tertiary Amines for Controlled Release of Polyphenolic Drugs. ACS Macro Lett 2022;11:276-83. [PMID: 35575376 DOI: 10.1021/acsmacrolett.1c00751] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers; chemical conjugates and physical complexes. Pharmacol Res 2022;:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022;10:486. [DOI: 10.3390/biomedicines10020486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Wang Q, Wang C, Li S, Xiong Y, Wang H, Li Z, Wan J, Yang X, Li Z. Influence of Linkers within Stimuli-Responsive Prodrugs on Cancer Therapy: A Case of Five Doxorubicin Dimer-Based Nanoparticles. Chem Mater . [DOI: 10.1021/acs.chemmater.1c03346] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
24 Baghbanbashi M, Kakkar A. Polymersomes: Soft Nanoparticles from Miktoarm Stars for Applications in Drug Delivery. Mol Pharm 2022. [PMID: 35157463 DOI: 10.1021/acs.molpharmaceut.1c00928] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Khodadadi Yazdi M, Jabbour K, Sajadi SM, Esmaeili A. Drug delivery systems based on renewable polymers: A conceptual short review. Polymers from Renewable Resources 2022;13:44-54. [DOI: 10.1177/20412479221107469] [Reference Citation Analysis]
26 Mirza-aghazadeh-attari M, Mihanfar A, Yousefi B, Majidinia M. Nanotechnology-based advances in the efficient delivery of melatonin. Cancer Cell Int 2022;22. [DOI: 10.1186/s12935-022-02472-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Kalinova R, Dimitrov I. Triblock Copolymer Micelles with Tunable Surface Charge as Drug Nanocarriers: Synthesis and Physico-Chemical Characterization. Nanomaterials (Basel) 2022;12:434. [PMID: 35159779 DOI: 10.3390/nano12030434] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Yan K, Feng Y, Gao K, Shi X, Zhao X. Fabrication of hyaluronic acid-based micelles with glutathione-responsiveness for targeted anticancer drug delivery. J Colloid Interface Sci 2022;606:1586-96. [PMID: 34500160 DOI: 10.1016/j.jcis.2021.08.129] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
29 Borova S, Schlutt C, Nickel J, Luxenhofer R. A Transient Initiator for Polypeptoids Postpolymerization α ‐Functionalization via Activation of a Thioester Group. Macro Chemistry & Physics. [DOI: 10.1002/macp.202100331] [Reference Citation Analysis]
30 Bhattacharjee S, Mandal DP, Adhikary A. Nanotechnology: Scopes and various aspects of drug delivery. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00001-6] [Reference Citation Analysis]
31 Gopinath V, Kamath SM, Priyadarshini S, Chik Z, Alarfaj AA, Hirad AH. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed Pharmacother 2021;146:112492. [PMID: 34906768 DOI: 10.1016/j.biopha.2021.112492] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
32 Mohammadinejad R, Madamsetty VS, Kumar A, Varzandeh M, Dehshahri A, Zarrabi A, Sharififar F, Mohammadi M, Fahimipour A, Ramakrishna S. Electrospun nanocarriers for delivering natural products for cancer therapy. Trends in Food Science & Technology 2021;118:887-904. [DOI: 10.1016/j.tifs.2021.10.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
33 Wang B, Chen K, Zhang Q, Gu L, Luo Q, Li Z, Gong Q, Zhang H, Gu Z, Luo K. ROS-responsive amphiphilic block copolymer-drug conjugate: Design, synthesis and potential as an efficient drug delivery system via a positive feedback strategy. Chemical Engineering Journal 2021;425:131453. [DOI: 10.1016/j.cej.2021.131453] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
34 Ragelle H, Rahimian S, Guzzi EA, Westenskow PD, Tibbitt MW, Schwach G, Langer R. Additive manufacturing in drug delivery: Innovative drug product design and opportunities for industrial application. Adv Drug Deliv Rev 2021;178:113990. [PMID: 34600963 DOI: 10.1016/j.addr.2021.113990] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
35 Cao S, Shao J, Abdelmohsen LKEA, Hest JCM. Amphiphilic AIEgen‐polymer aggregates: Design, self‐assembly and biomedical applications. Aggregate 2022;3. [DOI: 10.1002/agt2.128] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
36 Kaup R, Ten Hove JB, Bunschoten A, van Leeuwen FWB, Velders AH. Multicompartment dendrimicelles with binary, ternary and quaternary core composition. Nanoscale 2021;13:15422-30. [PMID: 34505610 DOI: 10.1039/d1nr04556c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Van de Steen A, Khalife R, Colant N, Mustafa Khan H, Deveikis M, Charalambous S, Robinson CM, Dabas R, Esteban Serna S, Catana DA, Pildish K, Kalinovskiy V, Gustafsson K, Frank S. Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system. Synth Syst Biotechnol 2021;6:231-41. [PMID: 34541345 DOI: 10.1016/j.synbio.2021.09.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
38 Nazila Samimi Tehrani, Masoumi M, Chekin F, Baei MS. Hybrid Interface Based on Carboxymethyl Cellulose/N-Doped Porous Reduced Graphene Oxide for On-Demand Electrochemical Release of Imatinib. Russ J Electrochem 2021;57:885-91. [DOI: 10.1134/s1023193521080139] [Reference Citation Analysis]
39 Zu M, Ma Y, Cannup B, Xie D, Jung Y, Zhang J, Yang C, Gao F, Merlin D, Xiao B. Oral delivery of natural active small molecules by polymeric nanoparticles for the treatment of inflammatory bowel diseases. Adv Drug Deliv Rev 2021;176:113887. [PMID: 34314785 DOI: 10.1016/j.addr.2021.113887] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 25.0] [Reference Citation Analysis]
40 Beck-broichsitter M. Solvent impact on polymer nanoparticles prepared nanoprecipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;625:126928. [DOI: 10.1016/j.colsurfa.2021.126928] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
