BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Salazar G, Zhang N, Fu TM, An Z. Antibody therapies for the prevention and treatment of viral infections. NPJ Vaccines 2017;2:19. [PMID: 29263875 DOI: 10.1038/s41541-017-0019-3] [Cited by in Crossref: 92] [Cited by in F6Publishing: 94] [Article Influence: 18.4] [Reference Citation Analysis]
Number Citing Articles
1 de Souza MO, Madan B, Teng I, Huang A, Liu L, Fahad AS, Lopez Acevedo SN, Pan X, Sastry M, Gutierrez-gonzalez M, Yin MT, Zhou T, Ho DD, Kwong PD, Dekosky BJ. Mapping monoclonal anti-SARS-CoV-2 antibody repertoires against diverse coronavirus antigens. Front Immunol 2022;13:977064. [DOI: 10.3389/fimmu.2022.977064] [Reference Citation Analysis]
2 Javan Nikkhah S, Thompson D. Copolyelectrolyte-Based Nanocapsules for Oral Monoclonal Antibody Therapy: A Mesoscale Modeling Survey. Biomacromolecules 2022. [PMID: 35916698 DOI: 10.1021/acs.biomac.2c00699] [Reference Citation Analysis]
3 Pelegrin M, Marsile-Medun S, Abba-Moussa D, Souchard M, Naranjo-Gomez M. Fc-Dependent Immunomodulation Induced by Antiviral Therapeutic Antibodies: New Perspectives for Eliciting Protective Immune Responses. Antibodies (Basel) 2022;11:50. [PMID: 35892710 DOI: 10.3390/antib11030050] [Reference Citation Analysis]
4 Mark JKK, Lim CSY, Nordin F, Tye GJ. Expression of mammalian proteins for diagnostics and therapeutics: a review. Mol Biol Rep. [DOI: 10.1007/s11033-022-07651-3] [Reference Citation Analysis]
5 Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022. [PMID: 35476216 DOI: 10.1007/s40259-022-00529-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Parsons AJ, Ophir SI, Duty JA, Kraus TA, Stein KR, Moran TM, Tortorella D. Development of broadly neutralizing antibodies targeting the cytomegalovirus subdominant antigen gH. Commun Biol 2022;5:387. [PMID: 35468974 DOI: 10.1038/s42003-022-03294-z] [Reference Citation Analysis]
7 Du Y, Zhang S, Zhang Z, Miah KM, Wei P, Zhang L, Zhu Y, Li Z, Ye F, Gill DR, Hyde SC, Wang Y, Zhao J. Intranasal Lentiviral Vector-Mediated Antibody Delivery Confers Reduction of SARS-CoV-2 Infection in Elderly and Immunocompromised Mice. Front Immunol 2022;13:819058. [DOI: 10.3389/fimmu.2022.819058] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ianevski A, Yao R, Simonsen RM, Myhre V, Ravlo E, Kaynova GD, Zusinaite E, White JM, Polyak SJ, Oksenych V, Windisch MP, Pan Q, Lastauskienė E, Vitkauskienė A, Matukevičius A, Tenson T, Bjørås M, Kainov DE. Mono- and combinational drug therapies for global viral pandemic preparedness. iScience 2022;25:104112. [DOI: 10.1016/j.isci.2022.104112] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
9 Julander JG, Anderson N, Haese N, Andoh T, Streblow DN, Cortez P, Carter K, Marniquet X, Watson H, Mandron M. Therapeutic and prophylactic treatment with a virus-specific antibody is highly effective in rodent models of Chikungunya infection and disease. Antiviral Res 2022;:105295. [PMID: 35339583 DOI: 10.1016/j.antiviral.2022.105295] [Reference Citation Analysis]
10 Dass SA, Balakrishnan V, Arifin N, Lim CSY, Nordin F, Tye GJ. The COVID-19/Tuberculosis Syndemic and Potential Antibody Therapy for TB Based on the Lessons Learnt From the Pandemic. Front Immunol 2022;13:833715. [PMID: 35242137 DOI: 10.3389/fimmu.2022.833715] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Denel-bobrowska M, Olejniczak AB. Non-nucleoside structured compounds with antiviral activity—past 10 years (2010–2020). European Journal of Medicinal Chemistry 2022;231:114136. [DOI: 10.1016/j.ejmech.2022.114136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Gupta D, Ahmed F, Tandel D, Parthasarathy H, Vedagiri D, Sah V, Krishna Mohan B, Khan RA, Kondiparthi C, Savari P, Jain S, Reddy S, Kumar JM, Khan N, Harshan KH. Equine immunoglobulin fragment F(ab’)2 displays high neutralizing capability against multiple SARS-CoV-2 variants. Clinical Immunology 2022. [DOI: 10.1016/j.clim.2022.108981] [Reference Citation Analysis]
