1 |
Wang JY, Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science 2023;379:eadd8643. [PMID: 36656942 DOI: 10.1126/science.add8643] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
|
2 |
Tao J, Bauer DE, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat Commun 2023;14:212. [PMID: 36639728 DOI: 10.1038/s41467-023-35886-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Kumar S, Fry LE, Wang JH, Martin KR, Hewitt AW, Chen FK, Liu GS. RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res 2023;92:101110. [PMID: 35840489 DOI: 10.1016/j.preteyeres.2022.101110] [Reference Citation Analysis]
|
4 |
. Engineered Cas13 variants with minimal collateral RNA targeting. Nat Biotechnol 2023;41:29-30. [PMID: 35962198 DOI: 10.1038/s41587-022-01423-x] [Reference Citation Analysis]
|
5 |
Zhang B, Lin J, Perčulija V, Li Y, Lu Q, Chen J, Ouyang S. Structural insights into target DNA recognition and cleavage by the CRISPR-Cas12c1 system. Nucleic Acids Res 2022;50:11820-33. [PMID: 36321657 DOI: 10.1093/nar/gkac987] [Reference Citation Analysis]
|
6 |
Li M, Yan C, Jiao Y, Xu Y, Bai C, Miao R, Jiang J, Liu J. Site-directed RNA editing by harnessing ADARs: advances and challenges. Funct Integr Genomics 2022. [DOI: 10.1007/s10142-022-00910-3] [Reference Citation Analysis]
|
7 |
Chang C, Ma G, Cheung E, Hutchins AP. A programmable system to methylate and demethylate N6-Methyladenosine (m6A) on specific RNA transcripts in mammalian cells. J Biol Chem 2022;:102525. [PMID: 36162509 DOI: 10.1016/j.jbc.2022.102525] [Reference Citation Analysis]
|
8 |
Arriaga-canon C, Contreras-espinosa L, Rebollar-vega R, Montiel-manríquez R, Cedro-tanda A, García-gordillo JA, Álvarez-gómez RM, Jiménez-trejo F, Castro-hernández C, Herrera LA. Transcriptomics and RNA-Based Therapeutics as Potential Approaches to Manage SARS-CoV-2 Infection. IJMS 2022;23:11058. [DOI: 10.3390/ijms231911058] [Reference Citation Analysis]
|
9 |
Woodside WT, Vantsev N, Catchpole RJ, Garrett SC, Olson S, Graveley BR, Terns MP. Type III-A CRISPR systems as a versatile gene knockdown technology. RNA 2022;28:1074-88. [PMID: 35618430 DOI: 10.1261/rna.079206.122] [Reference Citation Analysis]
|
10 |
Kato K, Zhou W, Okazaki S, Isayama Y, Nishizawa T, Gootenberg JS, Abudayyeh OO, Nishimasu H. Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell 2022;185:2324-2337.e16. [PMID: 35643083 DOI: 10.1016/j.cell.2022.05.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
|
11 |
Guo Y, Han L, Han S, Tang H, Wang S, Cui C, Chen B, Li H, Shu Y. Specific knockdown of Htra2 by CRISPR-CasRx prevents acquired sensorineural hearing loss in mice. Mol Ther Nucleic Acids 2022;28:643-55. [PMID: 35615000 DOI: 10.1016/j.omtn.2022.04.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
12 |
Brooks IR, Garrone CM, Kerins C, Kiar CS, Syntaka S, Xu JZ, Spagnoli FM, Watt FM. Functional genomics and the future of iPSCs in disease modeling. Stem Cell Reports 2022;17:1033-47. [PMID: 35487213 DOI: 10.1016/j.stemcr.2022.03.019] [Reference Citation Analysis]
|
13 |
Coleman RM. Engineering Closed-Loop, Autoregulatory Gene Circuits for Osteoarthritis Cell-Based Therapies. Curr Rheumatol Rep 2022;24:96-110. [PMID: 35404006 DOI: 10.1007/s11926-022-01061-x] [Reference Citation Analysis]
|
14 |