41 Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer 2021;230:124024. [DOI: 10.1016/j.polymer.2021.124024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
42 Voronin DV, Abalymov AA, Svenskaya YI, Lomova MV. Key Points in Remote-Controlled Drug Delivery: From the Carrier Design to Clinical Trials. Int J Mol Sci 2021;22:9149. [PMID: 34502059 DOI: 10.3390/ijms22179149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
43 Qiu Y, Bai J, Feng Y, Shi X, Zhao X. Use of pH-Active Catechol-Bearing Polymeric Nanogels with Glutathione-Responsive Dissociation to Codeliver Bortezomib and Doxorubicin for the Synergistic Therapy of Cancer. ACS Appl Mater Interfaces 2021;13:36926-37. [PMID: 34319074 DOI: 10.1021/acsami.1c10328] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
44 Ritt N, Ayaou A, Zentel R. RAFT Synthesis of Reactive Multifunctional Triblock‐Copolymers for Polyplex Formation. Macromol Chem Phys 2021;222:2100122. [DOI: 10.1002/macp.202100122] [Reference Citation Analysis]
45 Ten Hagen TLM, Dreher MR, Zalba S, Seynhaeve ALB, Amin M, Li L, Haemmerich D. Drug transport kinetics of intravascular triggered drug delivery systems. Commun Biol 2021;4:920. [PMID: 34321602 DOI: 10.1038/s42003-021-02428-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
46 Martinez-Erro S, Navas F, Romaní-Cubells E, Fernández-García P, Morales V, Sanz R, García-Muñoz RA. Kidney-Protector Lipidic Cilastatin Derivatives as Structure-Directing Agents for the Synthesis of Mesoporous Silica Nanoparticles for Drug Delivery. Int J Mol Sci 2021;22:7968. [PMID: 34360733 DOI: 10.3390/ijms22157968] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Miao Y, Niu X, Wu A, Wu M, Jin S, Zhang P, Zhao W, Zhao X. Metallic Oxide-Induced Self-Assembly of Block Copolymers to Form Polymeric Hybrid Micelles with Tunable Stability for Tumor Microenvironment-Responsive Drug Delivery. ACS Appl Mater Interfaces 2021;13:32753-62. [PMID: 34236174 DOI: 10.1021/acsami.1c07168] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021;21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
49 Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. Nat Rev Mater 2021;:1-18. [PMID: 34026278 DOI: 10.1038/s41578-021-00315-x] [Cited by in Crossref: 70] [Cited by in F6Publishing: 79] [Article Influence: 70.0] [Reference Citation Analysis]
50 Wang T, Rong F, Tang Y, Li M, Feng T, Zhou Q, Li P, Huang W. Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. Progress in Polymer Science 2021;116:101389. [DOI: 10.1016/j.progpolymsci.2021.101389] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 23.0] [Reference Citation Analysis]
51 Li C, Zhang Y, Wan Y, Wang J, Lin J, Li Z, Huang P. STING-activating drug delivery systems: Design strategies and biomedical applications. Chinese Chemical Letters 2021;32:1615-25. [DOI: 10.1016/j.cclet.2021.01.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
52 Hou X, Zhong D, Li Y, Mao H, Yang J, Zhang H, Luo K, Gong Q, Gu Z. Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting. J Nanobiotechnology 2021;19:111. [PMID: 33874945 DOI: 10.1186/s12951-021-00854-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
53 Kinoshita T, Haketa Y, Maeda H, Fukuhara G. Ground- and excited-state dynamic control of an anion receptor by hydrostatic pressure. Chem Sci 2021;12:6691-8. [PMID: 34040743 DOI: 10.1039/d1sc00664a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
54 Raza S, Matuła K, Karoń S, Paczesny J. Resistance and Adaptation of Bacteria to Non-Antibiotic Antibacterial Agents: Physical Stressors, Nanoparticles, and Bacteriophages. Antibiotics (Basel) 2021;10:435. [PMID: 33924618 DOI: 10.3390/antibiotics10040435] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
55 Shurpik DN, Makhmutova LI, Usachev KS, Islamov DR, Mostovaya OA, Nazarova AA, Kizhnyaev VN, Stoikov II. Towards Universal Stimuli-Responsive Drug Delivery Systems: Pillar[5]arenes Synthesis and Self-Assembly into Nanocontainers with Tetrazole Polymers. Nanomaterials (Basel) 2021;11:947. [PMID: 33917874 DOI: 10.3390/nano11040947] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
56 Sun Q, Wu J, Jin L, Hong L, Wang F, Mao Z, Wu M. Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. J Mater Chem B 2020;8:7253-63. [PMID: 32638824 DOI: 10.1039/d0tb01063d] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 38.0] [Reference Citation Analysis]
57 Zhao X, Bai J, Yang W. Stimuli-responsive nanocarriers for therapeutic applications in cancer. Cancer Biol Med 2021:j. [PMID: 33764711 DOI: 10.20892/j.issn.2095-3941.2020.0496] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
58 Cao Y, Yang J, Eichin D, Zhao F, Qi D, Kahari L, Jia C, Peurla M, Rosenholm JM, Zhao Z, Jalkanen S, Li J. Self‐Synthesizing Nanorods from Dynamic Combinatorial Libraries against Drug Resistant Cancer. Angew Chem 2021;133:3099-107. [DOI: 10.1002/ange.202010937] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
59 Celentano W, Ordanini S, Bruni R, Marocco L, Medaglia P, Rossi A, Buzzaccaro S, Cellesi F. Complex poly(ε-caprolactone)/poly(ethylene glycol) copolymer architectures and their effects on nanoparticle self-assembly and drug nanoencapsulation. European Polymer Journal 2021;144:110226. [DOI: 10.1016/j.eurpolymj.2020.110226] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