13 Paudyal B, McNee A, Rijal P, Carr BV, Nunez A, McCauley J, Daniels RS, Townsend AR, Hammond JA, Tchilian E. Low Dose Pig Anti-Influenza Virus Monoclonal Antibodies Reduce Lung Pathology but Do Not Prevent Virus Shedding. Front Immunol 2021;12:790918. [PMID: 34975888 DOI: 10.3389/fimmu.2021.790918] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Sadeghian I, Heidari R, Sadeghian S, Raee MJ, Negahdaripour M. Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. Eur J Pharm Sci 2021;169:106094. [PMID: 34896590 DOI: 10.1016/j.ejps.2021.106094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
15 Singh AA, Pillay P, Kwezi L, Tsekoa TL. A plant-biotechnology approach for producing highly potent anti-HIV antibodies for antiretroviral therapy consideration. J Genet Eng Biotechnol 2021;19:180. [PMID: 34878628 DOI: 10.1186/s43141-021-00279-z] [Reference Citation Analysis]
16 More RV, Barrio-Zhang A, Ahmadzadegan A, Dabiri S, Ardekani AM. Monitoring heterogeneity in therapeutic samples using Schlieren. Int J Pharm 2021;609:121096. [PMID: 34562558 DOI: 10.1016/j.ijpharm.2021.121096] [Reference Citation Analysis]
17 Maas BM, Lommerse J, Plock N, Railkar RA, Cheung SYA, Caro L, Chen J, Liu W, Zhang Y, Huang Q, Gao W, Qin L, Meng J, Witjes H, Schindler E, Guiastrennec B, Bellanti F, Spellman DS, Roadcap B, Kalinova M, Fok-Seang J, Catchpole AP, Espeseth AS, Stoch SA, Lai E, Vora KA, Aliprantis AO, Sachs JR. Forward and reverse translational approaches to predict efficacy of neutralizing respiratory syncytial virus (RSV) antibody prophylaxis. EBioMedicine 2021;73:103651. [PMID: 34775220 DOI: 10.1016/j.ebiom.2021.103651] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
18 Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, Desai C, Handley SA, Dowd KA, Amaro-Carambot E, Cardosa MJ, Sariol CA, Kallas EG, Sékaly RP, Vasilakis N, Fremont DH, Whitehead SS, Pierson TC, Diamond MS. Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host Microbe 2021;29:1634-1648.e5. [PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 da Silva MTL, Deodato RM, Villar LM. Exploring the potential usefulness of IgY for antiviral therapy: A current review. Int J Biol Macromol 2021;189:785-91. [PMID: 34416265 DOI: 10.1016/j.ijbiomac.2021.08.078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Goldberg BS, Kaku CI, Dufloo J, Bruel T, Schwartz O, Spencer DA, Hessell AJ, Ackerman ME. Revisiting an IgG Fc Loss-of-Function Experiment: the Role of Complement in HIV Broadly Neutralizing Antibody b12 Activity. mBio 2021;12:e0174321. [PMID: 34634936 DOI: 10.1128/mBio.01743-21] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Grammatikos A, Donati M, Johnston SL, Gompels MM. Peripheral B Cell Deficiency and Predisposition to Viral Infections: The Paradigm of Immune Deficiencies. Front Immunol 2021;12:731643. [PMID: 34527001 DOI: 10.3389/fimmu.2021.731643] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
22 Esposito S, Abu-Raya B, Bonanni P, Cahn-Sellem F, Flanagan KL, Martinon Torres F, Mejias A, Nadel S, Safadi MAP, Simon A. Coadministration of Anti-Viral Monoclonal Antibodies With Routine Pediatric Vaccines and Implications for Nirsevimab Use: A White Paper. Front Immunol 2021;12:708939. [PMID: 34456918 DOI: 10.3389/fimmu.2021.708939] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Nguyen AW, Maynard JA. Engineering Antibody‐Based Therapeutics: Progress and Opportunities. In: Zhao H, Lee SY, Nielsen J, Stephanopoulos G, editors. Protein Engineering. Wiley; 2021. pp. 317-51. [DOI: 10.1002/9783527815128.ch13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Ye G, Gallant J, Zheng J, Massey C, Shi K, Tai W, Odle A, Vickers M, Shang J, Wan Y, Du L, Aihara H, Perlman S, LeBeau A, Li F. The development of Nanosota-1 as anti-SARS-CoV-2 nanobody drug candidates. Elife 2021;10:e64815. [PMID: 34338634 DOI: 10.7554/eLife.64815] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