Smargon AA, Madrigal AA, Yee BA, Dong KD, Mueller JR, Yeo GW. Crosstalk between CRISPR-Cas9 and the human transcriptome. Nat Commun 2022;13:1125. [PMID: 35236841 DOI: 10.1038/s41467-022-28719-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Goetz H, Stone A, Zhang R, Lai Y, Tian X. Double‐Edged Role of Resource Competition in Gene Expression Noise and Control. Advanced Genetics 2022;3:2100050. [DOI: 10.1002/ggn2.202100050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
16 |
Méndez-Mancilla A, Wessels HH, Legut M, Kadina A, Mabuchi M, Walker J, Robb GB, Holden K, Sanjana NE. Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells. Cell Chem Biol 2022;29:321-327.e4. [PMID: 34343484 DOI: 10.1016/j.chembiol.2021.07.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 14.0] [Reference Citation Analysis]
|
17 |
Giambruno R, Rupert J, Zacco E. Experimental methods to study protein–nucleic acid interactions. Advances in Protein Molecular and Structural Biology Methods 2022. [DOI: 10.1016/b978-0-323-90264-9.00010-6] [Reference Citation Analysis]
|
18 |
Gong L, Liu X, Wu J, He M. Emerging strategies for the genetic dissection of gene functions, cell types, and neural circuits in the mammalian brain. Mol Psychiatry 2022;27:422-35. [PMID: 34561609 DOI: 10.1038/s41380-021-01292-x] [Reference Citation Analysis]
|
19 |
Kong H, Ju E, Yi K, Xu W, Lao YH, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. Adv Sci (Weinh) 2021;8:e2102051. [PMID: 34665528 DOI: 10.1002/advs.202102051] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
20 |
Matsumoto K, Yoshida M. Mammalian Chemical Genomics towards Identifying Targets and Elucidating Modes-of-Action of Bioactive Compounds. Chembiochem 2021. [PMID: 34813140 DOI: 10.1002/cbic.202100561] [Reference Citation Analysis]
|
21 |
Kordyś M, Sen R, Warkocki Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. Wiley Interdiscip Rev RNA 2021;:e1694. [PMID: 34553495 DOI: 10.1002/wrna.1694] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
22 |
Lange M, Begolli R, Giakountis A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Noncoding RNA 2021;7:47. [PMID: 34449663 DOI: 10.3390/ncrna7030047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
23 |
Bhakta S, Tsukahara T. Artificial RNA Editing with ADAR for Gene Therapy. Curr Gene Ther 2020;20:44-54. [PMID: 32416688 DOI: 10.2174/1566523220666200516170137] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
24 |
Perčulija V, Lin J, Zhang B, Ouyang S. Functional Features and Current Applications of the RNA-Targeting Type VI CRISPR-Cas Systems. Adv Sci (Weinh) 2021;8:2004685. [PMID: 34254038 DOI: 10.1002/advs.202004685] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
25 |
Liu XM, Qian SB. Targeted RNA m6A Editing Using Engineered CRISPR-Cas9 Conjugates. Methods Mol Biol 2021;2298:399-414. [PMID: 34085257 DOI: 10.1007/978-1-0716-1374-0_23] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
26 |
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021;22:6048. [PMID: 34205075 DOI: 10.3390/ijms22116048] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
|
27 |
Méndez-mancilla A, Wessels H, Legut M, Kadina A, Mabuchi M, Walker J, Robb GB, Holden K, Sanjana NE. Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells.. [DOI: 10.1101/2021.05.12.443920] [Reference Citation Analysis]
|
28 |
Miao Y, Gao Q, Mao M, Zhang C, Yang L, Yang Y, Han D. Bispecific Aptamer Chimeras Enable Targeted Protein Degradation on Cell Membranes. Angew Chem 2021;133:11367-11371. [DOI: 10.1002/ange.202102170] [Reference Citation Analysis]