60 Zheng Y, Sarkar J, Niino H, Chatani S, Hsu SY, Goto A. Synthesis of core-crosslinked star polymers via organocatalyzed living radical polymerization. Polym Chem 2021;12:4043-4051. [DOI: 10.1039/d1py00663k] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Rajakumari R, Thomas S, Kalarikkal N. Biomaterials and Its Advances for Delivering Anticancer Drugs. Gels Horizons: From Science to Smart Materials 2021. [DOI: 10.1007/978-981-16-2119-2_2] [Reference Citation Analysis]
62 Palencia M, Lerma TA, Garcés V, Mora MA, Martínez JM, Palencia SL. Biodegradable polymer chemistry. Eco-friendly Functional Polymers 2021. [DOI: 10.1016/b978-0-12-821842-6.00018-x] [Reference Citation Analysis]
63 Ruchika, Dhritlahre RK, Saneja A. Nano-delivery of Bioactive Constituents from Apple Pomace. Sustainable Agriculture Reviews 56 2021. [DOI: 10.1007/978-3-030-84405-9_3] [Reference Citation Analysis]
64 Amaral M, Pereiro AB, Gaspar MM, Reis CP. Recent advances in ionic liquids and nanotechnology for drug delivery. Nanomedicine (Lond) 2021;16:63-80. [PMID: 33356551 DOI: 10.2217/nnm-2020-0340] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
65 Cao Y, Yang J, Eichin D, Zhao F, Qi D, Kahari L, Jia C, Peurla M, Rosenholm JM, Zhao Z, Jalkanen S, Li J. Self-Synthesizing Nanorods from Dynamic Combinatorial Libraries against Drug Resistant Cancer. Angew Chem Int Ed Engl 2021;60:3062-70. [PMID: 33112477 DOI: 10.1002/anie.202010937] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
66 Salehi B, Mishra AP, Nigam M, Kobarfard F, Javed Z, Rajabi S, Khan K, Ashfaq HA, Ahmad T, Pezzani R, Ramírez-Alarcón K, Martorell M, Cho WC, Ayatollahi SA, Sharifi-Rad J. Multivesicular Liposome (Depofoam) in Human Diseases. Iran J Pharm Res 2020;19:9-21. [PMID: 33224207 DOI: 10.22037/ijpr.2020.112291.13663] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
67 Pramod Kumar EK, Um W, Park JH. Recent Developments in Pathological pH-Responsive Polymeric Nanobiosensors for Cancer Theranostics. Front Bioeng Biotechnol 2020;8. [DOI: 10.3389/fbioe.2020.601586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
68 Ebrahimi KH. Nanofactories for Controlled Synthesis and Delivery of Nucleoside Analogue Therapeutics. Chembiochem 2020;21:3186-8. [PMID: 32964558 DOI: 10.1002/cbic.202000382] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
69 Lotocki V, Yazdani H, Zhang Q, Gran ER, Nyrko A, Maysinger D, Kakkar A. Miktoarm Star Polymers with Environment-Selective ROS/GSH Responsive Locations: From Modular Synthesis to Tuned Drug Release through Micellar Partial Corona Shedding and/or Core Disassembly. Macromol Biosci 2021;21:e2000305. [PMID: 33620748 DOI: 10.1002/mabi.202000305] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
70 Ritt N, Berger S, Wagner E, Zentel R. Versatile, Multifunctional Block Copolymers for the Self-Assembly of Well-Defined, Nontoxic pDNA Polyplexes. ACS Appl Polym Mater 2020;2:5469-81. [DOI: 10.1021/acsapm.0c00818] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
71 Laffleur F, Keckeis V. Advances in drug delivery systems: Work in progress still needed? International Journal of Pharmaceutics 2020;590:119912. [DOI: 10.1016/j.ijpharm.2020.119912] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
72 Rostamabadi H, Falsafi SR, Assadpour E, Jafari SM. Evaluating the structural properties of bioactive‐loaded nanocarriers with modern analytical tools. Comprehensive Reviews in Food Science and Food Safety 2020;19:3266-322. [DOI: 10.1111/1541-4337.12653] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
73 Pan Y, Hu X, Guo D. Biomedizinische Anwendungen von Calixarenen: Stand der Wissenschaft und Perspektiven. Angew Chem 2021;133:2800-28. [DOI: 10.1002/ange.201916380] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
74 Pan Y, Hu X, Guo D. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew Chem Int Ed 2021;60:2768-94. [DOI: 10.1002/anie.201916380] [Cited by in Crossref: 76] [Cited by in F6Publishing: 78] [Article Influence: 38.0] [Reference Citation Analysis]
75 Guidotti G, Soccio M, Gazzano M, Salatelli E, Lotti N, Munari A. Micro/nanoparticles fabricated with triblock PLLA-based copolymers containing PEG-like subunit for controlled drug release: Effect of chemical structure and molecular architecture on drug release profile. Polymer Degradation and Stability 2020;180:109306. [DOI: 10.1016/j.polymdegradstab.2020.109306] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Knitlova J, Doubkova M, Plencner M, Vondrasek D, Eckhardt A, Ostadal M, Musilkova J, Bacakova L, Novotny T. Minoxidil decreases collagen I deposition and tissue-like contraction in clubfoot-derived cells: a way to improve conservative treatment of relapsed clubfoot? Connect Tissue Res 2021;62:554-69. [PMID: 32951485 DOI: 10.1080/03008207.2020.1816992] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
77 Mejlsøe S, Kakkar A. Telodendrimers: Promising Architectural Polymers for Drug Delivery. Molecules 2020;25:3995. [DOI: 10.3390/molecules25173995] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
78 Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, Sun Z, Yan S, Mao Z, Wang W. A Nanomedicine Fabricated from Gold Nanoparticles-Decorated Metal-Organic Framework for Cascade Chemo/Chemodynamic Cancer Therapy. Adv Sci (Weinh) 2020;7:2001060. [PMID: 32995124 DOI: 10.1002/advs.202001060] [Cited by in Crossref: 62] [Cited by in F6Publishing: 70] [Article Influence: 31.0] [Reference Citation Analysis]
79 Lotocki V, Kakkar A. Miktoarm Star Polymers: Branched Architectures in Drug Delivery. Pharmaceutics 2020;12:827. [DOI: 10.3390/pharmaceutics12090827] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
