BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer 2021;21:669-80. [PMID: 34272515 DOI: 10.1038/s41568-021-00378-6] [Cited by in Crossref: 246] [Cited by in F6Publishing: 236] [Article Influence: 123.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu H, Zhang H, Liu X, Guo W, Liu Q, Chen L, Pang J, Liu X, Li R, Tong WM, Wu H, Dai M, Liang Z. Pancreatic stellate cells exploit Wnt/β-catenin/TCF7-mediated glutamine metabolism to promote pancreatic cancer cells growth. Cancer Lett 2023;555:216040. [PMID: 36565920 DOI: 10.1016/j.canlet.2022.216040] [Reference Citation Analysis]
2 Lai W, Liao J, Li X, Liang P, He L, Huang K, Liang X, Wang Y. Characterization of the microenvironment in different immune-metabolism subtypes of cervical cancer with prognostic significance. Front Genet 2023;14. [DOI: 10.3389/fgene.2023.1067666] [Reference Citation Analysis]
3 Hou J, Guo P, Lu Y, Jin X, Liang K, Zhao N, Xue S, Zhou C, Wang G, Zhu X, Hong H, Chen Y, Lu H, Wang W, Xu C, Han Y, Cai S, Liu Y. A prognostic 15-gene model based on differentially expressed genes among metabolic subtypes in diffuse large B-cell lymphoma. Pathol Oncol Res 2023;29. [DOI: 10.3389/pore.2023.1610819] [Reference Citation Analysis]
4 Chen HH, Hao PH, Zhang FY, Zhang TN. Non-coding RNAs in metabolic reprogramming of bone and soft tissue sarcoma: Fundamental mechanism and clinical implication. Biomed Pharmacother 2023;160:114346. [PMID: 36738505 DOI: 10.1016/j.biopha.2023.114346] [Reference Citation Analysis]
5 Li J, Liu K, Ji Z, Wang Y, Yin T, Long T, Shen Y, Cheng L. Serum untargeted metabolomics reveal metabolic alteration of non-small cell lung cancer and refine disease detection. Cancer Sci 2023;114:680-9. [PMID: 36310111 DOI: 10.1111/cas.15629] [Reference Citation Analysis]
6 Cai C, Liu Y, Zhang Z, Tian T, Wang Y, Wang L, Zhang K, Liu B. Activity-Based Self-Enriched SERS Sensor for Blood Metabolite Monitoring. ACS Appl Mater Interfaces 2023;15:4895-902. [PMID: 36688934 DOI: 10.1021/acsami.2c18261] [Reference Citation Analysis]
7 Zhang Y, Li W, Bian Y, Li Y, Cong L. Multifaceted roles of aerobic glycolysis and oxidative phosphorylation in hepatocellular carcinoma. PeerJ 2023;11:e14797. [DOI: 10.7717/peerj.14797] [Reference Citation Analysis]
8 Barpanda A, Halder A, Dhote A, Parihari S, Kantharia C, Srivastava S. Colon Adenocarcinoma Quantitative Proteomics Reveals Dysregulation in Key Cancer Signaling Pathways and a Candidate Protein Marker Panel. OMICS 2023. [PMID: 36730729 DOI: 10.1089/omi.2022.0169] [Reference Citation Analysis]
9 Guo J, Liu P, Wei B, Peng Y, Ding J, Zhang H, Zhang G, Su J, Liu H, Zhou W, Chen X. Reversing the negative effect of adenosine A1 receptor-targeted immunometabolism modulation on melanoma by a co-delivery nanomedicine for self-activation of anti-PD-L1 DNAzyme. Nano Today 2023;48:101722. [DOI: 10.1016/j.nantod.2022.101722] [Reference Citation Analysis]
10 Tian L, Smit DJ, Jücker M. The Role of PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma Metabolism. IJMS 2023;24:2652. [DOI: 10.3390/ijms24032652] [Reference Citation Analysis]
11 Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023;12:447. [DOI: 10.3390/cells12030447] [Reference Citation Analysis]
12 van Weverwijk A, de Visser KE. Mechanisms driving the immunoregulatory function of cancer cells. Nat Rev Cancer 2023. [PMID: 36717668 DOI: 10.1038/s41568-022-00544-4] [Reference Citation Analysis]
13 Shi M, Hou J, Shao S, Liang W, Wang S, Yang Y, Guo Z, Pan F. Short-Term Starvation Weakens the Efficacy of Cell Cycle Specific Chemotherapy Drugs through G1 Arrest. IJMS 2023;24:2498. [DOI: 10.3390/ijms24032498] [Reference Citation Analysis]
14 Hou M, Su H, Wu Q, Sun W, Zhang P, Jiang Y, Qian K, Zhang C. A Self‐Enhancing Nanoreactor Reinforces Radioimmunotherapy by Reprogramming Nutrients and Redox Metabolisms. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202212510] [Reference Citation Analysis]
15 Liu S, Li Y, Yuan M, Song Q, Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer. Front Oncol 2023;12. [DOI: 10.3389/fonc.2022.1060495] [Reference Citation Analysis]
16 Cui Y, Leng C. A glycolysis-related gene signatures in diffuse large B-Cell lymphoma predicts prognosis and tumor immune microenvironment. Front Cell Dev Biol 2023;11. [DOI: 10.3389/fcell.2023.1070777] [Reference Citation Analysis]
17 Zhu Q, Xu H, Huang L, Luo J, Li H, Yang R, Liu X, Liu F. Identification and detection of plasma extracellular vesicles-derived biomarkers for esophageal squamous cell carcinoma diagnosis. Biosens Bioelectron 2023;225:115088. [PMID: 36739741 DOI: 10.1016/j.bios.2023.115088] [Reference Citation Analysis]
18 Peng Y, Yin D, Li X, Wang K, Li W, Huang Y, Liu X, Ren Z, Yang X, Zhang Z, Zhang S, Fan T. Integration of transcriptomics and metabolomics reveals a novel gene signature guided by FN1 associated with immune response in oral squamous cell carcinoma tumorigenesis. J Cancer Res Clin Oncol 2023. [PMID: 36656379 DOI: 10.1007/s00432-023-04572-x] [Reference Citation Analysis]
19 Kasim JK, Hong J, Hickey AJR, Phillips ARJ, Windsor JA, Harris PWR, Brimble MA, Kavianinia I. The Anti-Tubercular Aminolipopeptide Trichoderin A Displays Selective Toxicity against Human Pancreatic Ductal Adenocarcinoma Cells Cultured under Glucose Starvation. Pharmaceutics 2023;15. [PMID: 36678914 DOI: 10.3390/pharmaceutics15010287] [Reference Citation Analysis]
20 Yang Y, Fu X, Liu R, Yan L, Yang Y. Exploring the prognostic value of HK3 and its association with immune infiltration in glioblastoma multiforme. Front Genet 2022;13:1033572. [PMID: 36712881 DOI: 10.3389/fgene.2022.1033572] [Reference Citation Analysis]
21 Zhu L, Shi Y, Feng Z, Yuan D, Guo S, Wang Y, Shen H, Li Y, Wang Y. Fatostatin promotes anti-tumor immunity by reducing SREBP2 mediated cholesterol metabolism in tumor-infiltrating T lymphocytes.. [DOI: 10.21203/rs.3.rs-2372341/v1] [Reference Citation Analysis]
22 Takeda Y, Harada Y, Yoshikawa T, Dai P. Mitochondrial Energy Metabolism in the Regulation of Thermogenic Brown Fats and Human Metabolic Diseases. Int J Mol Sci 2023;24. [PMID: 36674862 DOI: 10.3390/ijms24021352] [Reference Citation Analysis]
23 Zhou X, Tian C, Cao Y, Zhao M, Wang K. The role of serine metabolism in lung cancer: From oncogenesis to tumor treatment. Front Genet 2022;13:1084609. [PMID: 36699468 DOI: 10.3389/fgene.2022.1084609] [Reference Citation Analysis]
24 Zhang W, Wu C, Zhou K, Cao Y, Zhou W, Zhang X, Deng D. Clinical and immunological characteristics of TGM3 in pan-cancer: A potential prognostic biomarker. Front Genet 2022;13:993438. [PMID: 36685895 DOI: 10.3389/fgene.2022.993438] [Reference Citation Analysis]
25 Han L, Dong L, Leung K, Zhao Z, Li Y, Gao L, Chen Z, Xue J, Qing Y, Li W, Pokharel SP, Gao M, Chen M, Shen C, Tan B, Small A, Wang K, Zhang Z, Qin X, Yang L, Wunderlich M, Zhang B, Mulloy JC, Marcucci G, Chen CW, Wei M, Su R, Chen J, Deng X. METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism. Cell Stem Cell 2023;30:52-68.e13. [PMID: 36608679 DOI: 10.1016/j.stem.2022.12.006] [Reference Citation Analysis]
26 Lamming DW, Anderson RM. Strength in diversity: Intra-cellular metabolite sharing enhances longevity. Cell 2023;186:8-9. [PMID: 36608660 DOI: 10.1016/j.cell.2022.12.012] [Reference Citation Analysis]
27 Cai D, Yu H, Wang X, Mao Y, Liang M, Lu X, Shen X, Guan W. Turning Tertiary Lymphoid Structures (TLS) into Hot Spots: Values of TLS in Gastrointestinal Tumors. Cancers (Basel) 2023;15. [PMID: 36672316 DOI: 10.3390/cancers15020367] [Reference Citation Analysis]
28 Qin S, Zhang Z, Huang Z, Luo Y, Weng N, Li B, Tang Y, Zhou L, Jiang J, Lu Y, Shao J, Xie N, Nice EC, Chen ZS, Zhang J, Huang C. CCT251545 enhances drug delivery and potentiates chemotherapy in multidrug-resistant cancers by Rac1-mediated macropinocytosis. Drug Resist Updat 2023;66:100906. [PMID: 36565657 DOI: 10.1016/j.drup.2022.100906] [Reference Citation Analysis]
