BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lusk R, Stene E, Banaei-Kashani F, Tabakoff B, Kechris K, Saba LM. Aptardi predicts polyadenylation sites in sample-specific transcriptomes using high-throughput RNA sequencing and DNA sequence. Nat Commun 2021;12:1652. [PMID: 33712618 DOI: 10.1038/s41467-021-21894-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Shi L, Liu Z, Yang L, Fan W. Effects of oil pollution on soil microbial diversity in the Loess hilly areas, China. Ann Microbiol 2022;72. [DOI: 10.1186/s13213-022-01683-7] [Reference Citation Analysis]
2 Guo Y, Shen H, Li W, Li C, Jin C. Deep Effective k-mer representation learning for polyadenylation signal prediction via co-occurrence embedding. Knowledge-Based Systems 2022;256:109887. [DOI: 10.1016/j.knosys.2022.109887] [Reference Citation Analysis]
3 Ye W, Lian Q, Ye C, Wu X. A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq. Genomics, Proteomics & Bioinformatics 2022. [DOI: 10.1016/j.gpb.2022.09.005] [Reference Citation Analysis]
4 Ye W, Lian Q, Ye C, Wu X. A Survey on Methods for Predicting Polyadenylation Sites from DNA Sequences, Bulk RNA-seq, and Single-cell RNA-seq.. [DOI: 10.1101/2022.07.17.500329] [Reference Citation Analysis]
5 Shi L, Liu Z, Yang L, Fan W. Effect of plant waste addition as exogenous nutrients on microbial remediation of petroleum-contaminated soil. Ann Microbiol 2022;72. [DOI: 10.1186/s13213-022-01679-3] [Reference Citation Analysis]
6 Sethi S, Zhang D, Guelfi S, Chen Z, Garcia-Ruiz S, Olagbaju EO, Ryten M, Saini H, Botia JA. Leveraging omic features with F3UTER enables identification of unannotated 3'UTRs for synaptic genes. Nat Commun 2022;13:2270. [PMID: 35477703 DOI: 10.1038/s41467-022-30017-z] [Reference Citation Analysis]
7 Guo Y, Li C, Zhou D, Cao J, Liang H. Context-aware dynamic neural computational models for accurate Poly(A) signal prediction. Neural Networks 2022. [DOI: 10.1016/j.neunet.2022.04.025] [Reference Citation Analysis]
8 Xu SM, Curry-Hyde A, Sytnyk V, Janitz M. RNA polyadenylation patterns in the human transcriptome. Gene 2022;816:146133. [PMID: 34998928 DOI: 10.1016/j.gene.2021.146133] [Reference Citation Analysis]
9 Lusk R, Hoffman PL, Mahaffey S, Rosean S, Smith H, Silhavy J, Pravenec M, Tabakoff B, Saba LM. Beyond Genes: Inclusion of Alternative Splicing and Alternative Polyadenylation to Assess the Genetic Architecture of Predisposition to Voluntary Alcohol Consumption in Brain of the HXB/BXH Recombinant Inbred Rat Panel. Front Genet 2022;13:821026. [DOI: 10.3389/fgene.2022.821026] [Reference Citation Analysis]
10 Arora A, Goering R, Lo HYG, Lo J, Moffatt C, Taliaferro JM. The Role of Alternative Polyadenylation in the Regulation of Subcellular RNA Localization. Front Genet 2022;12:818668. [DOI: 10.3389/fgene.2021.818668] [Reference Citation Analysis]
11 Meyer E, Chaung K, Dehghannasiri R, Salzman J. ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq.. [DOI: 10.1101/2021.09.29.462469] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Lusk R, Stene E, Banaei-Kashani F, Tabakoff B, Kechris K, Saba LM. Aptardi predicts polyadenylation sites in sample-specific transcriptomes using high-throughput RNA sequencing and DNA sequence. Nat Commun 2021;12:1652. [PMID: 33712618 DOI: 10.1038/s41467-021-21894-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]