BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao Y, Zhang S, Yu T, Zhang Y, Ye G, Cui H, He C, Jiang W, Zhai Y, Lu C, Gu X, Liu N. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat Commun 2021;12:4880. [PMID: 34385444 DOI: 10.1038/s41467-021-25152-y] [Cited by in Crossref: 31] [Cited by in F6Publishing: 38] [Article Influence: 31.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang T, Yang J. Tailoring hole injection of graphene oxide doped PEDOT:PSS for assembling efficient near ultraviolet organic light-emitting diodes. Synthetic Metals 2022;291:117213. [DOI: 10.1016/j.synthmet.2022.117213] [Reference Citation Analysis]
2 Cheng Y, Zhou Y, Wang R, Chan KH, Liu Y, Ding T, Wang X, Li T, Ho GW. An Elastic and Damage-Tolerant Dry Epidermal Patch with Robust Skin Adhesion for Bioelectronic Interfacing. ACS Nano 2022. [DOI: 10.1021/acsnano.2c07097] [Reference Citation Analysis]
3 Luo J, Sun C, Chang B, Jing Y, Li K, Li Y, Zhang Q, Wang H, Hou C. MXene-Enabled Self-Adaptive Hydrogel Interface for Active Electroencephalogram Interactions. ACS Nano 2022. [DOI: 10.1021/acsnano.2c08961] [Reference Citation Analysis]
4 Song D, Ye G, Zhao Y, Zhang Y, Hou X, Liu N. An All-in-One, Bioderived, Air-Permeable, and Sweat-Stable MXene Epidermal Electrode for Muscle Theranostics. ACS Nano 2022. [PMID: 36219847 DOI: 10.1021/acsnano.2c07646] [Reference Citation Analysis]
5 Tang H, Li Y, Chen B, Chen X, Han Y, Guo M, Xia HQ, Song R, Zhang X, Zhou J. In Situ Forming Epidermal Bioelectronics for Daily Monitoring and Comprehensive Exercise. ACS Nano 2022. [PMID: 36200714 DOI: 10.1021/acsnano.2c03414] [Reference Citation Analysis]
6 Dong J, Peng Y, Nie X, Li L, Zhang C, Lai F, He G, Ma P, Wei Q, Huang Y, Liu T. Hierarchically Designed Super‐Elastic Metafabric for Thermal‐Wet Comfortable and Antibacterial Epidermal Electrode. Adv Funct Materials. [DOI: 10.1002/adfm.202209762] [Reference Citation Analysis]
7 Wang W, Song H, Lu Z, Zeng Q, Wang Q, Ma C, Jin H, Qi J, Wu T, Gao S, Zhu M, Lu D, Huang J, Yan Y. Mussel Byssus Inspired Ionic Skin with Damage‐Resistant Signal for Human–Machine Interaction. Adv Materials Inter. [DOI: 10.1002/admi.202201367] [Reference Citation Analysis]
8 Chen T, Ye G, Wu H, Qi S, Ma G, Zhang Y, Zhao Y, Zhu J, Gu X, Liu N. Highly Conductive and Underwater Stable Ionic Skin for All‐Day Epidermal Biopotential Monitoring. Adv Funct Materials. [DOI: 10.1002/adfm.202206424] [Reference Citation Analysis]
9 Wang B, Zhao X, Liang J, Liu J, Yang Y, Zhang M, Yu H, Li J, Tong Y, Tang Q, Liu Y. Microwave-Welded and Photopolymer-Embedded Silver Nanowire Electrodes for Skin-like Supercapacitors. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c01140] [Reference Citation Analysis]
10 Hu M, Yang H. Highly adhesive stretchable polymer and highly dynamic stable human electrophysiological monitoring. Sci Sin -Chim 2022. [DOI: 10.1360/ssc-2022-0155] [Reference Citation Analysis]
11 Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. Small Methods 2022;:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Reference Citation Analysis]
12 Xie R, Li Q, Teng L, Cao Z, Han F, Tian Q, Sun J, Zhao Y, Yu M, Qi D, Guo P, Li G, Huo F, Liu Z. Strenuous exercise-tolerance stretchable dry electrodes for continuous multi-channel electrophysiological monitoring. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00209-0] [Reference Citation Analysis]
13 Meng X, Xing Z, Hu X, Chen Y. Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2803-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Cao J, Yang X, Rao J, Mitriashkin A, Fan X, Chen R, Cheng H, Wang X, Goh J, Leo HL, Ouyang J. Stretchable and Self-Adhesive PEDOT:PSS Blend with High Sweat Tolerance as Conformal Biopotential Dry Electrodes. ACS Appl Mater Interfaces 2022. [PMID: 35973944 DOI: 10.1021/acsami.2c11921] [Reference Citation Analysis]
15 Ye M, Yang C, Sun Y, Wang J, Wang D, Zhao Y, Zhu Z, Liu P, Zhu J, Li C, Peng W, Zhang N, Dong Y. ZnFe 2 O 4 /Graphitic Carbon Nitride Nano/Microcomposites for the Enhanced Electrochemical Sensing of H 2 O 2. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02204] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Faisal SN, Iacopi F. Thin-Film Electrodes Based on Two-Dimensional Nanomaterials for Neural Interfaces. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c03056] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Park T, Jeong J, Kim Y, Yoo H. Weak Molecular Interactions in Organic Composite Dry Film Lead to Degradable, Robust Wireless Electrophysiological Signal Sensing. Adv Materials Inter. [DOI: 10.1002/admi.202200594] [Reference Citation Analysis]
18 Hu Z, Zhao Y, Zou W, Lu Q, Liao J, Li F, Shang M, Lin L, Liu Z. Doping of Graphene Films: Open the way to Applications in Electronics and Optoelectronics. Adv Funct Materials. [DOI: 10.1002/adfm.202203179] [Reference Citation Analysis]