29 He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol 2023;88:187-200. [PMID: 36596352 DOI: 10.1016/j.semcancer.2022.12.009] [Reference Citation Analysis]
30 Li L, Wang C, Qiu Z, Deng D, Chen X, Wang Q, Meng Y, Zhang B, Zheng G, Hu J. Triptolide inhibits intrahepatic cholangiocarcinoma growth by suppressing glycolysis via the AKT/mTOR pathway. Phytomedicine 2023;109:154575. [PMID: 36610163 DOI: 10.1016/j.phymed.2022.154575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Kroemer G, McQuade JL, Merad M, André F, Zitvogel L. Bodywide ecological interventions on cancer. Nat Med 2023;29:59-74. [PMID: 36658422 DOI: 10.1038/s41591-022-02193-4] [Reference Citation Analysis]
32 Saha S, Pradhan N, B N, Mahadevappa R, Minocha S, Kumar S. Cancer plasticity: Investigating the causes for this agility. Semin Cancer Biol 2023;88:138-56. [PMID: 36584960 DOI: 10.1016/j.semcancer.2022.12.005] [Reference Citation Analysis]
33 He W, Li Q, Li X. Acetyl-CoA regulates lipid metabolism and histone acetylation modification in cancer. Biochim Biophys Acta Rev Cancer 2023;1878:188837. [PMID: 36403921 DOI: 10.1016/j.bbcan.2022.188837] [Reference Citation Analysis]
34 Ying T, Wang X, Yao Y, Yuan J, Chen S, Wen L, Chen Z, Wang X, Luo C, Sheng J, Wang W, Teng L. Integrative Methylome and Transcriptome Characterization Identifies SERINC2 as a Tumor-Driven Gene for Papillary Thyroid Carcinoma. Cancers (Basel) 2022;15. [PMID: 36612238 DOI: 10.3390/cancers15010243] [Reference Citation Analysis]
35 Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022;7:402. [PMID: 36581622 DOI: 10.1038/s41392-022-01257-8] [Reference Citation Analysis]
36 Lu N, Guan X, Bao W, Fan Z, Zhang J. Breast cancer combined prognostic model based on lactate metabolism genes. Medicine (Baltimore) 2022;101:e32485. [PMID: 36595824 DOI: 10.1097/MD.0000000000032485] [Reference Citation Analysis]
37 Zhao Z, Mei Y, Wang Z, He W. The Effect of Oxidative Phosphorylation on Cancer Drug Resistance. Cancers (Basel) 2022;15. [PMID: 36612059 DOI: 10.3390/cancers15010062] [Reference Citation Analysis]
38 Zhou H, Wang F, Niu T. Prediction of prognosis and immunotherapy response of amino acid metabolism genes in acute myeloid leukemia. Front Nutr 2022;9:1056648. [PMID: 36618700 DOI: 10.3389/fnut.2022.1056648] [Reference Citation Analysis]
39 Peiffer R, Boumahd Y, Gullo C, Crake R, Letellier E, Bellahcène A, Peulen O. Cancer-Associated Fibroblast Diversity Shapes Tumor Metabolism in Pancreatic Cancer. Cancers (Basel) 2022;15. [PMID: 36612058 DOI: 10.3390/cancers15010061] [Reference Citation Analysis]
40 Liu W, Duan W, Xia S, Zhou Y, Tang M, Xu M, Li X, Wang Q. Warburg effect enhanced by AKR1B10 promotes acquired resistance to pemetrexed in lung cancer-derived brain metastasis.. [DOI: 10.21203/rs.3.rs-2331831/v1] [Reference Citation Analysis]
41 Bai K, Song Q, Zhou Z, Bai J, Liu N. Research on the fatty acid metabolism gene FN1 and establishment of a model to guide immunotherapy of bladder cancer.. [DOI: 10.21203/rs.3.rs-2360942/v1] [Reference Citation Analysis]
42 Calderón-Montaño JM, Guillén-Mancina E, Jiménez-Alonso JJ, Jiménez-González V, Burgos-Morón E, Mate A, Pérez-Guerrero MC, López-Lázaro M. Manipulation of Amino Acid Levels with Artificial Diets Induces a Marked Anticancer Activity in Mice with Renal Cell Carcinoma. Int J Mol Sci 2022;23. [PMID: 36555771 DOI: 10.3390/ijms232416132] [Reference Citation Analysis]
43 Jiajin Wu, Chenkui Miao, Yuhao Wang, Songbo Wang, Zhongyuan Wang, Yiyang Liu, Xiaoyi Wang, Zengjun Wang. SPTBN1 abrogates renal clear cell carcinoma progression via glycolysis reprogramming in a GPT2-dependent manner. J Transl Med 2022;20:603. [PMID: 36527113 DOI: 10.1186/s12967-022-03805-w] [Reference Citation Analysis]
44 Gu Z, Yu C. Harnessing bioactive nanomaterials in modulating tumor glycolysis-associated metabolism. J Nanobiotechnology 2022;20:528. [PMID: 36510194 DOI: 10.1186/s12951-022-01740-y] [Reference Citation Analysis]
45 Li Y, Duan Z, Pan D, Ren L, Gu L, Li X, Xu G, Zhu H, Zhang H, Gu Z, Chen R, Gong Q, Wu Y, Luo K. Attenuating Metabolic Competition of Tumor Cells for Favoring the Nutritional Demand of Immune Cells by a Branched Polymeric Drug Delivery System. Adv Mater 2022;:e2210161. [PMID: 36504170 DOI: 10.1002/adma.202210161] [Reference Citation Analysis]
46 Xie D, Zhang G, Ma Y, Wu D, Jiang S, Zhou S, Jiang X. Circulating Metabolic Markers Related to the Diagnosis of Hepatocellular Carcinoma. Journal of Oncology 2022;2022:1-11. [DOI: 10.1155/2022/7840606] [Reference Citation Analysis]
47 Zhou Y, Qi M, Yang M. Current Status and Future Perspectives of Lactate Dehydrogenase Detection and Medical Implications: A Review. Biosensors (Basel) 2022;12. [PMID: 36551112 DOI: 10.3390/bios12121145] [Reference Citation Analysis]
48 Chen D, Liang C, Qu X, Zhang T, Mou X, Cai Y, Wang W, Shao J, Dong X. Metal-free polymer nano-photosensitizer actuates ferroptosis in starved cancer. Biomaterials 2022;292:121944. [PMID: 36495801 DOI: 10.1016/j.biomaterials.2022.121944] [Reference Citation Analysis]
49 Zhang Y, Lin C, Liu Z, Sun Y, Chen M, Guo Y, Liu W, Zhang C, Chen W, Sun J, Xia R, Hu Y, Yang X, Li J, Zhang Z, Cao W, Sun S, Wang X, Ji T. Cancer cells co-opt nociceptive nerves to thrive in nutrient-poor environments and upon nutrient-starvation therapies. Cell Metab 2022;34:1999-2017.e10. [PMID: 36395769 DOI: 10.1016/j.cmet.2022.10.012] [Reference Citation Analysis]
50 Brisebarre A, Ancel J, Ponchel T, Loeffler E, Germain A, Dalstein V, Dormoy V, Durlach A, Delepine G, Deslée G, Polette M, Nawrocki-Raby B. Transcriptomic FHIT(low)/pHER2(high) signature as a predictive factor of outcome and immunotherapy response in non-small cell lung cancer. Front Immunol 2022;13:1058531. [PMID: 36544755 DOI: 10.3389/fimmu.2022.1058531] [Reference Citation Analysis]
51 Bute B, Alkis ME. Anticancer activity of methotrexate in electrochemotherapy and electrochemotherapy plus ionizing radiation treatments in human breast cancer cells. Med Oncol 2022;40:28. [PMID: 36459220 DOI: 10.1007/s12032-022-01891-w] [Reference Citation Analysis]
52 Liang J, Niu M, Luo G, Zhang S, Huang Q, Jin X, Lu Z, Chen W, Zhang X. Tailor-made biotuner against colorectal tumor microenvironment to transfer harms into treasures for synergistic oncotherapy. Nano Today 2022;47:101662. [DOI: 10.1016/j.nantod.2022.101662] [Reference Citation Analysis]
53 Liu* Y, Li* Y, Wu S, Li G, Chu H. Synergistic effect of conformational changes in phosphoglycerate kinase 1 product release. Journal of Biomolecular Structure and Dynamics 2022. [DOI: 10.1080/07391102.2022.2152870] [Reference Citation Analysis]
54 Mao Y, Zhou Q, Wang J, Zhao R, Yang X, Shi Y, Yin J, Jiang C, He Y. CircP50 functions through the phosphorylation- and acetylation-activated p53 pathway to mediate inorganic arsenic-induced apoptosis in A549 cells. Environ Sci Pollut Res Int 2022;29:91232-40. [PMID: 35881289 DOI: 10.1007/s11356-022-22094-w] [Reference Citation Analysis]
55 Nasr D, Kumar PA, Zerdan MB, Ghelani G, Dutta D, Graziano S, Lim SH. Radioimmunoconjugates in the age of modern immuno-oncology. Life Sciences 2022;310:121126. [DOI: 10.1016/j.lfs.2022.121126] [Reference Citation Analysis]
56 Ladraa S, Zerbib L, Bayard C, Fraissenon A, Venot Q, Morin G, Garneau AP, Isnard P, Chapelle C, Hoguin C, Fraitag S, Duong JP, Guibaud L, Besançon A, Kaltenbach S, Villarese P, Asnafi V, Broissand C, Goudin N, Dussiot M, Nemazanyy I, Viel T, Autret G, Cruciani-Guglielmacci C, Denom J, Bruneau J, Tavitian B, Legendre C, Dairou J, Lacorte JM, Levy P, Pende M, Polak M, Canaud G. PIK3CA gain-of-function mutation in adipose tissue induces metabolic reprogramming with Warburg-like effect and severe endocrine disruption. Sci Adv 2022;8:eade7823. [PMID: 36490341 DOI: 10.1126/sciadv.ade7823] [Reference Citation Analysis]