25 Chang CY, Wang YS, Wu JF, Yang TJ, Chang YC, Chae C, Chang HW, Hsu SD. Generation and Characterization of a Spike Glycoprotein Domain A-Specific Neutralizing Single-Chain Variable Fragment against Porcine Epidemic Diarrhea Virus. Vaccines (Basel) 2021;9:833. [PMID: 34451958 DOI: 10.3390/vaccines9080833] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
26 Bordoloi D, Xu Z, Ho M, Purwar M, Bhojnagarwala P, Cassel J, Giron LB, Walker S, Kulkarni AJ, Ruiz ET, Choi J, Zaidi FI, Wu Y, Wang S, Patel A, Ramos S, Smith T, Kulp D, Ugen KE, Srinivasan A, Abdel-Mohsen M, Humeau L, Weiner DB, Muthumani K. Identification of Novel Neutralizing Monoclonal Antibodies against SARS-CoV-2 Spike Glycoprotein. ACS Pharmacol Transl Sci 2021;4:1349-61. [PMID: 34396059 DOI: 10.1021/acsptsci.1c00058] [Reference Citation Analysis]
27 Kashem MA, Li H, Liu LR, Liang B, Omange RW, Plummer FA, Luo M. The Potential Role of FREM1 and Its Isoform TILRR in HIV-1 Acquisition through Mediating Inflammation. Int J Mol Sci 2021;22:7825. [PMID: 34360591 DOI: 10.3390/ijms22157825] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
28 Sokullu E, Gauthier MS, Coulombe B. Discovery of Antivirals Using Phage Display. Viruses 2021;13:1120. [PMID: 34200959 DOI: 10.3390/v13061120] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
29 Rosario-Colon J, Eberle K, Adams A, Courville E, Xin H. Candida Cell-Surface-Specific Monoclonal Antibodies Protect Mice against Candida auris Invasive Infection. Int J Mol Sci 2021;22:6162. [PMID: 34200478 DOI: 10.3390/ijms22116162] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
30 Zeigler DF, Gage E, Clegg CH. Epitope-targeting platform for broadly protective influenza vaccines. PLoS One 2021;16:e0252170. [PMID: 34043704 DOI: 10.1371/journal.pone.0252170] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
31 Lambour J, Naranjo-Gomez M, Boyer-Clavel M, Pelegrin M. Differential and sequential immunomodulatory role of neutrophils and Ly6Chi inflammatory monocytes during antiviral antibody therapy. Emerg Microbes Infect 2021;10:964-81. [PMID: 33858301 DOI: 10.1080/22221751.2021.1913068] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
32 Zhu X, Yu F, Wu Y, Ying T. Potent germline-like monoclonal antibodies: rapid identification of promising candidates for antibody-based antiviral therapy. Antib Ther 2021;4:89-98. [PMID: 34104872 DOI: 10.1093/abt/tbab008] [Reference Citation Analysis]
33 Lin H, Chen L, Wen S, Yue Z, Mo Y, Jiang X, Huang L. Early diagnosis and successful treatment of cytomegalovirus peritonitis in children with primary nephrotic syndrome: case series and literature review. Ren Fail 2020;42:776-84. [PMID: 32757688 DOI: 10.1080/0886022X.2020.1800491] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Yi HG, Kim H, Kwon J, Choi YJ, Jang J, Cho DW. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther 2021;6:177. [PMID: 33986257 DOI: 10.1038/s41392-021-00566-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 19] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhan W, Muhuri M, Tai PWL, Gao G. Vectored Immunotherapeutics for Infectious Diseases: Can rAAVs Be The Game Changers for Fighting Transmissible Pathogens? Front Immunol 2021;12:673699. [PMID: 34046041 DOI: 10.3389/fimmu.2021.673699] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
