BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang X, Cheng Y, You J, Zhang J, Yin C, Zhang J. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nat Commun 2022;13:1117. [PMID: 35236853 DOI: 10.1038/s41467-022-28759-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Ge M, Liu S, Li J, Li M, Li S, James TD, Chen Z. Luminescent materials derived from biomass resources. Coordination Chemistry Reviews 2023;477:214951. [DOI: 10.1016/j.ccr.2022.214951] [Reference Citation Analysis]
2 Zeng L, Zhu Z, Mo R, Li W, Xu W, Tian D. Luminescence lifetime tuning of non-conjugated organic clusters through external heavy-atom effect for smartphone-based time-resolved imaging. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141452] [Reference Citation Analysis]
3 Shen Z, Yan X, Cui S, Bo C, Liu J, Wang B, Li Y, Chen L. Color-tunable, time-dependent, temperature and humidity-responsive afterglow from hyaluronic acid-based films. Dyes and Pigments 2023. [DOI: 10.1016/j.dyepig.2023.111113] [Reference Citation Analysis]
4 Huang Z, He Z, Ding B, Tian H, Ma X. Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films. Nat Commun 2022;13:7841. [PMID: 36543785 DOI: 10.1038/s41467-022-35625-3] [Reference Citation Analysis]
5 Zhu Z, Zeng L, Li W, Xu W, Tian D. Efficient Persistent Luminescence from Cellulose–Halide Mixtures for Optical Encryption. ACS Sustainable Chem Eng 2022. [DOI: 10.1021/acssuschemeng.2c05046] [Reference Citation Analysis]
6 Jin K, Ji X, Zhang J, Mi Q, Wu J, Zhang J. Colourful organic afterglow materials with super-wide color gamut and scaled processability from cellulose. Materials Today Chemistry 2022;26:101179. [DOI: 10.1016/j.mtchem.2022.101179] [Reference Citation Analysis]
7 Wang H, Xue C, Ji Z, Huang M, Jiang Z, Liu B, Deng F, An Q, Guo X. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c14789] [Reference Citation Analysis]
8 Li W, Zhang J, Gao Z, Qi J, Ding D. Advancing biomedical applications via manipulating intersystem crossing. Coordination Chemistry Reviews 2022;471:214754. [DOI: 10.1016/j.ccr.2022.214754] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Shen X, Hu Q, Zhai S, Jin Y, Ge M. Independent dual-responsive luminous composite fibers with controllable full-color emissions. Journal of Luminescence 2022. [DOI: 10.1016/j.jlumin.2022.119550] [Reference Citation Analysis]
10 Wang J, Gutiérrez-arzaluz L, Wang X, He T, Zhang Y, Eddaoudi M, Bakr OM, Mohammed OF. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nat Photon 2022. [DOI: 10.1038/s41566-022-01092-x] [Reference Citation Analysis]
11 Xu R, Yin C, You J, Zhang J, Mi Q, Wu J, Zhang J. Sustainable, thermoplastic and hydrophobic coating from natural cellulose and cinnamon to fabricate eco-friendly catering packaging. Green Energy & Environment 2022. [DOI: 10.1016/j.gee.2022.10.009] [Reference Citation Analysis]
12 Liu M, Zong J, Wang L, Liu D, Wang T, Hu W. Kilogram‐Scale Fabricated Organic Long‐Persistent Luminescence Materials with Multi‐Level Temperature Response. Advanced Optical Materials. [DOI: 10.1002/adom.202201684] [Reference Citation Analysis]
13 Wang Y, Yin C, Zhang J, Wu J, Yu J, Zhang J. Functional Cellulose Materials Fabricated by Using Ionic Liquids as the Solvent. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2787-0] [Reference Citation Analysis]
14 Gao Q, Rao J, Lv Z, Shi M, Chen M, Chen G, Hao X, Lü B, Peng F. Stereospecific redox-mediated clusterization reconstruction for constructing long-lived, color-tunable, and processable phosphorescence cellulose. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138923] [Reference Citation Analysis]
15 Liang D, Jia J, Yang M, Cai X, Yu R, Lu C. Room‐Temperature Phosphorescence Enhanced by Narrowing Down Δ EST through Tuning Excited States Energy Levels. Advanced Optical Materials. [DOI: 10.1002/adom.202201130] [Reference Citation Analysis]
16 Song SY, Liu KK, Cao Q, Mao X, Zhao WB, Wang Y, Liang YC, Zang JH, Lou Q, Dong L, Shan CX. Ultraviolet phosphorescent carbon nanodots. Light Sci Appl 2022;11:146. [PMID: 35595762 DOI: 10.1038/s41377-022-00837-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Zhang X, Cheng Y, You J, Zhang J, Wang Y, Zhang J. Irreversible Humidity-Responsive Phosphorescence Materials from Cellulose for Advanced Anti-Counterfeiting and Environmental Monitoring. ACS Appl Mater Interfaces 2022;14:16582-91. [PMID: 35357123 DOI: 10.1021/acsami.2c00043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Luo X, Chen L, Liu B, Yang Z, Wei L, Yuan Z, Wen Y, Mu Y, Huo Y, Zhang H, Ji S. Water-enhanced high-efficiency persistent room-temperature phosphorescence materials for temperature sensing via crystalline transformation. J Mater Chem C. [DOI: 10.1039/d2tc02789e] [Reference Citation Analysis]