57 Shen W, Liu T, Pei P, Li J, Yang S, Zhang Y, Zhou H, Hu L, Yang K. Metabolic Homeostasis-Regulated Nanoparticles for Antibody-Independent Cancer Radio-Immunotherapy. Adv Mater 2022;34:e2207343. [PMID: 36222379 DOI: 10.1002/adma.202207343] [Reference Citation Analysis]
58 Zhang Y, Wang K, Xing G, Dong X, Zhu D, Yang W, Mei L, Lv F. Nanozyme-laden intelligent macrophage EXPRESS amplifying cancer photothermal-starvation therapy by responsive stimulation. Mater Today Bio 2022;16:100421. [PMID: 36105675 DOI: 10.1016/j.mtbio.2022.100421] [Reference Citation Analysis]
59 Nascentes Melo LM, Lesner NP, Sabatier M, Ubellacker JM, Tasdogan A. Emerging metabolomic tools to study cancer metastasis. Trends Cancer 2022;8:988-1001. [PMID: 35909026 DOI: 10.1016/j.trecan.2022.07.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Zhao H, Li Y, Shi H, Niu M, Li D, Zhang Z, Feng Q, Zhang Y, Wang L. Prodrug nanoparticles potentiate tumor chemo-immunometabolic therapy by disturbing oxidative stress. J Control Release 2022;352:909-19. [PMID: 36370878 DOI: 10.1016/j.jconrel.2022.11.011] [Reference Citation Analysis]
61 Xu J, Fu Y, Zhang J, Zhang K, Ma J, Tang J, Zhang Z, Zhou Z. Targeting glycolysis in non-small cell lung cancer: Promises and challenges. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1037341] [Reference Citation Analysis]
62 Brunner JS, Finley LWS. Metabolic determinants of tumour initiation. Nat Rev Endocrinol 2022. [PMID: 36446897 DOI: 10.1038/s41574-022-00773-5] [Reference Citation Analysis]
63 Yuan Z, Li Y, Shi M, Yang F, Gao J, Yao J, Zhang MQ. SOTIP is a versatile method for microenvironment modeling with spatial omics data. Nat Commun 2022;13:7330. [PMID: 36443314 DOI: 10.1038/s41467-022-34867-5] [Reference Citation Analysis]
64 Zha Z, Hong Y, Tang Z, Du Q, Wang Y, Yang S, Wu Y, Tan H, Jiang F, Zhong W. FCGR3A: A new biomarker with potential prognostic value for prostate cancer. Front Oncol 2022;12:1014888. [PMID: 36505767 DOI: 10.3389/fonc.2022.1014888] [Reference Citation Analysis]
65 Ragni M, Fornelli C, Nisoli E, Penna F. Amino Acids in Cancer and Cachexia: An Integrated View. Cancers (Basel) 2022;14. [PMID: 36428783 DOI: 10.3390/cancers14225691] [Reference Citation Analysis]
66 Xu Y, Chen Y, Jiang W, Yin X, Chen D, Chi Y, Wang Y, Zhang J, Zhang Q, Han Y. Identification of fatty acid metabolism–related molecular subtype biomarkers and their correlation with immune checkpoints in cutaneous melanoma. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.967277] [Reference Citation Analysis]
67 Hong Y, Zhang Y, Zhao H, Chen H, Yu Q, Cui H. The roles of lncRNA functions and regulatory mechanisms in the diagnosis and treatment of hepatocellular carcinoma. Front Cell Dev Biol 2022;10. [DOI: 10.3389/fcell.2022.1051306] [Reference Citation Analysis]
68 Wu C, Liu Y, Liu W, Zou T, Lu S, Zhu C, He L, Chen J, Fang L, Zou L, Wang P, Fan L, Wang H, You H, Chen J, Fang JY, Jiang C, Shi Y. NNMT-DNMT1 Axis is Essential for Maintaining Cancer Cell Sensitivity to Oxidative Phosphorylation Inhibition. Adv Sci (Weinh) 2022;10:e2202642. [PMID: 36382559 DOI: 10.1002/advs.202202642] [Reference Citation Analysis]
69 Sun Y, Liu B, Xiao B, Jiang X, Xiang J, Xie J, Hu X. Metabolism‐related lncRNAs signature to predict the prognosis of colon adenocarcinoma. Cancer Medicine 2022. [DOI: 10.1002/cam4.5412] [Reference Citation Analysis]
70 Garcia-Mayea Y, Benítez-Álvarez L, Sánchez-García A, Bataller M, Companioni O, Mir C, Benavente S, Lorente J, Canela N, Fernández-Rozadilla C, Carracedo A, LLeonart ME. Transcriptomic and Proteomic Profiles for Elucidating Cisplatin Resistance in Head-and-Neck Squamous Cell Carcinoma. Cancers (Basel) 2022;14. [PMID: 36428603 DOI: 10.3390/cancers14225511] [Reference Citation Analysis]
71 Guo C, He Y, Chen L, Li Y, Wang Y, Bao Y, Zeng N, Jiang F, Zhou H, Zhang L. Integrated bioinformatics analysis and experimental validation reveals fatty acid metabolism-related prognostic signature and immune responses for uterine corpus endometrial carcinoma. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.1030246] [Reference Citation Analysis]
72 Jiang Z, Zhang W, Sha G, Wang D, Tang D. Galectins Are Central Mediators of Immune Escape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022;14. [PMID: 36428567 DOI: 10.3390/cancers14225475] [Reference Citation Analysis]
73 Fu M, Hu Y, Lan T, Guan K, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Sig Transduct Target Ther 2022;7:376. [DOI: 10.1038/s41392-022-01191-9] [Reference Citation Analysis]
74 Erbani J, Boon M, Akkari L. Therapy-induced shaping of the glioblastoma microenvironment: Macrophages at play. Semin Cancer Biol 2022;86:41-56. [PMID: 35569742 DOI: 10.1016/j.semcancer.2022.05.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Regel I, Mayerle J. Nutrient Scavenging From Muscle Cells: A Survival Strategy of Pancreatic Cancer Cells Ends in Cachexia. Gastroenterology 2022;163:1161-3. [PMID: 35931104 DOI: 10.1053/j.gastro.2022.07.069] [Reference Citation Analysis]
76 Queen A, Bhutto HN, Yousuf M, Syed MA, Hassan MI. Carbonic anhydrase IX: A tumor acidification switch in heterogeneity and chemokine regulation. Semin Cancer Biol 2022;86:899-913. [PMID: 34998944 DOI: 10.1016/j.semcancer.2022.01.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
77 Cheng Y, Lian S, Li S, Lu Y, Wang J, Deng X, Zhai S, Jia L. Combination of Se-methylselenocysteine, D-α-tocopheryl succinate, β-carotene, and l-lysine can prevent cancer metastases using as an adjuvant therapy. J Zhejiang Univ Sci B 2022;23:943-956. [DOI: 10.1631/jzus.b2200232] [Reference Citation Analysis]
78 Jiang H, Yang B, Jiang Y, Liu X, Chen D, Long F, Yang Z, Tang D. Development and validation of prognostic models for colon adenocarcinoma based on combined immune-and metabolism-related genes. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.1025397] [Reference Citation Analysis]
79 Yang R, Zhang W, Shang X, Chen H, Mu X, Zhang Y, Zheng Q, Wang X, Liu Y. Neutrophil-related genes predict prognosis and response to immune checkpoint inhibitors in bladder cancer. Front Pharmacol 2022;13:1013672. [DOI: 10.3389/fphar.2022.1013672] [Reference Citation Analysis]
80 Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022;11:75. [PMID: 36261847 DOI: 10.1186/s40164-022-00322-w] [Reference Citation Analysis]
81 Guo R, Chen Y, Zhang C, Jin S, Li J, Dai J, Zhang Z. Pemetrexed induces ROS generation and cellular senescence by attenuating TS-mediated thymidylate metabolism to reverse gefitinib resistance in non-small cell lung cancer.. [DOI: 10.21203/rs.3.rs-2135034/v1] [Reference Citation Analysis]
82 Zhang Q, Ma L, Zhou H, Zhou Y, Liu S, Li Q. A prognostic signature of cuproptosis and TCA-related genes for hepatocellular carcinoma. Front Oncol 2022;12:1040736. [DOI: 10.3389/fonc.2022.1040736] [Reference Citation Analysis]
83 Luo Y, Deng F, Zhang Y, Xiao Y. Editorial: Molecular biomarkers and imaging markers in the prediction, diagnosis, and prognosis of bladder cancer. Front Cell Dev Biol 2022;10:1014565. [DOI: 10.3389/fcell.2022.1014565] [Reference Citation Analysis]
84 Liu GH, Chen T, Zhang X, Ma XL, Shi HS. Small molecule inhibitors targeting the cancers. MedComm (2020) 2022;3:e181. [PMID: 36254250 DOI: 10.1002/mco2.181] [Reference Citation Analysis]
85 Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022;21:196. [PMID: 36221123 DOI: 10.1186/s12943-022-01664-z] [Reference Citation Analysis]
86 Ye X, Wang R, Yu X, Wang Z, Hu H, Zhang H. m6A/ m1A /m5C/m7G-related methylation modification patterns and immune characterization in prostate cancer. Front Pharmacol 2022;13:1030766. [DOI: 10.3389/fphar.2022.1030766] [Reference Citation Analysis]