|
29 |
Xu C, Zhou Y, Xiao Q, He B, Geng G, Wang Z, Cao B, Dong X, Bai W, Wang Y, Wang X, Zhou D, Yuan T, Huo X, Lai J, Yang H. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes. Nat Methods 2021;18:499-506. [PMID: 33941935 DOI: 10.1038/s41592-021-01124-4] [Cited by in Crossref: 67] [Cited by in F6Publishing: 73] [Article Influence: 33.5] [Reference Citation Analysis]
|
30 |
Akinci E, Hamilton MC, Khowpinitchai B, Sherwood RI. Using CRISPR to understand and manipulate gene regulation. Development 2021;148:dev182667. [PMID: 33913466 DOI: 10.1242/dev.182667] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
31 |
Chang C, Ma G, Cheung E, Hutchins AP. A programmable system to methylate and demethylate m6A on specific mRNAs.. [DOI: 10.1101/2021.04.16.440100] [Reference Citation Analysis]
|
32 |
Miao Y, Gao Q, Mao M, Zhang C, Yang L, Yang Y, Han D. Bispecific Aptamer Chimeras Enable Targeted Protein Degradation on Cell Membranes. Angew Chem Int Ed Engl 2021;60:11267-71. [PMID: 33634555 DOI: 10.1002/anie.202102170] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 9.5] [Reference Citation Analysis]
|
33 |
Borchert E, Hammerschmidt K, Hentschel U, Deines P. Enhancing Microbial Pollutant Degradation by Integrating Eco-Evolutionary Principles with Environmental Biotechnology. Trends Microbiol 2021:S0966-842X(21)00061-5. [PMID: 33812769 DOI: 10.1016/j.tim.2021.03.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 10.5] [Reference Citation Analysis]
|
34 |
Warner R. Amyotrophic Lateral Sclerosis. Neurodegenerative Diseases - Molecular Mechanisms and Current Therapeutic Approaches 2021. [DOI: 10.5772/intechopen.92724] [Reference Citation Analysis]
|
35 |
Schwartz JL, Jones KL, Yeo GW. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies. Crit Rev Biochem Mol Biol 2021;56:31-53. [PMID: 33172304 DOI: 10.1080/10409238.2020.1841726] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
36 |
Sundara Rajan S, Ludwig KR, Hall KL, Jones TL, Caplen NJ. Cancer biology functional genomics: From small RNAs to big dreams. Mol Carcinog 2020;59:1343-61. [PMID: 33043516 DOI: 10.1002/mc.23260] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
|
37 |
Yang L, Chen J. A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing. Trends in Biochemical Sciences 2020;45:874-88. [DOI: 10.1016/j.tibs.2020.06.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
38 |
Woodside WT, Vantsev N, Terns MP. Type III-A CRISPR systems as a versatile gene knockdown technology.. [DOI: 10.1101/2020.09.25.310060] [Reference Citation Analysis]
|
39 |
Rylott EL, Bruce NC. How synthetic biology can help bioremediation. Curr Opin Chem Biol 2020;58:86-95. [PMID: 32805454 DOI: 10.1016/j.cbpa.2020.07.004] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
|
40 |
Ding W, Zhang Y, Shi S. Development and Application of CRISPR/Cas in Microbial Biotechnology. Front Bioeng Biotechnol 2020;8:711. [PMID: 32695770 DOI: 10.3389/fbioe.2020.00711] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
|
41 |
Srivastava A, Gupta T, Kumar S, Saxena SK. Next-Generation Rapid Advanced Molecular Diagnostics of COVID-19 by CRISPR-Cas. Medical Virology: From Pathogenesis to Disease Control 2020. [DOI: 10.1007/978-981-15-6006-4_9] [Reference Citation Analysis]
|