BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Caro-Astorga J, Walker KT, Herrera N, Lee KY, Ellis T. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat Commun 2021;12:5027. [PMID: 34413311 DOI: 10.1038/s41467-021-25350-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Jiang Z, Xu Y, Fu M, Zhu D, Li N, Yang G. Genetically modified cell spheroids for tissue engineering and regenerative medicine. J Control Release 2023;354:588-605. [PMID: 36657601 DOI: 10.1016/j.jconrel.2023.01.033] [Reference Citation Analysis]
2 Wu Z, Chen S, Li J, Wang B, Jin M, Liang Q, Zhang D, Han Z, Deng L, Qu X, Wang H. Insights into Hierarchical Structure–Property–Application Relationships of Advanced Bacterial Cellulose Materials. Adv Funct Materials 2023. [DOI: 10.1002/adfm.202214327] [Reference Citation Analysis]
3 de Assis SC, Morgado DL, Scheidt DT, de Souza SS, Cavallari MR, Ando Junior OH, Carrilho E. Review of Bacterial Nanocellulose-Based Electrochemical Biosensors: Functionalization, Challenges, and Future Perspectives. Biosensors (Basel) 2023;13. [PMID: 36671977 DOI: 10.3390/bios13010142] [Reference Citation Analysis]
4 Wang F, Huang D, Wu Y, Wang D. Ecofriendly low voltage high-performance ionic artificial muscles based on bacterial cellulose nanofibers reinforced with polyvinyl alcohol. J Mater Sci: Mater Electron 2023;34:123. [DOI: 10.1007/s10854-022-09648-x] [Reference Citation Analysis]
5 Zhao Q, Zhang M, Song F, Xue Y, Pan Z, Zhou Y. Multifunctional all-biomass-derived hydroplastic thermoset polyimine for 3D multiple information encryption and self-adhesive strain sensors. Cell Reports Physical Science 2023. [DOI: 10.1016/j.xcrp.2022.101244] [Reference Citation Analysis]
6 An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang T, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2022. [DOI: 10.1021/acs.chemrev.2c00512] [Reference Citation Analysis]
7 Li Y, Peng S, Li K, Qin D, Weng Z, Li J, Zheng L, Wu L, Yu C. Material extrusion-based 3D printing for the fabrication of bacteria into functional biomaterials: the case study of ammonia removal application. Additive Manufacturing 2022. [DOI: 10.1016/j.addma.2022.103268] [Reference Citation Analysis]
8 Binelli MR, Rühs PA, Pisaturo G, Leu S, Trachsel E, Studart AR. Living materials made by 3D printing cellulose-producing bacteria in granular gels. Biomaterials Advances 2022;141:213095. [DOI: 10.1016/j.bioadv.2022.213095] [Reference Citation Analysis]
9 Wang F, Wang L, Wang Y, Wang D. Highly bendable ionic electroactive polymer actuator based on carboxylated bacterial cellulose by doping with MWCNT. Appl Phys A 2022;128. [DOI: 10.1007/s00339-022-06052-4] [Reference Citation Analysis]
10 Hansen E, Beckwith A, Lancaster C, Leavengood S. Reviewed Commentary: Factory-Grown Wood, the Future of Forestry? WFS 2022;54:212-224. [DOI: 10.22382/wfs-2022-20] [Reference Citation Analysis]
11 Ze Y, Wang R, Deng H, Zhou Z, Chen X, Huang L, Yao Y. Three-dimensional bioprinting: A cutting-edge tool for designing and fabricating engineered living materials. Biomaterials Advances 2022;140:213053. [DOI: 10.1016/j.bioadv.2022.213053] [Reference Citation Analysis]
12 Wang Y, Liu Y, Li J, Chen Y, Liu S, Zhong C. Engineered living materials (ELMs) design: From function allocation to dynamic behavior modulation. Curr Opin Chem Biol 2022;70:102188. [PMID: 35970133 DOI: 10.1016/j.cbpa.2022.102188] [Reference Citation Analysis]
13 Nie W, Zheng X, Feng W, Liu Y, Li Y, Liang X. Characterization of bacterial cellulose produced by Acetobacter pasteurianus MGC-N8819 utilizing lotus rhizome. LWT 2022;165:113763. [DOI: 10.1016/j.lwt.2022.113763] [Reference Citation Analysis]
14 Murugarren N, Roig-Sanchez S, Antón-Sales I, Malandain N, Xu K, Solano E, Reparaz JS, Laromaine A. Highly Aligned Bacterial Nanocellulose Films Obtained During Static Biosynthesis in a Reproducible and Straightforward Approach. Adv Sci (Weinh) 2022;:e2201947. [PMID: 35861401 DOI: 10.1002/advs.202201947] [Reference Citation Analysis]