87 Cheng C, Lai J, Chang PM, Hong Y, Huang CF, Wang F. Identifying Essential Genes in Genome-Scale Metabolic Models of Consensus Molecular Subtypes of Colorectal Cancer.. [DOI: 10.1101/2022.10.04.510777] [Reference Citation Analysis]
88 Zhang L, Dai X, Xu W, Song Y, Li M, Zhu Y. Inhibition of IDH3α enhanced the efficacy of chemoimmunotherapy by activating cGAS-STING pathway through regulating acidic tumor microenvironments.. [DOI: 10.21203/rs.3.rs-2075517/v1] [Reference Citation Analysis]
89 Su Z, Wang C, Pan R, Li H, Chen J, Tan J, Tian X, Lin T, Shen J. The hexosamine biosynthesis pathway-related gene signature correlates with immune infiltration and predicts prognosis of patients with osteosarcoma. Front Immunol 2022;13:1028263. [DOI: 10.3389/fimmu.2022.1028263] [Reference Citation Analysis]
90 Valcarcel-Jimenez L, Rogerson C, Yong C, Schmidt C, Yang M, Cremades-Rodelgo M, Harle V, Offord V, Wong K, Mora A, Speed A, Caraffini V, Tran MGB, Maher ER, Stewart GD, Vanharanta S, Adams DJ, Frezza C. HIRA loss transforms FH-deficient cells. Sci Adv 2022;8:eabq8297. [PMID: 36269833 DOI: 10.1126/sciadv.abq8297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Wang FS, Chen PR, Chen TY, Zhang HX. Fuzzy optimization for identifying anti-cancer targets with few side effects in constraint-based models of head and neck cancer. R Soc Open Sci 2022;9:220633. [PMID: 36303939 DOI: 10.1098/rsos.220633] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
92 Wang FS, Chen PR, Chen TY, Zhang HX. Fuzzy optimization for identifying anti-cancer targets with few side effects in constraint-based models of head and neck cancer. R Soc Open Sci 2022;9:220633. [PMID: 36303939 DOI: 10.1098/rsos.220633] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
93 Parlani M, Jorgez C, Friedl P. Plasticity of cancer invasion and energy metabolism. Trends in Cell Biology 2022. [DOI: 10.1016/j.tcb.2022.09.009] [Reference Citation Analysis]
94 Yu N, Ding M, Wang F, Zhou J, Shi X, Cai R, Li J. Near-infrared photoactivatable semiconducting polymer nanocomplexes with bispecific metabolism interventions for enhanced cancer immunotherapy. Nano Today 2022;46:101600. [DOI: 10.1016/j.nantod.2022.101600] [Reference Citation Analysis]
95 Yuneva M. Cold exposure as anti-cancer therapy. Cancer Cell 2022;40:1092-1094. [DOI: 10.1016/j.ccell.2022.09.008] [Reference Citation Analysis]
96 Wang FS, Chen PR, Chen TY, Zhang HX. Fuzzy optimization for identifying anti-cancer targets with few side effects in constraint-based models of head and neck cancer. R Soc Open Sci 2022;9:220633. [PMID: 36303939 DOI: 10.1098/rsos.220633] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Liu Y, Zhang X, Cheng X, Luo Q, Yu M, Long K, Qu W, Tang Y, Gong M, Liang L, Ke X, Song Y. Characterization of fatty acid metabolism-related lncRNAs in lung adenocarcinoma identifying potential novel prognostic targets. Front Genet 2022;13:990153. [PMID: 36299578 DOI: 10.3389/fgene.2022.990153] [Reference Citation Analysis]
98 Wu Z, Yu X, Zhang S, He Y, Guo W. Mechanism underlying circRNA dysregulation in the TME of digestive system cancer. Front Immunol 2022;13:951561. [DOI: 10.3389/fimmu.2022.951561] [Reference Citation Analysis]
99 Lu J, Shuai B, Shou Z, Guo W, Zhou C, Ouyang X, Zhou H, Li J, Cui J, Jiang F, Jin KY, Sarapultsev A, Li F, Zhang G, Luo S, Hu D. Taraxasterol Inhibits Tumor Growth by Inducing Apoptosis and Modulating the Tumor Microenvironment in Non-Small Cell Lung Cancer. Cancers 2022;14:4645. [DOI: 10.3390/cancers14194645] [Reference Citation Analysis]
100 Xiao J, Zhao T, Fang W, Chen Y, Wu H, Li P, Chen X, Yan R, Jiang Y, Li S, Yang H, Wu C, Qin X, Liao X, Cai L, Li T, Liu Y. Caveolin-1 signaling-driven mitochondrial fission and cytoskeleton remodeling promotes breast cancer migration. Int J Biochem Cell Biol 2022;152:106307. [PMID: 36162640 DOI: 10.1016/j.biocel.2022.106307] [Reference Citation Analysis]
101 Li D, Yu H, Hu J, Li S, Yan Y, Li S, Sun L, Jiang G, Hou L, Zhang L, Zhang P. Comparative profiling of single-cell transcriptome reveals heterogeneity of tumor microenvironment between solid and acinar lung adenocarcinoma. J Transl Med 2022;20:423. [PMID: 36138435 DOI: 10.1186/s12967-022-03620-3] [Reference Citation Analysis]
102 van Mourik H, Li M, Baumgartner S, Theys J, Shiri-sverdlov R. All Roads Lead to Cathepsins: The Role of Cathepsins in Non-Alcoholic Steatohepatitis-Induced Hepatocellular Carcinoma. Biomedicines 2022;10:2351. [DOI: 10.3390/biomedicines10102351] [Reference Citation Analysis]
103 Yang Y, Li S, Wang Y, Zhao Y, Li Q. Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Sig Transduct Target Ther 2022;7. [DOI: 10.1038/s41392-022-01168-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
104 Shao Y, Fan X, Yang X, Li S, Huang L, Zhou X, Zhang S, Zheng M, Sun J. Cuproptosis is correlated with clinical status, tumor immune microenvironment and immunotherapy in colorectal cancer: a multi-omic analysis.. [DOI: 10.1101/2022.09.12.507555] [Reference Citation Analysis]
105 Gervais L, Bardin AJ. Stem cells: Mitochondrial biogenesis links growth and EGFR signaling. Curr Biol 2022;32:R931-4. [PMID: 36099901 DOI: 10.1016/j.cub.2022.08.002] [Reference Citation Analysis]
106 Rauckhorst AJ, Borcherding N, Pape DJ, Kraus AS, Scerbo DA, Taylor EB. Mouse tissue harvest-induced hypoxia rapidly alters the in vivo metabolome, between-genotype metabolite level differences, and (13)C-tracing enrichments. Mol Metab 2022;66:101596. [PMID: 36100179 DOI: 10.1016/j.molmet.2022.101596] [Reference Citation Analysis]
107 Zhang C, Wang H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer 2022;1877:188798. [PMID: 36096336 DOI: 10.1016/j.bbcan.2022.188798] [Reference Citation Analysis]
108 Chen X, Cao M, Wang P, Chu S, Li M, Hou P, Zheng J, Li Z, Bai J. The emerging roles of TRIM21 in coordinating cancer metabolism, immunity and cancer treatment. Front Immunol 2022;13:968755. [DOI: 10.3389/fimmu.2022.968755] [Reference Citation Analysis]
109 Lv J, Chen S, Chen X, Xie J, He Z, Fan T, Ma K, Abudurousuli K, Yang J, Qiu X, Dai H. Effect of glioma-derived immunoglobulin on biological function of glioma cells. Eur J Cancer 2022;175:86-98. [PMID: 36096041 DOI: 10.1016/j.ejca.2022.08.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Cui Y, Feng H, Liu J, Wu J, Zhu R, Huang R, Yan J. Identification of hexosamine biosynthesis pathway as a novel prognostic signature and its correlation with immune infiltration in bladder cancer. Front Mol Biosci 2022;9:1009168. [DOI: 10.3389/fmolb.2022.1009168] [Reference Citation Analysis]
111 Wu Y, Zhang X, Wang Z, Zheng W, Cao H, Shen W. Targeting oxidative phosphorylation as an approach for the treatment of ovarian cancer. Front Oncol 2022;12:971479. [DOI: 10.3389/fonc.2022.971479] [Reference Citation Analysis]
112 Kayastha F, Herrington NB, Kapadia B, Roychowdhury A, Nanaji N, Kellogg GE, Gartenhaus RB. Novel eIF4A1 inhibitors with anti-tumor activity in lymphoma. Mol Med 2022;28:101. [PMID: 36058921 DOI: 10.1186/s10020-022-00534-0] [Reference Citation Analysis]
113 Dekker Y, Le Dévédec SE, Danen EHJ, Liu Q. Crosstalk between Hypoxia and Extracellular Matrix in the Tumor Microenvironment in Breast Cancer. Genes (Basel) 2022;13:1585. [PMID: 36140753 DOI: 10.3390/genes13091585] [Reference Citation Analysis]
114 Yang Y, Peng Z, Flores ER, Kleinerman ES. Pramlintide: A Novel Therapeutic Approach for Osteosarcoma through Metabolic Reprogramming. Cancers (Basel) 2022;14:4310. [PMID: 36077845 DOI: 10.3390/cancers14174310] [Reference Citation Analysis]
115 Orzechowska-licari EJ, Lacomb JF, Mojumdar A, Bialkowska AB. SP and KLF Transcription Factors in Cancer Metabolism. IJMS 2022;23:9956. [DOI: 10.3390/ijms23179956] [Reference Citation Analysis]