80 Smagul S, Kim Y, Smagulova A, Raziyeva K, Nurkesh A, Saparov A. Biomaterials Loaded with Growth Factors/Cytokines and Stem Cells for Cardiac Tissue Regeneration. Int J Mol Sci 2020;21:E5952. [PMID: 32824966 DOI: 10.3390/ijms21175952] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
81 Castro KCD, Costa JM, Campos MGN. Drug-loaded polymeric nanoparticles: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2020.1798436] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
82 Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020;161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
83 Huang Y, Jazani AM, Howell EP, Reynolds LA, Oh JK, Moffitt MG. Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery. ACS Biomater Sci Eng 2020;6:5069-83. [DOI: 10.1021/acsbiomaterials.0c00896] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
84 Zhang TX, Zhang ZZ, Yue YX, Hu XY, Huang F, Shi L, Liu Y, Guo DS. A General Hypoxia-Responsive Molecular Container for Tumor-Targeted Therapy. Adv Mater 2020;32:e1908435. [PMID: 32459030 DOI: 10.1002/adma.201908435] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
85 Thomas D, Kurienthomas K, Latha M. Preparation and evaluation of alginate nanoparticles prepared by green method for drug delivery applications. International Journal of Biological Macromolecules 2020;154:888-95. [DOI: 10.1016/j.ijbiomac.2020.03.167] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
86 Ailincai D, Mititelu-Tartau L, Marin L. Citryl-imine-PEG-ylated chitosan hydrogels - Promising materials for drug delivery applications. Int J Biol Macromol 2020;162:1323-37. [PMID: 32599243 DOI: 10.1016/j.ijbiomac.2020.06.218] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
87 Goel S, Zhang G, Dogra P, Nizzero S, Cristini V, Wang Z, Hu Z, Li Z, Liu X, Shen H, Ferrari M. Sequential deconstruction of composite drug transport in metastatic breast cancer. Sci Adv 2020;6:eaba4498. [PMID: 32637609 DOI: 10.1126/sciadv.aba4498] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
88 Zhu J, Sun H, Callmann CE, Thompson MP, Battistella C, Proetto MT, Carlini AS, Gianneschi NC. Paclitaxel-terminated peptide brush polymers. Chem Commun (Camb) 2020;56:6778-81. [PMID: 32441281 DOI: 10.1039/c9cc10023g] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
89 Laffleur F, Keckeis V. Advances in drug delivery systems: Work in progress still needed? Int J Pharm X 2020;2:100050. [PMID: 32577616 DOI: 10.1016/j.ijpx.2020.100050] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
90 Miao Y, Qiu Y, Zhang M, Yan K, Zhang P, Lu S, Liu Z, Shi X, Zhao X. Aqueous Self-Assembly of Block Copolymers to Form Manganese Oxide-Based Polymeric Vesicles for Tumor Microenvironment-Activated Drug Delivery. Nanomicro Lett 2020;12:124. [PMID: 34138110 DOI: 10.1007/s40820-020-00447-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
91 Wang C, Chen S, Bao L, Liu X, Hu F, Yuan H. Size-Controlled Preparation and Behavior Study of Phospholipid-Calcium Carbonate Hybrid Nanoparticles. Int J Nanomedicine 2020;15:4049-62. [PMID: 32606663 DOI: 10.2147/IJN.S237156] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 12.5] [Reference Citation Analysis]
92 Ikai T, Mizumoto K, Ishidate R, Kitzmann WR, Ikeda R, Yokota C, Maeda K, Yashima E. Catalytic one-handed helix-induction and memory of amphiphilic poly(biphenylylacetylene)s in water. Giant 2020;2:100016. [DOI: 10.1016/j.giant.2020.100016] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
93 Sarode A, Annapragada A, Guo J, Mitragotri S. Layered self-assemblies for controlled drug delivery: A translational overview. Biomaterials 2020;242:119929. [DOI: 10.1016/j.biomaterials.2020.119929] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 13.5] [Reference Citation Analysis]
94 Ailincai D, Dorobanțu AM, Dima B, Irimiciuc ȘA, Lupașcu C, Agop M, Olguta O. Poly(vinyl alcohol boric acid)-Diclofenac Sodium Salt Drug Delivery Systems: Experimental and Theoretical Studies. J Immunol Res 2020;2020:3124304. [PMID: 32566687 DOI: 10.1155/2020/3124304] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
95 Park C, Meghani N, Loebenberg R, Cui JH, Cao QR, Lee BJ. Fatty acid chain length impacts nanonizing capacity of albumin-fatty acid nanomicelles: Enhanced physicochemical property and cellular delivery of poorly water-soluble drug. Eur J Pharm Biopharm 2020;152:257-69. [PMID: 32422167 DOI: 10.1016/j.ejpb.2020.05.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
96 Leigh T, Fernandez-trillo P. Helical polymers for biological and medical applications. Nat Rev Chem 2020;4:291-310. [DOI: 10.1038/s41570-020-0180-5] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 20.0] [Reference Citation Analysis]
97 Mu Q, Lin G, Stephen ZR, Chung S, Wang H, Patton VK, Gebhart RN, Zhang M. In vivo Serum Enabled Production of Ultrafine Nanotherapeutics for Cancer Treatment. Mater Today (Kidlington) 2020;38:10-23. [PMID: 33716549 DOI: 10.1016/j.mattod.2020.03.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
98 Lin Y, Fang Y, Yue J, Tian B. Soft-Hard Composites for Bioelectric Interfaces. Trends Chem 2020;2:519-34. [PMID: 34296076 DOI: 10.1016/j.trechm.2020.03.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
99 Jimi S, Jaguparov A, Nurkesh A, Sultankulov B, Saparov A. Sequential Delivery of Cryogel Released Growth Factors and Cytokines Accelerates Wound Healing and Improves Tissue Regeneration. Front Bioeng Biotechnol 2020;8:345. [PMID: 32426341 DOI: 10.3389/fbioe.2020.00345] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