15 Barbier I, Kusumawardhani H, Schaerli Y. Engineering synthetic spatial patterns in microbial populations and communities. Current Opinion in Microbiology 2022;67:102149. [DOI: 10.1016/j.mib.2022.102149] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Huang Y, Zhang M, Wang J, Xu D, Zhong C. Engineering microbial systems for the production and functionalization of biomaterialsBiomaterials engineering with microorganisms. Curr Opin Microbiol 2022;68:102154. [PMID: 35568018 DOI: 10.1016/j.mib.2022.102154] [Reference Citation Analysis]
17 Wang S, Rivera-Tarazona LK, Abdelrahman MK, Ware TH. Digitally Programmable Manufacturing of Living Materials Grown from Biowaste. ACS Appl Mater Interfaces 2022;14:20062-72. [PMID: 35442018 DOI: 10.1021/acsami.2c03109] [Reference Citation Analysis]
18 Li W, Shen Y, Liu H, Huang X, Xu B, Zhong C, Jia S. Bioconversion of lignocellulosic biomass into bacterial nanocellulose: Challenges and perspectives. Green Chemical Engineering 2022. [DOI: 10.1016/j.gce.2022.04.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Jin K, Jin C, Wu Y. Synthetic biology-powered microbial co-culture strategy and application of bacterial cellulose-based composite materials. Carbohydrate Polymers 2022;283:119171. [DOI: 10.1016/j.carbpol.2022.119171] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
20 Omer R, Mohsin MZ, Mohsin A, Mushtaq BS, Huang X, Guo M, Zhuang Y, Huang J. Engineered Bacteria-Based Living Materials for Biotherapeutic Applications. Front Bioeng Biotechnol 2022;10:870675. [PMID: 35573236 DOI: 10.3389/fbioe.2022.870675] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Xie Y, Qiao K, Yue L, Tang T, Zheng Y, Zhu S, Yang H, Fang Z. A self-crosslinking, double-functional group modified bacterial cellulose gel used for antibacterial and healing of infected wound. Bioact Mater 2022;17:248-60. [PMID: 35386438 DOI: 10.1016/j.bioactmat.2022.01.018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
22 Liu X, Inda ME, Lai Y, Lu TK, Zhao X. Engineered Living Hydrogels. Adv Mater 2022;:e2201326. [PMID: 35243704 DOI: 10.1002/adma.202201326] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
23 Lantada AD, Korvink JG, Islam M. Taxonomy for engineered living materials. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100807] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Zhuge W, Liu H, Wang W, Wang J. Microfluidic Bioscaffolds for Regenerative Engineering. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2021.12.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Caro-Astorga J, Ellis T. Self-healing through adhesion. Nat Chem Biol 2021. [PMID: 34934186 DOI: 10.1038/s41589-021-00946-9] [Reference Citation Analysis]
26 Kang SY, Pokhrel A, Bratsch S, Benson JJ, Seo SO, Quin MB, Aksan A, Schmidt-Dannert C. Engineering Bacillus subtilis for the formation of a durable living biocomposite material. Nat Commun 2021;12:7133. [PMID: 34880257 DOI: 10.1038/s41467-021-27467-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
27 McBee RM, Lucht M, Mukhitov N, Richardson M, Srinivasan T, Meng D, Chen H, Kaufman A, Reitman M, Munck C, Schaak D, Voigt C, Wang HH. Engineering living and regenerative fungal-bacterial biocomposite structures. Nat Mater 2021. [PMID: 34857911 DOI: 10.1038/s41563-021-01123-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
28 Hernández-Arriaga AM, Campano C, Rivero-Buceta V, Prieto MA. When microbial biotechnology meets material engineering. Microb Biotechnol 2022;15:149-63. [PMID: 34818460 DOI: 10.1111/1751-7915.13975] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
29 Singhania RR, Patel AK, Tseng YS, Kumar V, Chen CW, Haldar D, Saini JK, Dong CD. Developments in bioprocess for bacterial cellulose production. Bioresour Technol 2022;344:126343. [PMID: 34780908 DOI: 10.1016/j.biortech.2021.126343] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
30 Graham AJ, Dundas CM, Partipilo G, Miniel Mahfoud IE, Fitzsimons T, Rinehart R, Chiu D, Tyndall AE, Rosales AM, Keitz BK. Transcriptional Regulation of Synthetic Polymer Networks.. [DOI: 10.1101/2021.10.17.464678] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]