1 |
Dou B, Zhang Y, Gao H, Zhang S, Zheng J, Lu X, Liu S, Zhou H, Hun X. CRISPR/Cas12a-based MUSCA-PEC strategy for HSV-1 assay. Anal Chim Acta 2023;1250:340955. [PMID: 36898814 DOI: 10.1016/j.aca.2023.340955] [Reference Citation Analysis]
|
2 |
Yang H, Zhang Y, Teng X, Hou H, Deng R, Li J. CRISPR-based nucleic acid diagnostics for pathogens. Trends Analyt Chem 2023;160:116980. [PMID: 36818498 DOI: 10.1016/j.trac.2023.116980] [Reference Citation Analysis]
|
3 |
Yu Z, Xu J, She Q. Harnessing the LdCsm RNA Detection Platform for Efficient microRNA Detection. Int J Mol Sci 2023;24. [PMID: 36769177 DOI: 10.3390/ijms24032857] [Reference Citation Analysis]
|
4 |
Jiang W, Aman R, Ali Z, Mahfouz M. Bio-SCAN V2: A CRISPR/dCas9-based lateral flow assay for rapid detection of theophylline. Front Bioeng Biotechnol 2023;11:1118684. [PMID: 36741753 DOI: 10.3389/fbioe.2023.1118684] [Reference Citation Analysis]
|
5 |
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall LN, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, Santiago-Frangos A, Wiedenheft B. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Nat Commun 2022;13:7762. [PMID: 36522348 DOI: 10.1038/s41467-022-35445-5] [Reference Citation Analysis]
|
6 |
Yoshimi K, Mashimo T. Genome editing technology and applications with the type I CRISPR system. Gene and Genome Editing 2022;3-4:100013. [DOI: 10.1016/j.ggedit.2022.100013] [Reference Citation Analysis]
|
7 |
Gul I, Zhai S, Zhong X, Chen Q, Yuan X, Du Z, Chen Z, Raheem MA, Deng L, Leeansyah E, Zhang CY, Yu D, Qin P. Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection. Biosensors (Basel) 2022;12. [PMID: 36354493 DOI: 10.3390/bios12110984] [Reference Citation Analysis]
|
8 |
Chen Y, Zeng Z, She Q, Han W. The abortive infection functions of CRISPR-Cas and Argonaute. Trends in Microbiology 2022. [DOI: 10.1016/j.tim.2022.11.005] [Reference Citation Analysis]
|
9 |
Azizoglu RO. CRISPR-Cas Systems in Diagnostics: A Comprehensive Assessment of Cas Effectors and Biosensors. Gene and Genome Editing 2022. [DOI: 10.1016/j.ggedit.2022.100019] [Reference Citation Analysis]
|
10 |
Wu L, Wang X, Wu X, Xu S, Liu M, Cao X, Tang T, Huang X, Huang H. MnO2 Nanozyme-Mediated CRISPR-Cas12a System for the Detection of SARS-CoV-2. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c14497] [Reference Citation Analysis]
|
11 |
Li J, Wang Y, Wang B, Lou J, Ni P, Jin Y, Chen S, Duan G, Zhang R. Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases. Diagnostics (Basel) 2022;12:2455. [PMID: 36292145 DOI: 10.3390/diagnostics12102455] [Reference Citation Analysis]
|
12 |
Ma X, Xu J, Zhou F, Ye J, Yang D, Wang H, Wang P, Li M. Recent advances in PCR-free nucleic acid detection for SARS-COV-2. Front Bioeng Biotechnol 2022;10:999358. [DOI: 10.3389/fbioe.2022.999358] [Reference Citation Analysis]
|
13 |
Woodside WT, Vantsev N, Catchpole RJ, Garrett SC, Olson S, Graveley BR, Terns MP. Type III-A CRISPR systems as a versatile gene knockdown technology. RNA 2022;28:1074-88. [PMID: 35618430 DOI: 10.1261/rna.079206.122] [Reference Citation Analysis]
|
14 |
Xie X, Gong M, Zhang Z, Dou X, Zhou W, Li J, Zhu M, Du Y, Xu X. Optimization of an electrical impedance flow cytometry system and analysis of submicron particles and bacteria. Sensors and Actuators B: Chemical 2022;360:131432. [DOI: 10.1016/j.snb.2022.131432] [Reference Citation Analysis]
|
15 |
Nemudraia A, Nemudryi A, Buyukyoruk M, Scherffius AM, Zahl T, Wiegand T, Pandey S, Nichols JE, Hall L, McVey A, Lee HH, Wilkinson RA, Snyder LR, Jones JD, Koutmou KS, Santiago-Frangos A, Wiedenheft B. Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Res Sq 2022:rs. [PMID: 35475170 DOI: 10.21203/rs.3.rs-1466718/v1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
16 |
Sridhara S, Rai J, Whyms C, Goswami H, He H, Woodside W, Terns MP, Li H. Structural and biochemical characterization of in vivo assembled Lactococcus lactis CRISPR-Csm complex. Commun Biol 2022;5. [DOI: 10.1038/s42003-022-03187-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
17 |
Miao P, Chai H, Tang Y. DNA Hairpins and Dumbbell-Wheel Transitions Amplified Walking Nanomachine for Ultrasensitive Nucleic Acid Detection. ACS Nano 2022;16:4726-33. [PMID: 35188755 DOI: 10.1021/acsnano.1c11582] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
|
18 |
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
19 |
Das A, Goswami HN, Whyms CT, Sridhara S, Li H. Structural Principles of CRISPR-Cas Enzymes Used in Nucleic Acid Detection. J Struct Biol 2022;:107838. [PMID: 35123001 DOI: 10.1016/j.jsb.2022.107838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|