100 Narancic T, Cerrone F, Beagan N, O'Connor KE. Recent Advances in Bioplastics: Application and Biodegradation. Polymers (Basel) 2020;12:E920. [PMID: 32326661 DOI: 10.3390/polym12040920] [Cited by in Crossref: 103] [Cited by in F6Publishing: 111] [Article Influence: 51.5] [Reference Citation Analysis]
101 Gao Y, Zhou D, Lyu J, A S, Xu Q, Newland B, Matyjaszewski K, Tai H, Wang W. Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nat Rev Chem 2020;4:194-212. [DOI: 10.1038/s41570-020-0170-7] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 23.5] [Reference Citation Analysis]
102 Fang J, Hsueh YY, Soto J, Sun W, Wang J, Gu Z, Khademhosseini A, Li S. Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano 2020;14:1296-318. [PMID: 32011856 DOI: 10.1021/acsnano.9b04837] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
103 Yazdani H, Kaul E, Bazgir A, Maysinger D, Kakkar A. Telodendrimer-Based Macromolecular Drug Design using 1,3-Dipolar Cycloaddition for Applications in Biology. Molecules 2020;25:E857. [PMID: 32075239 DOI: 10.3390/molecules25040857] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
104 Essa D, Kondiah PPD, Choonara YE, Pillay V. The Design of Poly(lactide-co-glycolide) Nanocarriers for Medical Applications. Front Bioeng Biotechnol 2020;8:48. [PMID: 32117928 DOI: 10.3389/fbioe.2020.00048] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 31.0] [Reference Citation Analysis]
105 Levi AE, Fu L, Lequieu J, Horne JD, Blankenship J, Mukherjee S, Zhang T, Fredrickson GH, Gutekunst WR, Bates CM. Efficient Synthesis of Asymmetric Miktoarm Star Polymers. Macromolecules 2020;53:702-10. [DOI: 10.1021/acs.macromol.9b02380] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
106 Wu D, Wu J, Tao P, Yao Y, Wang J, Liu D, Chen F, Xu B, Li W, Zhang A. Thermoresponsive cationic dendronized copolymers and their corresponding nanogels as smart gene carriers. Polym Chem 2020;11:4105-14. [DOI: 10.1039/d0py00631a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
107 Qiu Y, Zhu Z, Miao Y, Zhang P, Jia X, Liu Z, Zhao X. Polymerization of dopamine accompanying its coupling to induce self-assembly of block copolymer and application in drug delivery. Polym Chem 2020;11:2811-21. [DOI: 10.1039/d0py00085j] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
108 Nadar RA, van den Beucken JJ, Leeuwenburgh SC. Pharmacological interventions targeting bone diseases in adjunction with bone grafting. Dental Implants and Bone Grafts 2020. [DOI: 10.1016/b978-0-08-102478-2.00011-8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
109 Zhong D, Wu H, Wu Y, Li Y, Xu X, Yang J, Gu Z. Rational design and facile fabrication of biocompatible triple responsive dendrimeric nanocages for targeted drug delivery. Nanoscale 2019;11:15091-103. [PMID: 31385582 DOI: 10.1039/c9nr04631c] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
110 Ahmadi M, Chen Z. Challenges and future of chemical assisted heavy oil recovery processes. Adv Colloid Interface Sci 2020;275:102081. [PMID: 31830684 DOI: 10.1016/j.cis.2019.102081] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
111 Connah L, Angelovski G. Solid phase synthesis in the development of magnetic resonance imaging probes. Org Chem Front 2020;7:4121-41. [DOI: 10.1039/d0qo00921k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
112 Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020;11:2934-54. [DOI: 10.1039/d0py00234h] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 11.0] [Reference Citation Analysis]
113 Xiong Q, Zhang X, Wei W, Wei G, Su Z. Enzyme-mediated reversible deactivation radical polymerization for functional materials: principles, synthesis, and applications. Polym Chem 2020;11:1673-90. [DOI: 10.1039/d0py00136h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
114 Yan K, Zhang S, Zhang K, Miao Y, Qiu Y, Zhang P, Jia X, Zhao X. Enzyme-responsive polymeric micelles with fluorescence fabricated through aggregation-induced copolymer self-assembly for anticancer drug delivery. Polym Chem 2020;11:7704-13. [DOI: 10.1039/d0py01328e] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
115 Liu Y, Yang G, Zou D, Hui Y, Nigam K, Middelberg APJ, Zhao C. Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Ind Eng Chem Res 2020;59:4134-49. [DOI: 10.1021/acs.iecr.9b04747] [Cited by in Crossref: 55] [Cited by in F6Publishing: 61] [Article Influence: 18.3] [Reference Citation Analysis]
116 Bodoki AE, Iacob BC, Bodoki E. Perspectives of Molecularly Imprinted Polymer-Based Drug Delivery Systems in Cancer Therapy. Polymers (Basel) 2019;11:E2085. [PMID: 31847103 DOI: 10.3390/polym11122085] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
117 Liu B, Thayumanavan S. Three-Component Sequential Reactions for Polymeric Nanoparticles with Tailorable Core and Surface Functionalities. Chem 2019;5:3166-83. [DOI: 10.1016/j.chempr.2019.09.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
118 Ayed Z, Cuvillier L, Dobhal G, Goreham RV. Electroporation of outer membrane vesicles derived from Pseudomonas aeruginosa with gold nanoparticles. SN Appl Sci 2019;1. [DOI: 10.1007/s42452-019-1646-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
119 Karatzas A, Haataja JS, Skoulas D, Bilalis P, Varlas S, Apostolidi P, Sofianopoulou S, Stratikos E, Houbenov N, Ikkala O, Iatrou H. Marcromolecular Architecture and Encapsulation of the Anticancer Drug Everolimus Control the Self-Assembly of Amphiphilic Polypeptide-Containing Hybrids. Biomacromolecules 2019;20:4546-62. [DOI: 10.1021/acs.biomac.9b01331] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