116 Wang D, Wang F, Kong X, Li Q, Shi H, Zhao S, Li W, Li Y, Meng J. The role of metabolic reprogramming in cancer metastasis and potential mechanism of traditional Chinese medicine intervention. Biomedicine & Pharmacotherapy 2022;153:113376. [DOI: 10.1016/j.biopha.2022.113376] [Reference Citation Analysis]
117 Stefanello ST, Mizdal CR, Azzam I, Döhlinger L, Oeckinghaus A, Shahin V. Five‐to‐Seven Carbon Glycols Severely Impair Bioenergetics and Metabolism of Aggressive Lung Cancer Cells. Advanced NanoBiomed Research 2022;2:2200050. [DOI: 10.1002/anbr.202200050] [Reference Citation Analysis]
118 Qing L, Li Q, Dong Z. MUC1: An emerging target in cancer treatment and diagnosis. Bulletin du Cancer 2022. [DOI: 10.1016/j.bulcan.2022.08.001] [Reference Citation Analysis]
119 Torcasio SM, Oliva R, Montesi M, Panseri S, Bassi G, Mazzaglia A, Piperno A, Coulembier O, Scala A. Three-armed RGD-decorated starPLA-PEG nanoshuttle for docetaxel delivery. Biomaterials Advances 2022;140:213043. [DOI: 10.1016/j.bioadv.2022.213043] [Reference Citation Analysis]
120 Weiss-sadan T, Ge M, de Groot A, Carlin A, Gohar M, Fischer H, Shi L, Wei T, Adelmann CH, Vornbäumen T, Dürr BR, Takahashi M, Richter M, Zhang J, Yang T, Vijay V, Hayashi M, Fischer DE, Hata AN, Papaginanakopoulos T, Mostoslavsky R, Bardeesy N, Bar-peled L. NRF2 activation induces NADH-reductive stress providing a metabolic vulnerability in lung cancer.. [DOI: 10.1101/2022.08.31.506025] [Reference Citation Analysis]
121 Shen J, Wang Q, Liang C, Su X, Ke Y, Mao Y, Fang J, Duan S. Novel Insights into miR-944 in Cancer. Cancers 2022;14:4232. [DOI: 10.3390/cancers14174232] [Reference Citation Analysis]
122 Liu X, Zhang Y, Li W, Zhou X. Lactylation, an emerging hallmark of metabolic reprogramming: Current progress and open challenges. Front Cell Dev Biol 2022;10:972020. [DOI: 10.3389/fcell.2022.972020] [Reference Citation Analysis]
123 Jin Y, Jung S, Lim MA, Oh C, Piao Y, Kim HJ, Nguyena Q, Kang YE, Chang JW, Won H, Koo BS. SHMT2 Induces Stemness and Progression of Head and Neck Cancer. IJMS 2022;23:9714. [DOI: 10.3390/ijms23179714] [Reference Citation Analysis]
124 Bansal M, Gupta A, Ding H. MYCN and Metabolic Reprogramming in Neuroblastoma. Cancers 2022;14:4113. [DOI: 10.3390/cancers14174113] [Reference Citation Analysis]
125 Liu C, Liu D, Wang F, Xie J, Liu Y, Wang H, Rong J, Xie J, Wang J, Zeng R, Zhou F, Peng J, Xie Y. Identification of a glycolysis- and lactate-related gene signature for predicting prognosis, immune microenvironment, and drug candidates in colon adenocarcinoma. Front Cell Dev Biol 2022;10:971992. [DOI: 10.3389/fcell.2022.971992] [Reference Citation Analysis]
126 Zhao C, Dong J, Deng L, Tan Y, Jiang W, Cai Z. Molecular network strategy in multi-omics and mass spectrometry imaging. Curr Opin Chem Biol 2022;70:102199. [PMID: 36027696 DOI: 10.1016/j.cbpa.2022.102199] [Reference Citation Analysis]
127 Hou G, Qian J, Guo M, Xu W, Wang J, Wang Y, Suo A. Hydrazide-manganese coordinated multifunctional nanoplatform for potentiating immunotherapy in hepatocellular carcinoma. J Colloid Interface Sci 2022;628:968-83. [PMID: 36037718 DOI: 10.1016/j.jcis.2022.08.091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
128 Wu M, Wang Q, Chen S, Zhou Z, Li J, Sun H, Liu J, Wang G, Zhou F, Sun M. Metabolic intervention liposome for targeting glutamine-addiction of breast cancer. J Control Release 2022;350:1-10. [PMID: 35907591 DOI: 10.1016/j.jconrel.2022.07.034] [Reference Citation Analysis]
129 Liu J, Shen H, Gu W, Zheng H, Wang Y, Ma G, Du J. Prediction of prognosis, immunogenicity and efficacy of immunotherapy based on glutamine metabolism in lung adenocarcinoma. Front Immunol 2022;13:960738. [PMID: 36032135 DOI: 10.3389/fimmu.2022.960738] [Reference Citation Analysis]
130 Kou Y, Geng F, Guo D. Lipid Metabolism in Glioblastoma: From De Novo Synthesis to Storage. Biomedicines 2022;10:1943. [DOI: 10.3390/biomedicines10081943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Ren M, Zheng X, Gao H, Jiang A, Yao Y, He W. Nanomedicines Targeting Metabolism in the Tumor Microenvironment. Front Bioeng Biotechnol 2022;10:943906. [DOI: 10.3389/fbioe.2022.943906] [Reference Citation Analysis]
132 Mameri H, Buhagiar-Labarchède G, Fontaine G, Corcelle C, Barette C, Onclercq-Delic R, Beauvineau C, Mahuteau-Betzer F, Amor-Guéret M. Cytidine deaminase deficiency in tumor cells is associated with sensitivity to a naphthol derivative and a decrease in oncometabolite levels. Cell Mol Life Sci 2022;79:465. [PMID: 35925417 DOI: 10.1007/s00018-022-04487-9] [Reference Citation Analysis]
133 Yang J, Li G, Yuan J, Jing S, Wang X, Yang F, Liu Y, Ding Y, Li G, Xie G, Tao A, Liu M, Xie M. A Smart Silk‐Based Microneedle for Cancer Stem Cell Synergistic Immunity/Hydrogen Therapy. Adv Funct Materials. [DOI: 10.1002/adfm.202206406] [Reference Citation Analysis]
134 Zhong X, Ran R, Gao S, Shi M, Shi X, Long F, Zhou Y, Yang Y, Tang X, Lin A, He W, Yu T, Han T. Complex metabolic interactions between ovary, plasma, urine, and hair in ovarian cancer. Front Oncol 2022;12:916375. [DOI: 10.3389/fonc.2022.916375] [Reference Citation Analysis]
135 Malvi P, Rawat V, Gupta R, Wajapeyee N. Transcriptional, chromatin, and metabolic landscapes of LDHA inhibitor–resistant pancreatic ductal adenocarcinoma. Front Oncol 2022;12:926437. [DOI: 10.3389/fonc.2022.926437] [Reference Citation Analysis]
136 Delle Donne R, Iannucci R, Rinaldi L, Roberto L, Oliva MA, Senatore E, Borzacchiello D, Lignitto L, Giurato G, Rizzo F, Sellitto A, Chiuso F, Castaldo S, Scala G, Campani V, Nele V, De Rosa G, D’ambrosio C, Garbi C, Scaloni A, Weisz A, Ambrosino C, Arcella A, Feliciello A. Targeted inhibition of ubiquitin signaling reverses metabolic reprogramming and suppresses glioblastoma growth. Commun Biol 2022;5. [DOI: 10.1038/s42003-022-03639-8] [Reference Citation Analysis]
137 Zhang Y, Zhang H, Jiang Z, Cui Y, Wang Q. Targeted glutamine-decorated chitosan nanoparticles with enhanced synergism of chemotherapeutic and natural medicine for hepatic carcinoma therapy. Materials & Design 2022;220:110842. [DOI: 10.1016/j.matdes.2022.110842] [Reference Citation Analysis]
138 Dai W, Xiang W, Han L, Yuan Z, Wang R, Ma Y, Yang Y, Cai S, Xu Y, Mo S, Li Q, Cai G. PTPRO represses colorectal cancer tumorigenesis and progression by reprogramming fatty acid metabolism. Cancer Commun (Lond) 2022. [PMID: 35904817 DOI: 10.1002/cac2.12341] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
139 Lang X, Huang C, Cui H, Wang F. Prognosis Analysis and Validation of Fatty Acid Metabolism-Related lncRNAs and Tumor Immune Microenvironment in Cervical Cancer. Journal of Immunology Research 2022;2022:1-11. [DOI: 10.1155/2022/4954457] [Reference Citation Analysis]
140 Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022;12:955892. [DOI: 10.3389/fonc.2022.955892] [Reference Citation Analysis]
141 Li D, Liang J, Yang W, Guo W, Song W, Zhang W, Wu X, He B. A distinct lipid metabolism signature of acute myeloid leukemia with prognostic value. Front Oncol 2022;12:876981. [DOI: 10.3389/fonc.2022.876981] [Reference Citation Analysis]
142 Wang K, Ye X, Yin C, Ren Q, Chen Y, Qin X, Duan C, Lu A, Gao L, Guan D. Computational Metabolomics Reveals the Potential Mechanism of Matrine Mediated Metabolic Network Against Hepatocellular Carcinoma. Front Cell Dev Biol 2022;10:859236. [DOI: 10.3389/fcell.2022.859236] [Reference Citation Analysis]
143 Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPRmt): shielding against toxicity to mitochondria in cancer. J Hematol Oncol 2022;15:98. [PMID: 35864539 DOI: 10.1186/s13045-022-01317-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
144 Lv Y, Lv Y, Wang Z, Yuan K, Zeng Y. Noncoding RNAs as sensors of tumor microenvironmental stress. J Exp Clin Cancer Res 2022;41:224. [PMID: 35842651 DOI: 10.1186/s13046-022-02433-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