36 Zhou X, Ma F, Xie J, Yuan M, Li Y, Shaabani N, Zhao F, Huang D, Wu NC, Lee CD, Liu H, Li J, Chen Z, Hong Y, Liu WH, Xiao N, Burton DR, Tu H, Li H, Chen X, Teijaro JR, Wilson IA, Xiao C, Huang Z. Diverse immunoglobulin gene usage and convergent epitope targeting in neutralizing antibody responses to SARS-CoV-2. Cell Rep 2021;35:109109. [PMID: 33932326 DOI: 10.1016/j.celrep.2021.109109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
37 Ray M, Kihara Y, Bornhop DJ, Chun J. Lysophosphatidic acid (LPA)-antibody (504B3) engagement detected by interferometry identifies off-target binding. Lipids Health Dis 2021;20:32. [PMID: 33853612 DOI: 10.1186/s12944-021-01454-4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
38 Perera HA, Yan M. Imaging, Identification and Inhibition of Microorganisms Using AIEgens. Top Curr Chem (Cham) 2021;379:21. [PMID: 33835299 DOI: 10.1007/s41061-021-00333-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
39 Peng HT, Rhind SG, Beckett A. Convalescent Plasma for the Prevention and Treatment of COVID-19: A Systematic Review and Quantitative Analysis. JMIR Public Health Surveill 2021;7:e25500. [PMID: 33825689 DOI: 10.2196/25500] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
40 Guttieres D, Sinskey AJ, Springs SL. Models to inform neutralizing antibody therapy strategies during pandemics: the case of SARS-CoV-2. Antib Ther 2021;4:60-71. [PMID: 33928236 DOI: 10.1093/abt/tbab006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Robbiani DF. Neutralizing hepatitis B. J Exp Med 2020;217:e20201261. [PMID: 32790869 DOI: 10.1084/jem.20201261] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Fragkou PC, Moschopoulos CD, Karofylakis E, Kelesidis T, Tsiodras S. Update in Viral Infections in the Intensive Care Unit. Front Med (Lausanne) 2021;8:575580. [PMID: 33708775 DOI: 10.3389/fmed.2021.575580] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
43 Hendricks CL, Herd C, Nel M, Tintinger G, Pepper MS. The COVID-19 Treatment Landscape: A South African Perspective on a Race Against Time. Front Med (Lausanne) 2021;8:604087. [PMID: 33681243 DOI: 10.3389/fmed.2021.604087] [Reference Citation Analysis]
44 Su H, Ye X, Freed DC, Li L, Ku Z, Xiong W, Gao P, Liu X, Montgomery D, Xu W, Espeseth AS, Wang D, Ma N, Fu TM, Zhang N, An Z. Potent Bispecific Neutralizing Antibody Targeting Glycoprotein B and the gH/gL/pUL128/130/131 Complex of Human Cytomegalovirus. Antimicrob Agents Chemother 2021;65:e02422-20. [PMID: 33361306 DOI: 10.1128/AAC.02422-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
45 Mayor A, Chesnay A, Desoubeaux G, Ternant D, Heuzé-Vourc'h N, Sécher T. Therapeutic Antibodies for the Treatment of Respiratory Tract Infections-Current Overview and Perspectives. Vaccines (Basel) 2021;9:151. [PMID: 33668613 DOI: 10.3390/vaccines9020151] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Ali S, Uddin SM, Ali A, Anjum F, Ali R, Shalim E, Khan M, Ahmed I, M Muhaymin S, Bukhari U, Luxmi S, Khan AS, Quraishy S. Production of hyperimmune anti-SARS-CoV-2 intravenous immunoglobulin from pooled COVID-19 convalescent plasma. Immunotherapy 2021;13:397-407. [PMID: 33557591 DOI: 10.2217/imt-2020-0263] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
47 Naranjo-Gomez M, Cahen M, Lambour J, Boyer-Clavel M, Pelegrin M. Immunomodulatory Role of NK Cells during Antiviral Antibody Therapy. Vaccines (Basel) 2021;9:137. [PMID: 33567792 DOI: 10.3390/vaccines9020137] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
48 Promsote W, DeMouth ME, Almasri CG, Pegu A. Anti-HIV-1 Antibodies: An Update. BioDrugs 2020;34:121-32. [PMID: 32152957 DOI: 10.1007/s40259-020-00413-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
49 Atanasiu D, Saw WT, Cairns TM, Eisenberg RJ, Cohen GH. Using Split Luciferase Assay and anti-HSV Glycoprotein Monoclonal Antibodies to Predict a Functional Binding Site Between gD and gH/gL. J Virol 2021:JVI. [PMID: 33504603 DOI: 10.1128/JVI.00053-21] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