120 Moquin A, Sturn J, Zhang I, Ji J, von Celsing R, Vali H, Maysinger D, Kakkar A. Unraveling Aqueous Self-Assembly of Telodendrimers to Shed Light on Their Efficacy in Drug Encapsulation. ACS Appl Bio Mater 2019;2:4515-26. [DOI: 10.1021/acsabm.9b00643] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
121 Shuddhodana, Judeh Z. Alginate-coating of artemisinin-loaded cochleates results in better control over gastro-intestinal release for effective oral delivery. Journal of Drug Delivery Science and Technology 2019;52:27-36. [DOI: 10.1016/j.jddst.2019.04.020] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
122 Shamsi M, Mohammadi A, Manshadi MK, Sanati-nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release 2019;307:150-65. [DOI: 10.1016/j.jconrel.2019.06.014] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
123 Dormont F, Rouquette M, Mahatsekake C, Gobeaux F, Peramo A, Brusini R, Calet S, Testard F, Lepetre-Mouelhi S, Desmaële D, Varna M, Couvreur P. Translation of nanomedicines from lab to industrial scale synthesis: The case of squalene-adenosine nanoparticles. J Control Release 2019;307:302-14. [PMID: 31260754 DOI: 10.1016/j.jconrel.2019.06.040] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
124 Rojas S, Arenas-vivo A, Horcajada P. Metal-organic frameworks: A novel platform for combined advanced therapies. Coordination Chemistry Reviews 2019;388:202-26. [DOI: 10.1016/j.ccr.2019.02.032] [Cited by in Crossref: 127] [Cited by in F6Publishing: 131] [Article Influence: 42.3] [Reference Citation Analysis]
125 Zheng Z, Geng W, Xu Z, Guo D. Macrocyclic Amphiphiles for Drug Delivery. Isr J Chem 2019;59:913-27. [DOI: 10.1002/ijch.201900032] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
126 Garms BC, Borges FA, de Barros NR, Marcelino MY, Leite MN, Del Arco MC, de Souza Salvador SL, Pegorin GS, Oliveira KSM, Frade MAC, Herculano RD. Novel polymeric dressing to the treatment of infected chronic wound. Appl Microbiol Biotechnol 2019;103:4767-78. [DOI: 10.1007/s00253-019-09699-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
127 Li D, Song Y, He J, Zhang M, Ni P. Polymer-Doxorubicin Prodrug with Biocompatibility, pH Response, and Main Chain Breakability Prepared by Catalyst-Free Click Reaction. ACS Biomater Sci Eng 2019;5:2307-15. [PMID: 33405781 DOI: 10.1021/acsbiomaterials.9b00301] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
128 Lin W, Kampf N, Goldberg R, Driver MJ, Klein J. Poly-phosphocholinated Liposomes Form Stable Superlubrication Vectors. Langmuir 2019;35:6048-54. [PMID: 30991806 DOI: 10.1021/acs.langmuir.9b00610] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
129 Cheng D, Zhang X, Gao Y, Ji L, Hou D, Wang Z, Xu W, Qiao Z, Wang H. Endogenous Reactive Oxygen Species-Triggered Morphology Transformation for Enhanced Cooperative Interaction with Mitochondria. J Am Chem Soc 2019;141:7235-9. [DOI: 10.1021/jacs.8b07727] [Cited by in Crossref: 97] [Cited by in F6Publishing: 100] [Article Influence: 32.3] [Reference Citation Analysis]
130 Kalkowski J, Liu C, Leon-Plata P, Szymusiak M, Zhang P, Irving T, Shang W, Bilsel O, Liu Y. In Situ Measurements of Polymer Micellization Kinetics with Millisecond Temporal Resolution. Macromolecules 2019;52:3151-7. [PMID: 31588150 DOI: 10.1021/acs.macromol.8b02257] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
131 Cook AB, Perrier S. Branched and Dendritic Polymer Architectures: Functional Nanomaterials for Therapeutic Delivery. Adv Funct Mater 2019;30:1901001. [DOI: 10.1002/adfm.201901001] [Cited by in Crossref: 75] [Cited by in F6Publishing: 75] [Article Influence: 25.0] [Reference Citation Analysis]
132 Roth A, Murschel F, Latreille P, Martinez VA, Liberelle B, Banquy X, De Crescenzo G. Coiled Coil Affinity-Based Systems for the Controlled Release of Biofunctionalized Gold Nanoparticles from Alginate Hydrogels. Biomacromolecules 2019;20:1926-36. [DOI: 10.1021/acs.biomac.9b00137] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
133 Lim JM, Cai T, Mandaric S, Chopra S, Han H, Jang S, Il Choi W, Langer R, Farokhzad OC, Karnik R. Drug loading augmentation in polymeric nanoparticles using a coaxial turbulent jet mixer: Yong investigator perspective. J Colloid Interface Sci 2019;538:45-50. [PMID: 30500466 DOI: 10.1016/j.jcis.2018.11.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
134 Pittolo S, Lee H, Lladó A, Tosi S, Bosch M, Bardia L, Gómez-santacana X, Llebaria A, Soriano E, Colombelli J, Poskanzer KE, Perea G, Gorostiza P. Reversible silencing of endogenous receptors in intact brain tissue using two-photon pharmacology.. [DOI: 10.1101/515288] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
135 Liu Y, Li Y, Keskin D, Shi L. Poly(β-Amino Esters): Synthesis, Formulations, and Their Biomedical Applications. Adv Healthc Mater 2019;8:e1801359. [PMID: 30549448 DOI: 10.1002/adhm.201801359] [Cited by in Crossref: 34] [Cited by in F6Publishing: 41] [Article Influence: 11.3] [Reference Citation Analysis]
136 Bera D, Sedlacek O, Jager E, Pavlova E, Vergaelen M, Hoogenboom R. Solvent-control over monomer distribution in the copolymerization of 2-oxazolines and the effect of a gradient structure on self-assembly. Polym Chem 2019;10:5116-23. [DOI: 10.1039/c9py00927b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