145 Guler MN, Tscheiller NM, Sabater-molina M, Gimeno JR, Nebigil CG. Evidence for reciprocal network interactions between injured hearts and cancer. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.929259] [Reference Citation Analysis]
146 Guzzeloni V, Veschini L, Pedica F, Ferrero E, Ferrarini M. 3D Models as a Tool to Assess the Anti-Tumor Efficacy of Therapeutic Antibodies: Advantages and Limitations. Antibodies (Basel) 2022;11. [PMID: 35892706 DOI: 10.3390/antib11030046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
147 Cao Y, Yu X, Zeng T, Fu Z, Zhao Y, Nie B, Zhao J, Yin Y, Li G. Molecular Characterization of Exosomes for Subtype-Based Diagnosis of Breast Cancer. J Am Chem Soc 2022. [PMID: 35802880 DOI: 10.1021/jacs.2c00119] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
148 Guo Y, Yang J, Gao H, Tian X, Zhang X, Kan Q. Development and Verification of a Combined Immune- and Metabolism-Related Prognostic Signature for Hepatocellular Carcinoma. Front Immunol 2022;13:927635. [DOI: 10.3389/fimmu.2022.927635] [Reference Citation Analysis]
149 Wang S, Liu G, Li Y, Pan Y. Metabolic Reprogramming Induces Macrophage Polarization in the Tumor Microenvironment. Front Immunol 2022;13:840029. [DOI: 10.3389/fimmu.2022.840029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
150 Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Qian Y, Yang Z, Jiang X. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol 2022;15. [DOI: 10.1186/s13045-022-01304-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
151 Peng Z, Ye M, Ding H, Feng Z, Hu K. Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. J Transl Med 2022;20. [DOI: 10.1186/s12967-022-03510-8] [Reference Citation Analysis]
152 Rodrigues T, Piccirillo S, Magi S, Preziuso A, Dos Santos Ramos V, Serfilippi T, Orciani M, Maciel Palacio Alvarez M, Luis Dos Santos Tersariol I, Amoroso S, Lariccia V. Control of Ca2+ and metabolic homeostasis by the Na+/Ca2+ exchangers (NCXs) in health and disease. Biochem Pharmacol 2022;203:115163. [PMID: 35803319 DOI: 10.1016/j.bcp.2022.115163] [Reference Citation Analysis]
153 Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants 2022;11:1324. [DOI: 10.3390/antiox11071324] [Reference Citation Analysis]
154 Chen Y, Huang X, Chen L, Weng G, Huang Z, Zhang Y, Xiao T, Chen J, Zhu K, Xu Y. Characterization of the Immune Infiltration Landscape and Identification of Prognostic Biomarkers for Esophageal Cancer. Mol Biotechnol 2022. [PMID: 35780460 DOI: 10.1007/s12033-022-00526-9] [Reference Citation Analysis]
155 Petrick LM, Shomron N. AI/ML-driven advances in untargeted metabolomics and exposomics for biomedical applications. Cell Reports Physical Science 2022;3:100978. [DOI: 10.1016/j.xcrp.2022.100978] [Reference Citation Analysis]
156 Fang C, Liang Y, Huang Y, Jiang D, Li J, Ma H, Guo L, Jiang W, Feng Y. P3H4 Promotes Malignant Progression of Lung Adenocarcinoma via Interaction with EGFR. Cancers 2022;14:3243. [DOI: 10.3390/cancers14133243] [Reference Citation Analysis]
157 He D, Chen M, Chang L, Gu J, Liu F, Gao X, Ruan Y. De novo pyrimidine synthesis fuels glycolysis and confers chemoresistance in gastric cancer. Cancer Letters 2022. [DOI: 10.1016/j.canlet.2022.215837] [Reference Citation Analysis]
158 Li Z, Li X, Ai S, Liu S, Guan W. Glucose Metabolism Intervention-Facilitated Nanomedicine Therapy. Int J Nanomedicine 2022;17:2707-31. [PMID: 35747168 DOI: 10.2147/IJN.S364840] [Reference Citation Analysis]
159 Apiz-saab JJ, Dzierozynski LN, Jonker PB, Zhu Z, Chen RN, Oh M, Sheehan C, Macleod KF, Weber CR, Muir A. Pancreatic tumors activate arginine biosynthesis to adapt to myeloid-driven amino acid stress.. [DOI: 10.1101/2022.06.21.497008] [Reference Citation Analysis]
160 Ren Y, He S, Feng S, Yang W. A Prognostic Model for Colon Adenocarcinoma Patients Based on Ten Amino Acid Metabolism Related Genes. Front Public Health 2022;10:916364. [PMID: 35712285 DOI: 10.3389/fpubh.2022.916364] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
161 Schwarzer A, Oliveira M, Kleppa M, Slattery SD, Anantha A, Cooper A, Hannink M, Schambach A, Dörrie A, Kotlyarov A, Gaestel M, Hembrough T, Levine J, Luther M, Stocum M, Stiles L, Liesa M, Kostura MJ. Pharmacological activation of the mitochondrial stress protease OMA1 reveals a therapeutic liability in Diffuse Large B-Cell Lymphoma.. [DOI: 10.1101/2022.06.12.495213] [Reference Citation Analysis]
162 Zhang Y, Li N, Chang Z, Wang H, Pei H, Zhang D, Zhang Q, Huang J, Guo Y, Zhao Y, Pan Y, Chen C, Chen Y. The Metabolic Signature of AML Cells Treated With Homoharringtonine. Front Oncol 2022;12:931527. [DOI: 10.3389/fonc.2022.931527] [Reference Citation Analysis]
163 Guardado Rivas MO, Stuart SD, Thach D, Dahan M, Shorr R, Zachar Z, Bingham PM. Evidence for a novel, effective approach to targeting carcinoma catabolism exploiting the first-in-class, anti-cancer mitochondrial drug, CPI-613. PLoS ONE 2022;17:e0269620. [DOI: 10.1371/journal.pone.0269620] [Reference Citation Analysis]
164 Rauckhorst AJ, Borcherding N, Pape DJ, Kraus AS, Scerbo DA, Taylor EB. Mouse tissue harvest-induced hypoxia rapidly alters the in vivo metabolome, between-genotype metabolite level differences, and 13C-tracing enrichments.. [DOI: 10.1101/2022.06.07.495179] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Ma DB, Liu XY, Jia H, Zhang Y, Jiang Q, Sun H, Li X, Sun F, Chai Y, Feng F, Liu L. A Novel Small-Molecule Inhibitor of SREBP-1 Based on Natural Product Monomers Upregulates the Sensitivity of Lung Squamous Cell Carcinoma Cells to Antitumor Drugs. Front Pharmacol 2022;13:895744. [PMID: 35662712 DOI: 10.3389/fphar.2022.895744] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
166 Valcarcel-jimenez L, Rogerson C, Yong C, Schmidt C, Yang M, Harle V, Offord V, Wong K, Mora A, Speed A, Caraffini V, Tran MGB, Maher ER, Stewart GD, Vanharanta S, Adams DJ, Frezza C. HIRA loss transforms FH-deficient cells.. [DOI: 10.1101/2022.06.04.492123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
167 Ruan X, Ye Y, Cheng W, Xu L, Huang M, Chen Y, Zhu J, Lu X, Yan F. Multi-Omics Integrative Analysis of Lung Adenocarcinoma: An in silico Profiling for Precise Medicine. Front Med 2022;9:894338. [DOI: 10.3389/fmed.2022.894338] [Reference Citation Analysis]
168 Chang L, Lu P, Yang W, Hu Y, Zheng L, Zhao Q, Lin N, Zhang W. AKR1C1 promotes non-small cell lung cancer proliferation via crosstalk between HIF-1α and metabolic reprogramming. Translational Oncology 2022;20:101421. [DOI: 10.1016/j.tranon.2022.101421] [Reference Citation Analysis]
169 Xiao C, Chi Q, Wang X. Recent Progress in Mass Spectrometry-based Metabolomics for Colorectal Cancer. Chem Res Chin Univ . [DOI: 10.1007/s40242-022-2119-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Jin X, Li L, Peng Q, Gan C, Gao L, He S, Tan S, Pu W, Liu Y, Gong Y, Yao Y, Wang G, Liu X, Gong M, Lei P, Zhang H, Qi S, Xu H, Hu H, Dong B, Peng Y, Su D, Dai L. Glycyrrhetinic acid restricts mitochondrial energy metabolism by targeting SHMT2. iScience 2022;25:104349. [PMID: 35602963 DOI: 10.1016/j.isci.2022.104349] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Jin L, Zheng D, Mo D, Guan Y, Wen J, Zhang X, Chen C. Glucose-to-Lymphocyte Ratio (GLR) as a Predictor of Preoperative Central Lymph Node Metastasis in Papillary Thyroid Cancer Patients With Type 2 Diabetes Mellitus and Construction of the Nomogram. Front Endocrinol (Lausanne) 2022;13:829009. [PMID: 35557848 DOI: 10.3389/fendo.2022.829009] [Reference Citation Analysis]
172 Chiarella E, Nisticò C, Di Vito A, Morrone HL, Mesuraca M. Targeting of Mevalonate-Isoprenoid Pathway in Acute Myeloid Leukemia Cells by Bisphosphonate Drugs. Biomedicines 2022;10:1146. [DOI: 10.3390/biomedicines10051146] [Reference Citation Analysis]