50 Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol 2020;11:588409. [PMID: 33335518 DOI: 10.3389/fmicb.2020.588409] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
51 Ye G, Gallant JP, Massey C, Shi K, Tai W, Zheng J, Odle AE, Vickers MA, Shang J, Wan Y, Drelich A, Kempaiah KR, Tat V, Perlman S, Du L, Tseng CT, Aihara H, LeBeau AM, Li F. The Development of a Novel Nanobody Therapeutic for SARS-CoV-2. bioRxiv 2020:2020. [PMID: 33236012 DOI: 10.1101/2020.11.17.386532] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Gonçalves BC, Lopes Barbosa MG, Silva Olak AP, Belebecha Terezo N, Nishi L, Watanabe MA, Marinello P, Zendrini Rechenchoski D, Dejato Rocha SP, Faccin-Galhardi LC. Antiviral therapies: advances and perspectives. Fundam Clin Pharmacol 2021;35:305-20. [PMID: 33011993 DOI: 10.1111/fcp.12609] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
53 Custódio TF, Das H, Sheward DJ, Hanke L, Pazicky S, Pieprzyk J, Sorgenfrei M, Schroer MA, Gruzinov AY, Jeffries CM, Graewert MA, Svergun DI, Dobrev N, Remans K, Seeger MA, McInerney GM, Murrell B, Hällberg BM, Löw C. Selection, biophysical and structural analysis of synthetic nanobodies that effectively neutralize SARS-CoV-2. Nat Commun 2020;11:5588. [PMID: 33149112 DOI: 10.1038/s41467-020-19204-y] [Cited by in Crossref: 41] [Cited by in F6Publishing: 72] [Article Influence: 20.5] [Reference Citation Analysis]
54 Tit-Oon P, Tharakaraman K, Artpradit C, Godavarthi A, Sungkeeree P, Sasisekharan V, Kerdwong J, Miller NL, Mahajan B, Khongmanee A, Ruchirawat M, Sasisekharan R, Fuangthong M. Prediction of the binding interface between monoclonal antibody m102.4 and Nipah attachment glycoprotein using structure-guided alanine scanning and computational docking. Sci Rep 2020;10:18256. [PMID: 33106487 DOI: 10.1038/s41598-020-75056-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
55 Klug B, Schnierle B, Trebesch I. [Monoclonal antibodies for anti-infective therapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020;63:1396-402. [PMID: 33034695 DOI: 10.1007/s00103-020-03229-1] [Reference Citation Analysis]
56 Chen JM. Live unattenuated vaccines for controlling viral diseases, including COVID-19. J Med Virol 2021;93:1943-9. [PMID: 32833258 DOI: 10.1002/jmv.26453] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
57 Garg AK, Desikan R, Dixit NM. Preferential Presentation of High-Affinity Immune Complexes in Germinal Centers Can Explain How Passive Immunization Improves the Humoral Response. Cell Rep 2019;29:3946-3957.e5. [PMID: 31851925 DOI: 10.1016/j.celrep.2019.11.030] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
58 Wong LSY, Loo EXL, Kang AYH, Lau HX, Tambyah PA, Tham EH. Age-Related Differences in Immunological Responses to SARS-CoV-2. J Allergy Clin Immunol Pract 2020;8:3251-8. [PMID: 32861856 DOI: 10.1016/j.jaip.2020.08.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
59 Gilchuk P, Bombardi RG, Erasmus JH, Tan Q, Nargi R, Soto C, Abbink P, Suscovich TJ, Durnell LA, Khandhar A, Archer J, Liang J, Fouch ME, Davidson E, Doranz BJ, Jones T, Larson E, Ertel S, Granger B, Fuerte-Stone J, Roy V, Broge T, Linnekin TC, Linde CH, Gorman MJ, Nkolola J, Alter G, Reed SG, Barouch DH, Diamond MS, Crowe JE Jr, Van Hoeven N, Thackray LB, Carnahan RH. Integrated pipeline for the accelerated discovery of antiviral antibody therapeutics. Nat Biomed Eng 2020;4:1030-43. [PMID: 32747832 DOI: 10.1038/s41551-020-0594-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
60 Andrews CD, Huang Y, Ho DD, Liberatore RA. In vivo expressed biologics for infectious disease prophylaxis: rapid delivery of DNA-based antiviral antibodies. Emerg Microbes Infect 2020;9:1523-33. [PMID: 32579067 DOI: 10.1080/22221751.2020.1787108] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