137 Chen X, Wang Y, Rong R, Zhao C, Li X, Wang K. Synthesis, thermo-responsive behavior of cyclodextrin modified Bi-perylene monoimide derivative. Dyes and Pigments 2019;160:779-86. [DOI: 10.1016/j.dyepig.2018.09.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
138 Zhou Z, Piao Y, Hao L, Wang G, Zhou Z, Shen Y. Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery. Nanoscale 2019;11:15907-16. [DOI: 10.1039/c9nr03872h] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
139 Ni M, Zhuo S. Applications of self-assembling ultrashort peptides in bionanotechnology. RSC Adv 2019;9:844-52. [DOI: 10.1039/c8ra07533f] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
140 Paredes KO, Ruiz-cabello J, Alarcón DI, Filice M. The State of the Art of Investigational and Approved Nanomedicine Products for Nucleic Acid Delivery. Nucleic Acid Nanotheranostics 2019. [DOI: 10.1016/b978-0-12-814470-1.00015-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
141 Rodríguez-contreras A, Rupérez E, Marqués-calvo MS, Manero JM. PHAs as matrices for drug delivery. Materials for Biomedical Engineering 2019. [DOI: 10.1016/b978-0-12-816913-1.00007-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
142 Zhukova OV. Polymer Derivatives of Anticancer Drugs: Features of Synthesis and Biological Activity. Ref J Chem 2019;9:1-11. [DOI: 10.1134/s2079978019010011] [Reference Citation Analysis]
143 Wendler F, Tom JC, Schacher FH. Synthesis and self-assembly of photoacid-containing block copolymers based on 1-naphthol. Polym Chem 2019;10:5602-16. [DOI: 10.1039/c9py01131e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
144 Madkour LH. Correlation between nucleic acids and nanoparticle therapeutics for cancer treatment. Nucleic Acids as Gene Anticancer Drug Delivery Therapy 2019. [DOI: 10.1016/b978-0-12-819777-6.00011-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
145 Jain U, Chauhan N. Drug Encapsulation and Nanocarriers for Targeted Delivery in Animals. Nanoscience for Sustainable Agriculture 2019. [DOI: 10.1007/978-3-319-97852-9_18] [Reference Citation Analysis]
146 Bajgar A, Saloň I, Krejčová G, Doležal T, Jindra M, Štěpánek F. Yeast glucan particles enable intracellular protein delivery in Drosophila without compromising the immune system. Biomater Sci 2019;7:4708-19. [DOI: 10.1039/c9bm00539k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
147 Dai Y, Chen X, Zhang X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polym Chem 2019;10:34-44. [DOI: 10.1039/c8py01174e] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 16.0] [Reference Citation Analysis]
148 Xu W, Li G, Long H, Fu G, Pu L. Glutathione responsive poly(HPMA) conjugate nanoparticles for efficient 6-MP delivery. New J Chem 2019;43:12215-20. [DOI: 10.1039/c9nj02582k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
149 Saha B, Choudhury N, Seal S, Ruidas B, De P. Aromatic Nitrogen Mustard-Based Autofluorescent Amphiphilic Brush Copolymer as pH-Responsive Drug Delivery Vehicle. Biomacromolecules 2019;20:546-57. [PMID: 30521313 DOI: 10.1021/acs.biomac.8b01468] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 6.3] [Reference Citation Analysis]
150 Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu J, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018;61:1503-52. [DOI: 10.1007/s11426-018-9397-5] [Cited by in Crossref: 279] [Cited by in F6Publishing: 227] [Article Influence: 69.8] [Reference Citation Analysis]
151 Li L, Wang F, Shao Z, Liu J, Zhang Q, Jiao W. Chitosan and carboxymethyl cellulose-multilayered magnetic fluorescent systems for reversible protein immobilization. Carbohydrate Polymers 2018;201:357-66. [DOI: 10.1016/j.carbpol.2018.08.088] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
152 Sheikhi A, Hayashi J, Eichenbaum J, Gutin M, Kuntjoro N, Khorsandi D, Khademhosseini A. Recent advances in nanoengineering cellulose for cargo delivery. J Control Release 2019;294:53-76. [PMID: 30500355 DOI: 10.1016/j.jconrel.2018.11.024] [Cited by in Crossref: 63] [Cited by in F6Publishing: 48] [Article Influence: 15.8] [Reference Citation Analysis]
153 Zhao Y. Facile Synthesis and Topological Transformation of Multicomponent Miktoarm Star Copolymers. Macromol Rapid Commun 2019;40:1800571. [DOI: 10.1002/marc.201800571] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
154 Liao C, Dai X, Chen Y, Liu J, Yao Y, Zhang S. Biogenic ( R )-(+)-Lipoic Acid Only Constructed Cross-Linked Vesicles with Synergistic Anticancer Potency. Adv Funct Mater 2019;29:1806567. [DOI: 10.1002/adfm.201806567] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
155 Gong YC, Xiong XY, Ge XJ, Li ZL, Li YP. Effect of the Folate Ligand Density on the Targeting Property of Folated-Conjugated Polymeric Nanoparticles. Macromol Biosci 2019;19:e1800348. [PMID: 30444303 DOI: 10.1002/mabi.201800348] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
156 Souho T, Lamboni L, Xiao L, Yang G. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnology Advances 2018;36:1928-45. [DOI: 10.1016/j.biotechadv.2018.08.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
157 Mignani S, Rodrigues J, Tomas H, Roy R, Shi X, Majoral J. Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews 2018;136-137:73-81. [DOI: 10.1016/j.addr.2017.11.007] [Reference Citation Analysis]
158 Mignani S, Rodrigues J, Tomas H, Roy R, Shi X, Majoral JP. Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Adv Drug Deliv Rev 2018;136-137:73-81. [PMID: 29155170 DOI: 10.1016/j.addr.2017.11.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 9.5] [Reference Citation Analysis]