173 Rehman AU, Khan P, Maurya SK, Siddiqui JA, Santamaria-Barria JA, Batra SK, Nasser MW. Liquid biopsies to occult brain metastasis. Mol Cancer 2022;21:113. [PMID: 35538484 DOI: 10.1186/s12943-022-01577-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
174 Torresano L, Santacatterina F, Domínguez-zorita S, Nuevo-tapioles C, Núñez-salgado A, Esparza-moltó PB, González-llorente L, Romero-carramiñana I, Núñez de Arenas C, Sánchez-garrido B, Nájera L, Salas C, Provencio M, Cuezva JM. Analysis of the metabolic proteome of lung adenocarcinomas by reverse-phase protein arrays (RPPA) emphasizes mitochondria as targets for therapy. Oncogenesis 2022;11. [DOI: 10.1038/s41389-022-00400-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
175 Franco CN, Noe MM, Albrecht LV. Metabolism and Endocrine Disorders: What Wnt Wrong? Front Endocrinol 2022;13:887037. [DOI: 10.3389/fendo.2022.887037] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
176 Bosque JJ, Calvo GF, Navarro MC. Modelling the effect of vascular status on tumour evolution and outcome after thermal therapy. Applied Mathematical Modelling 2022. [DOI: 10.1016/j.apm.2022.05.029] [Reference Citation Analysis]
177 Yang J, Liu DJ, Zheng JH, He RZ, Xu DP, Yang MW, Yao HF, Fu XL, Yang JY, Huo YM, Tao LY, Hua R, Sun YW, Kong XM, Jiang SH, Liu W. IRAK2-NF-κB signaling promotes glycolysis-dependent tumor growth in pancreatic cancer. Cell Oncol (Dordr) 2022. [PMID: 35486320 DOI: 10.1007/s13402-022-00670-z] [Reference Citation Analysis]
178 Cho JH, You Y, Koo H, Lee DC, Yeom YI, Park KC. LPIN1 Induces Gefitinib Resistance in EGFR Inhibitor-Resistant Non-Small Cell Lung Cancer Cells. Cancers 2022;14:2222. [DOI: 10.3390/cancers14092222] [Reference Citation Analysis]
179 Qiao Y, Shi Q, Yuan X, Ding J, Li X, Shen M, Huang S, Chen Z, Wang L, Zhao Y, He X. RNA binding protein RALY activates the cholesterol synthesis pathway through an MTA1 splicing switch in hepatocellular carcinoma. Cancer Lett 2022;538:215711. [PMID: 35490918 DOI: 10.1016/j.canlet.2022.215711] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
180 Li Y, Liu J, Sun L, Zhang B, Shi R. Research trends of cancer metabolism: analysis from a Chinese perspective. Cancer Commun (Lond) 2022. [PMID: 35470986 DOI: 10.1002/cac2.12293] [Reference Citation Analysis]
181 Li X, Jiang E, Zhao H, Chen Y, Xu Y, Feng C, Li J, Shang Z. Glycometabolic reprogramming-mediated proangiogenic phenotype enhancement of cancer-associated fibroblasts in oral squamous cell carcinoma: role of PGC-1α/PFKFB3 axis. Br J Cancer 2022. [PMID: 35444287 DOI: 10.1038/s41416-022-01818-2] [Reference Citation Analysis]
182 Zhu L, Zhu X, Wu Y. Effects of Glucose Metabolism, Lipid Metabolism, and Glutamine Metabolism on Tumor Microenvironment and Clinical Implications. Biomolecules 2022;12:580. [DOI: 10.3390/biom12040580] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
183 Xiong Q, Feng D, Wang Z, Ying Y, Xu C, Wei Q, Zeng S, Yang L. Fatty Acid Synthase Is the Key Regulator of Fatty Acid Metabolism and Is Related to Immunotherapy in Bladder Cancer. Front Immunol 2022;13:836939. [PMID: 35392075 DOI: 10.3389/fimmu.2022.836939] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
184 Wu Q, Tsai HI, Zhu H, Wang D. The Entanglement between Mitochondrial DNA and Tumor Metastasis. Cancers (Basel) 2022;14:1862. [PMID: 35454769 DOI: 10.3390/cancers14081862] [Reference Citation Analysis]
185 Carles-fontana R, Heaton N, Palma E, Khorsandi S. Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer. Cancers 2022;14:1865. [DOI: 10.3390/cancers14081865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
186 Chagri S, Ng DYW, Weil T. Designing bioresponsive nanomaterials for intracellular self-assembly. Nat Rev Chem. [DOI: 10.1038/s41570-022-00373-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
187 Yao S, Zhao X, Wang X, Huang T, Ding Y, Zhang J, Zhang Z, Wang ZL, Li L. Bioinspired Electron Polarization of Nanozymes with a Human Self-Generated Electric Field for Cancer Catalytic Therapy. Adv Mater 2022;34:e2109568. [PMID: 35151235 DOI: 10.1002/adma.202109568] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
188 Cavicchioli MV, Santorsola M, Balboni N, Mercatelli D, Giorgi FM. Prediction of Metabolic Profiles from Transcriptomics Data in Human Cancer Cell Lines. Int J Mol Sci 2022;23:3867. [PMID: 35409231 DOI: 10.3390/ijms23073867] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
189 Li S, Yang H, Li W, Liu JY, Ren LW, Yang YH, Ge BB, Zhang YZ, Fu WQ, Zheng XJ, Du GH, Wang JH. ADH1C inhibits progression of colorectal cancer through the ADH1C/PHGDH /PSAT1/serine metabolic pathway. Acta Pharmacol Sin 2022. [PMID: 35354963 DOI: 10.1038/s41401-022-00894-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
190 Poulaki A, Giannouli S. Mitochondrial Lipids: From Membrane Organization to Apoptotic Facilitation. Int J Mol Sci 2022;23:3738. [PMID: 35409107 DOI: 10.3390/ijms23073738] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
191 Mai S, Liang L, Mai G, Liu X, Diao D, Cai R, Liu L. Development and Validation of Lactate Metabolism-Related lncRNA Signature as a Prognostic Model for Lung Adenocarcinoma. Front Endocrinol 2022;13:829175. [DOI: 10.3389/fendo.2022.829175] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
192 Luo B, Wang L, Gao W, Su Y, Lu Y, Zheng J, Yin J, Zhao Q, Li J, Da Y, Li L. Using a Gene Network of Pyroptosis to Quantify the Responses to Immunotherapy and Prognosis for Neuroblastoma Patients. Front Immunol 2022;13:845757. [DOI: 10.3389/fimmu.2022.845757] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
193 Zuo S, Wang H, Li L, Pan H, Lu L. Thymidine Kinase 1 Drives Skin Cutaneous Melanoma Malignant Progression and Metabolic Reprogramming. Front Oncol 2022;12:802807. [PMID: 35311151 DOI: 10.3389/fonc.2022.802807] [Reference Citation Analysis]
194 Zhang J, Yin Y, Zhang J, Zhang J, Su W, Ma H, Jia F, Zhao G, Wang H. Suppression of Energy Metabolism in Cancer Cells with Nutrient-Sensing Nanodrugs. Nano Lett . [DOI: 10.1021/acs.nanolett.2c00356] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
195 Yu K, Du Z, Xuan H, Chen Q. Comprehensive analysis based in silico study of organophosphate flame retardants - environmental explanation of bladder cancer progression. Environmental Toxicology and Pharmacology 2022. [DOI: 10.1016/j.etap.2022.103851] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
196 Chen Q, Li N, Wang X, Yang Y, Xiang Y, Long X, Zhang J, Huang J, Chen L, Huang Q. Mitochondria-Targeting Chemodynamic Therapy Nanodrugs for Cancer Treatment. Front Pharmacol 2022;13:847048. [PMID: 35222052 DOI: 10.3389/fphar.2022.847048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
197 Szanto I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int J Mol Sci 2022;23:2702. [PMID: 35269843 DOI: 10.3390/ijms23052702] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
198 Ghosh JC, Perego M, Agarwal E, Bertolini I, Wang Y, Goldman AR, Tang HY, Kossenkov AV, Libby CJ, Languino LR, Plow EF, Morotti A, Ottobrini L, Locatelli M, Speicher DW, Caino MC, Cassel J, Salvino JM, Robert ME, Vaira V, Altieri DC. Ghost mitochondria drive metastasis through adaptive GCN2/Akt therapeutic vulnerability. Proc Natl Acad Sci U S A 2022;119:e2115624119. [PMID: 35177476 DOI: 10.1073/pnas.2115624119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
199 Sung JY, Cheong JH. New Immunometabolic Strategy Based on Cell Type-Specific Metabolic Reprogramming in the Tumor Immune Microenvironment. Cells 2022;11:768. [PMID: 35269390 DOI: 10.3390/cells11050768] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
200 Amemiya T, Yamaguchi T. Oscillations and Dynamic Symbiosis in Cellular Metabolism in Cancer. Front Oncol 2022;12:783908. [DOI: 10.3389/fonc.2022.783908] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
