BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dunker C, Polke M, Schulze-Richter B, Schubert K, Rudolphi S, Gressler AE, Pawlik T, Prada Salcedo JP, Niemiec MJ, Slesiona-Künzel S, Swidergall M, Martin R, Dandekar T, Jacobsen ID. Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Nat Commun 2021;12:3899. [PMID: 34162849 DOI: 10.1038/s41467-021-24095-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Millet N, Solis NV, Aguilar D, Lionakis MS, Wheeler RT, Jendzjowsky N, Swidergall M. IL-23 signaling prevents ferroptosis-driven renal immunopathology during candidiasis. Nat Commun 2022;13:5545. [PMID: 36138043 DOI: 10.1038/s41467-022-33327-4] [Reference Citation Analysis]
2 Sucupira PHF, Moura TR, Gurgel ILS, Pereira TTP, Padovan ACB, Teixeira MM, Bahia D, Soriani FM. In vitro and in vivo Characterization of Host–Pathogen Interactions of the L3881 Candida albicans Clinical Isolate. Front Microbiol 2022;13:901442. [DOI: 10.3389/fmicb.2022.901442] [Reference Citation Analysis]
3 Gitarić J, Warżajtis B, Drašković NS, Stevanovic M, Ašanin DP, Skaro-bogojevic S, Rychlewska U, Djuran MI, Glišić BĐ. Structural characterization and antimicrobial evaluation of chromium(III) and cobalt(III) complexes with 2,2-diMe-1,3-pdta: Tuning dimensionality of coordination polymer and the water content by alkyl substitution. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115864] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Lemberg C, Martinez de San Vicente K, Fróis-Martins R, Altmeier S, Tran VDT, Mertens S, Amorim-Vaz S, Rai LS, d'Enfert C, Pagni M, Sanglard D, LeibundGut-Landmann S. Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathog 2022;18:e1010012. [PMID: 35404986 DOI: 10.1371/journal.ppat.1010012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Garcia-Rodas R, Labbaoui H, Orange F, Solis N, Zaragoza O, Filler SG, Bassilana M, Arkowitz RA. Plasma Membrane Phosphatidylinositol-4-Phosphate Is Not Necessary for Candida albicans Viability yet Is Key for Cell Wall Integrity and Systemic Infection. mBio 2022;:e0387321. [PMID: 35164565 DOI: 10.1128/mbio.03873-21] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Allert S, Schulz D, Kämmer P, Großmann P, Wolf T, Schäuble S, Panagiotou G, Brunke S, Hube B. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence 2022;13:191-214. [PMID: 35142597 DOI: 10.1080/21505594.2022.2026037] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
7 Pellon A, Begum N, Sadeghi Nasab SD, Harzandi A, Shoaie S, Moyes DL. Role of Cellular Metabolism during Candida-Host Interactions. Pathogens 2022;11:184. [DOI: 10.3390/pathogens11020184] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
8 Garbe E, Miramón P, Gerwien F, Ueberschaar N, Hansske-Braun L, Brandt P, Böttcher B, Lorenz M, Vylkova S. GNP2 Encodes a High-Specificity Proline Permease in Candida albicans. mBio 2022;:e0314221. [PMID: 35073760 DOI: 10.1128/mbio.03142-21] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Garcia-rodas R, Labbaoui H, Orange F, Solis N, Zaragoza O, Filler S, Bassilana M, Arkowitz RA. Plasma membrane phosphatidylinositol-4-phosphate is not necessary for Candida albicans viability, yet is key for cell wall integrity and systemic infection.. [DOI: 10.1101/2021.12.31.474627] [Reference Citation Analysis]
10 Millet N, Solis NV, Aguilar D, Lionakis MS, Wheeler RT, Jendzjowsky N, Swidergall M. IL-23 signaling prevents ferroptosis-driven renal immunopathology during candidiasis.. [DOI: 10.1101/2021.12.19.473386] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Eichelberger KR, Cassat JE. Metabolic Adaptations During Staphylococcus aureus and Candida albicans Co-Infection. Front Immunol 2021;12:797550. [DOI: 10.3389/fimmu.2021.797550] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
12 Iracane E, Vega-Estévez S, Buscaino A. On and Off: Epigenetic Regulation of C. albicans Morphological Switches. Pathogens 2021;10:1463. [PMID: 34832617 DOI: 10.3390/pathogens10111463] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Lemberg C, de San Vicente KM, Fróis-martins R, Altmeier S, Tran VDT, Amorim-vaz S, Rai LS, d’Enfert C, Pagni M, Sanglard D, Leibundgut-landmann S. Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation.. [DOI: 10.1101/2021.10.11.463879] [Reference Citation Analysis]
14 Kadosh D. Rapid Proliferation Compensates for Defective Filamentation in Candida albicans Pathogenesis. Trends Microbiol 2021;29:867-8. [PMID: 34462187 DOI: 10.1016/j.tim.2021.08.006] [Reference Citation Analysis]
15 La Bella AA, Andersen MJ, Gervais NC, Molina JJ, Molesan A, Stuckey PV, Wensing L, Nobile CJ, Shapiro RS, Santiago-tirado FH, Flores-mireles AL. The catheterized bladder environment promotes Efg1- and Als1-dependent Candida albicans infection.. [DOI: 10.1101/2021.06.01.446547] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]