61 Lam N, Farber DL. Engineering antibody therapies for protective immunity. J Thorac Cardiovasc Surg 2021;161:1358-61. [PMID: 32711969 DOI: 10.1016/j.jtcvs.2020.05.107] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
62 Huo J, Zhao Y, Ren J, Zhou D, Duyvesteyn HME, Ginn HM, Carrique L, Malinauskas T, Ruza RR, Shah PNM, Tan TK, Rijal P, Coombes N, Bewley KR, Tree JA, Radecke J, Paterson NG, Supasa P, Mongkolsapaya J, Screaton GR, Carroll M, Townsend A, Fry EE, Owens RJ, Stuart DI. Neutralization of SARS-CoV-2 by Destruction of the Prefusion Spike. Cell Host Microbe 2020;28:445-454.e6. [PMID: 32585135 DOI: 10.1016/j.chom.2020.06.010] [Cited by in Crossref: 123] [Cited by in F6Publishing: 156] [Article Influence: 61.5] [Reference Citation Analysis]
63 Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, Hägglöf T, Oliveira TY, Viant C, Hurley A, Hoffmann HH, Millard KG, Kost RG, Cipolla M, Gordon K, Bianchini F, Chen ST, Ramos V, Patel R, Dizon J, Shimeliovich I, Mendoza P, Hartweger H, Nogueira L, Pack M, Horowitz J, Schmidt F, Weisblum Y, Michailidis E, Ashbrook AW, Waltari E, Pak JE, Huey-Tubman KE, Koranda N, Hoffman PR, West AP Jr, Rice CM, Hatziioannou T, Bjorkman PJ, Bieniasz PD, Caskey M, Nussenzweig MC. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature 2020;584:437-42. [PMID: 32555388 DOI: 10.1038/s41586-020-2456-9] [Cited by in Crossref: 787] [Cited by in F6Publishing: 1006] [Article Influence: 393.5] [Reference Citation Analysis]
64 Kim BJ, Lueangsakulthai J, Sah BNP, Scottoline B, Dallas DC. Quantitative Analysis of Antibody Survival across the Infant Digestive Tract Using Mass Spectrometry with Parallel Reaction Monitoring. Foods 2020;9:E759. [PMID: 32526824 DOI: 10.3390/foods9060759] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Naranjo-Gomez M, Pelegrin M. Vaccinal effect of HIV-1 antibody therapy. Curr Opin HIV AIDS 2019;14:325-33. [PMID: 30973419 DOI: 10.1097/COH.0000000000000555] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
66 Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C, Kumar R. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol 2020;85:106639. [PMID: 32473573 DOI: 10.1016/j.intimp.2020.106639] [Cited by in Crossref: 21] [Cited by in F6Publishing: 39] [Article Influence: 10.5] [Reference Citation Analysis]
67 Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, Hagglof T, Oliveira TY, Viant C, Hurley A, Hoffmann HH, Millard KG, Kost RG, Cipolla M, Gordon K, Bianchini F, Chen ST, Ramos V, Patel R, Dizon J, Shimeliovich I, Mendoza P, Hartweger H, Nogueira L, Pack M, Horowitz J, Schmidt F, Weisblum Y, Michailidis E, Ashbrook AW, Waltari E, Pak JE, Huey-Tubman KE, Koranda N, Hoffman PR, West AP Jr, Rice CM, Hatziioannou T, Bjorkman PJ, Bieniasz PD, Caskey M, Nussenzweig MC. Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals. bioRxiv 2020:2020. [PMID: 32511384 DOI: 10.1101/2020.05.13.092619] [Cited by in Crossref: 55] [Cited by in F6Publishing: 12] [Article Influence: 27.5] [Reference Citation Analysis]
68 Choi JH, Woo HM, Lee TY, Lee SY, Shim SM, Park WJ, Yang JS, Kim JA, Yun MR, Kim DW, Kim SS, Zhang Y, Shi W, Wang L, Graham BS, Mascola JR, Wang N, McLellan JS, Lee JY, Lee H. Characterization of a human monoclonal antibody generated from a B-cell specific for a prefusion-stabilized spike protein of Middle East respiratory syndrome coronavirus. PLoS One 2020;15:e0232757. [PMID: 32384116 DOI: 10.1371/journal.pone.0232757] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
69 Waltari E, Carabajal E, Sanyal M, Friedland N, McCutcheon KM. Adaption of a conventional ELISA to a 96-well ELISA-Array for measuring the antibody responses to influenza virus proteins and vaccines. J Immunol Methods 2020;481-482:112789. [PMID: 32380014 DOI: 10.1016/j.jim.2020.112789] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