19 Wang L, Li N, Zhang Y, Di P, Li M, Lu M, Liu K, Li Z, Ren J, Zhang L, Wan P. Flexible multiresponse-actuated nacre-like MXene nanocomposite for wearable human-machine interfacing. Matter 2022. [DOI: 10.1016/j.matt.2022.06.052] [Reference Citation Analysis]
20 Wang Z, Xu X, Xu Y, Lin W, Peng Z. A ternary heterogeneous hydrogel with strength elements for resilient, self-healing, and recyclable epidermal electronics. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00175-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Yuan Y, Tang W, Wu H, Chen S, Ren X, Hu B, Gu N. Minimally-invasive and non-invasive flexible devices for robust characterizations of deep tissues. Sci Sin -Chim 2022. [DOI: 10.1360/ssc-2022-0100] [Reference Citation Analysis]
22 Hu W, Song D, Shi X, Liu N. Preparation and application of self-adhesive ultra-thin epidermal electrophysiological electrodes. Sci Sin -Chim 2022;52:837-847. [DOI: 10.1360/ssc-2022-0019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Yao S, Zhou W, Hinson R, Dong P, Wu S, Ives J, Hu X, Huang H, Zhu Y. Ultrasoft Porous 3D Conductive Dry Electrodes for Electrophysiological Sensing and Myoelectric Control. Adv Materials Technologies. [DOI: 10.1002/admt.202101637] [Reference Citation Analysis]
24 Lan L, Li F, Li W, Chen R, Xiong Z, He Y, Ouedraogo NAN, Ai B, Tao L, Sun K, Chen S. Highly Skin-Compliant Polymeric Electrodes with Synergistically Boosted Conductivity toward Wearable Health Monitoring. ACS Appl Mater Interfaces 2022;14:20113-21. [PMID: 35467822 DOI: 10.1021/acsami.2c03596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Xia S, Wang M, Gao G. Preparation and application of graphene-based wearable sensors. Nano Res . [DOI: 10.1007/s12274-022-4272-z] [Reference Citation Analysis]
26 Cao W, Wang Z, Liu X, Zhou Z, Zhang Y, He S, Cui D, Chen F. Bioinspired MXene-Based User-Interactive Electronic Skin for Digital and Visual Dual-Channel Sensing. Nanomicro Lett 2022;14:119. [PMID: 35505260 DOI: 10.1007/s40820-022-00838-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
27 Miyamoto A, Kawasaki H, Lee S, Yokota T, Amagai M, Someya T. Highly Precise, Continuous, Long-Term Monitoring of Skin Electrical Resistance by Nanomesh Electrodes. Adv Healthc Mater 2022;11:e2102425. [PMID: 34994099 DOI: 10.1002/adhm.202102425] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Lin S, Hu S, Song W, Gu M, Liu J, Song J, Liu Z, Li Z, Huang K, Wu Y, Lei M, Wu H. An ultralight, flexible, and biocompatible all-fiber motion sensor for artificial intelligence wearable electronics. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00158-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Kim H, Kim E, Choi C, Yeo WH. Advances in Soft and Dry Electrodes for Wearable Health Monitoring Devices. Micromachines (Basel) 2022;13:629. [PMID: 35457934 DOI: 10.3390/mi13040629] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
30 Wang Y, Haick H, Guo S, Wang C, Lee S, Yokota T, Someya T. Skin bioelectronics towards long-term, continuous health monitoring. Chem Soc Rev 2022. [PMID: 35420617 DOI: 10.1039/d2cs00207h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
31 Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. Adv Mater 2022;34:e2107902. [PMID: 34897836 DOI: 10.1002/adma.202107902] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 25.0] [Reference Citation Analysis]
32 Liu J, Lin S, Li W, Zhao Y, Liu D, He Z, Wang D, Lei M, Hong B, Wu H. Ten-Hour Stable Noninvasive Brain-Computer Interface Realized by Semidry Hydrogel-Based Electrodes. Research 2022;2022:1-12. [DOI: 10.34133/2022/9830457] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
33 Xu Y, Guo W, Zhou S, Yi H, Yang G, Mei S, Zhu K, Wu H, Li Z. Bioinspired Perspiration‐Wicking Electronic Skins for Comfortable and Reliable Multimodal Health Monitoring. Adv Funct Materials 2022;32:2200961. [DOI: 10.1002/adfm.202200961] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
34 Yang X, Wang S, Liu M, Li L, Zhao Y, Wang Y, Bai Y, Lu Q, Xiong Z, Feng S, Zhang T. All-Nanofiber-Based Janus Epidermal Electrode with Directional Sweat Permeability for Artifact-Free Biopotential Monitoring. Small 2022;:e2106477. [PMID: 35092161 DOI: 10.1002/smll.202106477] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
35 Kong H, Song Z, Li W, Bao Y, Qu D, Ma Y, Liu Z, Wang W, Wang Z, Han D, Niu L. Skin-Inspired Hair-Epidermis-Dermis Hierarchical Structures for Electronic Skin Sensors with High Sensitivity over a Wide Linear Range. ACS Nano 2021;15:16218-27. [PMID: 34605628 DOI: 10.1021/acsnano.1c05199] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 17.0] [Reference Citation Analysis]