201 Fennell EMJ, Aponte-collazo LJ, Wynn JD, Drizyte-miller K, Leung E, Greer YE, Graves PR, Iwanowicz AA, Ashamalla H, Holmuhamedov E, Lang H, Karanewsky DS, Der CJ, Houry WA, Lipkowitz S, Iwanowicz EJ, Graves LM. Characterization of TR-107, a Novel Chemical Activator of the Human Mitochondrial Protease ClpP.. [DOI: 10.1101/2022.02.14.480426] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
202 Cunningham R, Hansen CG. The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022;136:197-222. [PMID: 35119068 DOI: 10.1042/CS20201474] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
203 Liao Y, Sumara I, Pangou E. Non-proteolytic ubiquitylation in cellular signaling and human disease. Commun Biol 2022;5:114. [PMID: 35136173 DOI: 10.1038/s42003-022-03060-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
204 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
205 Reyes-Castellanos G, Abdel Hadi N, Carrier A. Autophagy Contributes to Metabolic Reprogramming and Therapeutic Resistance in Pancreatic Tumors. Cells 2022;11:426. [PMID: 35159234 DOI: 10.3390/cells11030426] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
206 Gómez-Cebrián N, Poveda JL, Pineda-Lucena A, Puchades-Carrasco L. Metabolic Phenotyping in Prostate Cancer Using Multi-Omics Approaches. Cancers (Basel) 2022;14:596. [PMID: 35158864 DOI: 10.3390/cancers14030596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
207 Kim IH, Lee HJ. The Frontline Immunotherapy-Based Treatment of Advanced Clear Cell Renal Cell Carcinoma: Current Evidence and Clinical Perspective. Biomedicines 2022;10:251. [PMID: 35203461 DOI: 10.3390/biomedicines10020251] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
208 Huang C, Chen X, Wei C, Wang H, Gao H. Deep Eutectic Solvents as Active Pharmaceutical Ingredient Delivery Systems in the Treatment of Metabolic Related Diseases. Front Pharmacol 2021;12:794939. [PMID: 35002726 DOI: 10.3389/fphar.2021.794939] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
209 Kawano Y, Sasano T, Arima Y, Kushima S, Tsujita K, Matsuoka M, Hata H. A novel PDK1 inhibitor, JX06, inhibits glycolysis and induces apoptosis in multiple myeloma cells. Biochem Biophys Res Commun 2022;587:153-9. [PMID: 34875534 DOI: 10.1016/j.bbrc.2021.11.102] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
210 Posso MC, Domingues FC, Ferreira S, Silvestre S. Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. Molecules 2022;27:276. [PMID: 35011508 DOI: 10.3390/molecules27010276] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
211 Wang X, Wang Z, Huang R, Lu Z, Chen X, Huang D. UPP1 Promotes Lung Adenocarcinoma Progression through Epigenetic Regulation of Glycolysis. Aging and disease 2022;13:1488. [DOI: 10.14336/ad.2022.0218] [Reference Citation Analysis]
212 Krstic J, Schindlmaier K, Prokesch A. Combination strategies to target metabolic flexibility in cancer. International Review of Cell and Molecular Biology 2022. [DOI: 10.1016/bs.ircmb.2022.03.001] [Reference Citation Analysis]
213 Xu C, Zhang K, Yang F, Zhou X, Liu S, Li Y, Ma S, Zhao X, Lu T, Lu S, Zhang J, Li H, Han D, Wen W, Qin W. CD248+ Cancer-Associated Fibroblasts: A Novel Prognostic and Therapeutic Target for Renal Cell Carcinoma. Front Oncol 2021;11:773063. [PMID: 34970489 DOI: 10.3389/fonc.2021.773063] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
214 Dhandayuthapani S, Chidamabaram A, Thekkumalai M, Prabasheela B, Bhagat T, Batra J. Biochemical mechanism of ferroptosis-mediated cancer cell death in triple-negative breast cancer: An insight. Santosh Univ J Health Sci 2022;8:90. [DOI: 10.4103/sujhs.sujhs_37_22] [Reference Citation Analysis]
215 Jung MK, Okekunle AP, Lee JE, Sung MK, Lim YJ. Role of Branched-chain Amino Acid Metabolism in Tumor Development and Progression. J Cancer Prev 2021;26:237-43. [PMID: 35047449 DOI: 10.15430/JCP.2021.26.4.237] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
216 Krencz I, Sztankovics D, Danko T, Sebestyen A, Khoor A. Progression and metastasis of small cell lung carcinoma: the role of the PI3K/Akt/mTOR pathway and metabolic alterations. Cancer Metastasis Rev. [DOI: 10.1007/s10555-021-10012-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
217 Yuan W, Yong W, Zhu J, Shi D. DPP4 Regulates DHCR24-Mediated Cholesterol Biosynthesis to Promote Methotrexate Resistance in Gestational Trophoblastic Neoplastic Cells. Front Oncol 2021;11:704024. [PMID: 34926239 DOI: 10.3389/fonc.2021.704024] [Reference Citation Analysis]
218 Teixeira CSS, Sousa SF. Current Status of the Use of Multifunctional Enzymes as Anti-Cancer Drug Targets. Pharmaceutics 2021;14:10. [DOI: 10.3390/pharmaceutics14010010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
219 Ma X, Gao Y, Chen Y, Liu J, Yang C, Bao C, Wang Y, Feng Y, Song X, Qiao S. M2-Type Macrophages Induce Tregs Generation by Activating the TGF-β/Smad Signalling Pathway to Promote Colorectal Cancer Development. Onco Targets Ther 2021;14:5391-402. [PMID: 34908844 DOI: 10.2147/OTT.S336548] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
220 Bi Q, Luo R, Li Y, Zhao J, Fu X, Chen H, Lv Y, Liu Z, Liang Q, Tang Q. Low Inorganic Phosphate Stress Inhibits Liver Cancer Progression: from In Vivo to In Vitro. Advanced Therapeutics 2022;5:2100224. [DOI: 10.1002/adtp.202100224] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
221 Borroni EM, Grizzi F. Cancer Immunoediting and beyond in 2021. Int J Mol Sci 2021;22:13275. [PMID: 34948072 DOI: 10.3390/ijms222413275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
222 Parker JL, Deme JC, Kolokouris D, Kuteyi G, Biggin PC, Lea SM, Newstead S. Molecular basis for redox control by the human cystine/glutamate antiporter system xc. Nat Commun 2021;12:7147. [PMID: 34880232 DOI: 10.1038/s41467-021-27414-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
223 Duits DEM, de Visser KE. Impact of cancer cell-intrinsic features on neutrophil behavior. Semin Immunol 2021;:101546. [PMID: 34887163 DOI: 10.1016/j.smim.2021.101546] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
224 De Lerma Barbaro A, Palano MT, Cucchiara M, Gallazzi M, Mortara L, Bruno A. Metabolic Rewiring in the Tumor Microenvironment to Support Immunotherapy: A Focus on Neutrophils, Polymorphonuclear Myeloid-Derived Suppressor Cells and Natural Killer Cells. Vaccines (Basel) 2021;9:1178. [PMID: 34696286 DOI: 10.3390/vaccines9101178] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
225 Pan C, Li B, Simon MC. Moonlighting functions of metabolic enzymes and metabolites in cancer. Mol Cell 2021;81:3760-74. [PMID: 34547237 DOI: 10.1016/j.molcel.2021.08.031] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
226 Andreidesz K, Szabo A, Kovacs D, Koszegi B, Bagone Vantus V, Vamos E, Isbera M, Kalai T, Bognar Z, Kovacs K, Gallyas F Jr. Cytostatic Effect of a Novel Mitochondria-Targeted Pyrroline Nitroxide in Human Breast Cancer Lines. Int J Mol Sci 2021;22:9016. [PMID: 34445722 DOI: 10.3390/ijms22169016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
227 Parker JL, Deme JC, Kolokouris D, Kuteyi G, Biggin PC, Lea SM, Newstead S. Molecular basis for redox control by the human cystine/glutamate antiporter System xc-.. [DOI: 10.1101/2021.08.09.455631] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
228 Kerk SA, Lin L, Myers AL, Zhang Y, Jiménez JA, Sajjakulnukit P, Nelson BS, Chen B, Robinson A, Thurston G, Kemp SB, Steele NG, Hoffman MT, Wen H, Long D, Ackenhusen SE, Ramos J, Gao X, Zhang L, Andren A, Nwosu ZC, Galbán S, Halbrook CJ, Lombard DB, Piwnica-worms DR, Ying H, Crawford HC, di Magliano MP, Shah YM, Lyssiotis CA. The Pancreatic Tumor Microenvironment Compensates for Loss of GOT2.. [DOI: 10.1101/2020.08.07.238766] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]