70 Ku Z, Ye X, Salazar GT, Zhang N, An Z. Antibody therapies for the treatment of COVID-19. Antibody Therapeutics 2020;3:101-8. [DOI: 10.1093/abt/tbaa007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
71 Huang PN, Wang HC, Hung HC, Tseng SN, Chang TY, Chou MY, Chen YJ, Wang YM, Shih SR, Hsu JT. Antiviral Activity of a Llama-Derived Single-Domain Antibody against Enterovirus A71. Antimicrob Agents Chemother 2020;64:e01922-19. [PMID: 32152074 DOI: 10.1128/AAC.01922-19] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
72 Desoubeaux G, Pelegrin M. [Monoclonal antibodies in infectious diseases: new partners in the therapeutic arsenal]. Med Sci (Paris) 2019;35:1008-13. [PMID: 31903909 DOI: 10.1051/medsci/2019200] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
73 Singh KP, Sasadeusz J, Lewin SR, Audsley J. Therapeutics for COVID-19: established and in development. Microbiol Aust 2020;41:217. [DOI: 10.1071/ma20058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Morishita R, Sugiyama S, Denda M, Tokunaga S, Kido K, Shioya R, Ozawa S, Sawasaki T. CF-PA2Vtech: a cell-free human protein array technology for antibody validation against human proteins. Sci Rep 2019;9:19349. [PMID: 31852950 DOI: 10.1038/s41598-019-55785-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
75 Ma A, Motyka B, Gutfreund K, Shi YE, George R. A dendritic cell receptor-targeted chimeric immunotherapeutic protein (C-HBV) for the treatment of chronic hepatitis B. Hum Vaccin Immunother. 2020;16:756-778. [PMID: 31687879 DOI: 10.1080/21645515.2019.1689080] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
76 Dibo M, Battocchio EC, dos Santos Souza LM, da Silva MDV, Banin-hirata BK, Sapla MM, Marinello P, Rocha SP, Faccin-galhardi LC. Antibody Therapy for the Control of Viral Diseases: An Update. CPB 2019;20:1108-21. [DOI: 10.2174/1389201020666190809112704] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
77 Rosenke K, Bounds CE, Hanley PW, Saturday G, Sullivan E, Wu H, Jiao JA, Feldmann H, Schmaljohn C, Safronetz D. Human Polyclonal Antibodies Produced by Transchromosomal Cattle Provide Partial Protection Against Lethal Zaire Ebolavirus Challenge in Rhesus Macaques. J Infect Dis 2018;218:S658-61. [PMID: 30053153 DOI: 10.1093/infdis/jiy430] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
78 Li H, Javid B. Antibodies and tuberculosis: finally coming of age? Nat Rev Immunol 2018;18:591-6. [PMID: 29872140 DOI: 10.1038/s41577-018-0028-0] [Cited by in F6Publishing: 40] [Reference Citation Analysis]
79 Laustsen AH. How can monoclonal antibodies be harnessed against neglected tropical diseases and other infectious diseases? Expert Opin Drug Discov 2019;14:1103-12. [PMID: 31364421 DOI: 10.1080/17460441.2019.1646723] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
80 Park BK, Maharjan S, Lee SI, Kim J, Bae J, Park M, Kwon H. Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex. BMB Rep 2019;52:397-402. [DOI: 10.5483/bmbrep.2019.52.6.185] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 3.7] [Reference Citation Analysis]
81 Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019;10:873. [PMID: 31130923 DOI: 10.3389/fmicb.2019.00873] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 5.7] [Reference Citation Analysis]
82 Gerke C, Frantz PN, Ramsauer K, Tangy F. Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Rev Vaccines 2019;18:393-403. [PMID: 30601074 DOI: 10.1080/14760584.2019.1562908] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