159 Rutenberg R, Galaktionova D, Golden G, Cohen Y, Levi-Kalisman Y, Cohen G, Král P, Poverenov E. Omniphilic Polysaccharide-Based Nanocarriers for Modular Molecular Delivery in a Broad Range of Biosystems. ACS Appl Mater Interfaces 2018;10:36711-20. [PMID: 30285412 DOI: 10.1021/acsami.8b12855] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
160 He W, Yan J, Jiang W, Li S, Qu Y, Niu F, Yan Y, Sui F, Wang S, Zhou Y, Jin L, Li Y, Ji M, Ma PX, Liu M, Lu W, Hou P. Peptide-Induced Self-Assembly of Therapeutics into a Well-Defined Nanoshell with Tumor-Triggered Shape and Charge Switch. Chem Mater 2018;30:7034-46. [PMID: 32982042 DOI: 10.1021/acs.chemmater.8b02572] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
161 Bolaños Quiñones VA, Zhu H, Solovev AA, Mei Y, Gracias DH. Origami Biosystems: 3D Assembly Methods for Biomedical Applications. Adv Biosys 2018;2:1800230. [DOI: 10.1002/adbi.201800230] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 10.8] [Reference Citation Analysis]
162 Kavanagh ON, Albadarin AB, Croker DM, Healy AM, Walker GM. Maximising success in multidrug formulation development: A review. Journal of Controlled Release 2018;283:1-19. [DOI: 10.1016/j.jconrel.2018.05.024] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
163 Bhat SI, Ahmadi Y, Ahmad S. Recent Advances in Structural Modifications of Hyperbranched Polymers and Their Applications. Ind Eng Chem Res 2018;57:10754-85. [DOI: 10.1021/acs.iecr.8b01969] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 12.0] [Reference Citation Analysis]
164 Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang CH. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 2018;132:104-38. [PMID: 30415656 DOI: 10.1016/j.addr.2018.07.002] [Cited by in Crossref: 148] [Cited by in F6Publishing: 120] [Article Influence: 37.0] [Reference Citation Analysis]
165 Zhou X, Li L, Qin H, Ning B, Li J, Kan C. Controlled self-assembly into diverse stimuli-responsive microstructures: from microspheres to branched cylindrical micelles and vesicles. RSC Adv 2018;8:21613-20. [PMID: 35539922 DOI: 10.1039/c8ra03374a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
166 Sadan T, Cormode DP, Popovtzer R. Nanoinformatics Revolutionizes Personalized Cancer Therapy. Trends in Cancer 2018;4:397-9. [DOI: 10.1016/j.trecan.2018.04.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
167 Igartúa DE, Martinez CS, Temprana CF, Alonso SDV, Prieto MJ. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. International Journal of Pharmaceutics 2018;544:191-202. [DOI: 10.1016/j.ijpharm.2018.04.032] [Cited by in Crossref: 46] [Cited by in F6Publishing: 47] [Article Influence: 11.5] [Reference Citation Analysis]
168 Zhong Y, Zeberl BJ, Wang X, Luo J. Combinatorial approaches in post-polymerization modification for rational development of therapeutic delivery systems. Acta Biomater 2018;73:21-37. [PMID: 29654990 DOI: 10.1016/j.actbio.2018.04.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
169 Bej R, Sarkar J, Ray D, Aswal VK, Ghosh S. Morphology Regulation in Redox Destructible Amphiphilic Block Copolymers and Impact on Intracellular Drug Delivery. Macromol Biosci 2018;18:1800057. [DOI: 10.1002/mabi.201800057] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
170 Shipunova VO, Zelepukin IV, Stremovskiy OA, Nikitin MP, Care A, Sunna A, Zvyagin AV, Deyev SM. Versatile Platform for Nanoparticle Surface Bioengineering Based on SiO2-Binding Peptide and Proteinaceous Barnase*Barstar Interface. ACS Appl Mater Interfaces 2018;10:17437-47. [PMID: 29701945 DOI: 10.1021/acsami.8b01627] [Cited by in Crossref: 25] [Cited by in F6Publishing: 32] [Article Influence: 6.3] [Reference Citation Analysis]
171 Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in Biomaterials for Drug Delivery. Adv Mater 2018;:e1705328. [PMID: 29736981 DOI: 10.1002/adma.201705328] [Cited by in Crossref: 373] [Cited by in F6Publishing: 387] [Article Influence: 93.3] [Reference Citation Analysis]
172 Xu Y, Tang S, Pan J, Bao J, Zhang A. Reversibly cross-linked SEBS/carbon hybrid composite with excellent solvent-proof and electromagnetic shielding properties. Materials & Design 2018;146:1-11. [DOI: 10.1016/j.matdes.2018.02.071] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
173 Mignani S, Rodrigues J, Tomas H, Caminade A, Laurent R, Shi X, Majoral J. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Sci China Mater 2018;61:1367-86. [DOI: 10.1007/s40843-018-9244-5] [Reference Citation Analysis]
174 Mignani S, Rodrigues J, Tomas H, Caminade A, Laurent R, Shi X, Majoral J. Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Sci China Mater 2018;61:1367-86. [DOI: 10.1007/s40843-018-9244-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
175 Urquhart MC, Ercole F, Whittaker MR, Boyd BJ, Davis TP, Quinn JF. Recent advances in the delivery of hydrogen sulfide via a macromolecular approach. Polym Chem 2018;9:4431-9. [DOI: 10.1039/c8py00938d] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
176 Li W, Yan Z, Ren J, Qu X. Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chem Soc Rev 2018;47:8639-84. [DOI: 10.1039/c8cs00053k] [Cited by in Crossref: 86] [Cited by in F6Publishing: 88] [Article Influence: 21.5] [Reference Citation Analysis]
177 Tsou Y, Zhang X, Zhu H, Syed S, Xu X. Drug Delivery to the Brain across the Blood–Brain Barrier Using Nanomaterials. Small 2017;13:1701921. [DOI: 10.1002/smll.201701921] [Cited by in Crossref: 106] [Cited by in F6Publishing: 109] [Article Influence: 21.2] [Reference Citation Analysis]