83 Li C, Wang Y, Liu T, Niklasch M, Qiao K, Durand S, Chen L, Liang M, Baumert TF, Tong S, Nassal M, Wen Y, Wang Y. An E. coli-produced single-chain variable fragment (scFv) targeting hepatitis B virus surface protein potently inhibited virion secretion. Antiviral Research 2019;162:118-29. [DOI: 10.1016/j.antiviral.2018.12.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
84 Hodowanec AC, Pikis A, Komatsu TE, Sampson MR, Younis IR, O'Rear JJ, Singer ME. Treatment and Prevention of CMV Disease in Transplant Recipients: Current Knowledge and Future Perspectives. J Clin Pharmacol 2019;59:784-98. [PMID: 30586161 DOI: 10.1002/jcph.1363] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
85 Welles HC, Jennewein MF, Mason RD, Narpala S, Wang L, Cheng C, Zhang Y, Todd JP, Lifson JD, Balazs AB, Alter G, McDermott AB, Mascola JR, Roederer M. Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLoS Pathog 2018;14:e1007395. [PMID: 30517201 DOI: 10.1371/journal.ppat.1007395] [Cited by in Crossref: 15] [Cited by in F6Publishing: 24] [Article Influence: 3.8] [Reference Citation Analysis]
86 Klein C, Schaefer W, Regula JT, Dumontet C, Brinkmann U, Bacac M, Umaña P. Engineering therapeutic bispecific antibodies using CrossMab technology. Methods 2019;154:21-31. [PMID: 30453028 DOI: 10.1016/j.ymeth.2018.11.008] [Cited by in Crossref: 39] [Cited by in F6Publishing: 53] [Article Influence: 9.8] [Reference Citation Analysis]
87 Saphire EO, Schendel SL, Gunn BM, Milligan JC, Alter G. Antibody-mediated protection against Ebola virus. Nat Immunol 2018;19:1169-78. [PMID: 30333617 DOI: 10.1038/s41590-018-0233-9] [Cited by in Crossref: 71] [Cited by in F6Publishing: 80] [Article Influence: 17.8] [Reference Citation Analysis]
88 Stadlbauer D, Amanat F, Strohmeier S, Nachbagauer R, Krammer F. Cross-reactive mouse monoclonal antibodies raised against the hemagglutinin of A/Shanghai/1/2013 (H7N9) protect against novel H7 virus isolates in the mouse model. Emerg Microbes Infect 2018;7:110. [PMID: 29925896 DOI: 10.1038/s41426-018-0115-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
89 Casanova V, Sousa FH, Stevens C, Barlow PG. Antiviral therapeutic approaches for human rhinovirus infections. Future Virol 2018;13:505-18. [PMID: 30245735 DOI: 10.2217/fvl-2018-0016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
90 Awi NJ, Teow SY. Antibody-Mediated Therapy against HIV/AIDS: Where Are We Standing Now? J Pathog 2018;2018:8724549. [PMID: 29973995 DOI: 10.1155/2018/8724549] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
91 Bale S, Martiné A, Wilson R, Behrens AJ, Le Fourn V, de Val N, Sharma SK, Tran K, Torres JL, Girod PA, Ward AB, Crispin M, Wyatt RT. Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies. Front Immunol 2018;9:1116. [PMID: 29881382 DOI: 10.3389/fimmu.2018.01116] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 4.3] [Reference Citation Analysis]
92 Chaudhuri S, Symons JA, Deval J. Innovation and trends in the development and approval of antiviral medicines: 1987-2017 and beyond. Antiviral Res 2018;155:76-88. [PMID: 29758235 DOI: 10.1016/j.antiviral.2018.05.005] [Cited by in Crossref: 72] [Cited by in F6Publishing: 88] [Article Influence: 18.0] [Reference Citation Analysis]
93 Naranjo-Gomez M, Lambour J, Piechaczyk M, Pelegrin M. Neutrophils are essential for induction of vaccine-like effects by antiviral monoclonal antibody immunotherapies. JCI Insight 2018;3:97339. [PMID: 29720574 DOI: 10.1172/jci.insight.97339] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
94 Pelfrene E, Mura M, Cavaleiro Sanches A, Cavaleri M. Monoclonal antibodies as anti-infective products: a promising future? Clin Microbiol Infect 2019;25:60-4. [PMID: 29715552 DOI: 10.1016/j.cmi.2018.04.024] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
95 [DOI: 10.1101/2020.06.23.165415] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Reference Citation Analysis]