BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao Y, Cui Y. Deep transfer learning for reducing health care disparities arising from biomedical data inequality. Nat Commun 2020;11:5131. [PMID: 33046699 DOI: 10.1038/s41467-020-18918-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Fisher JL, Jones EF, Flanary VL, Williams AS, Ramsey EJ, Lasseigne BN. Considerations and challenges for sex-aware drug repurposing. Biol Sex Differ 2022;13:13. [PMID: 35337371 DOI: 10.1186/s13293-022-00420-8] [Reference Citation Analysis]
2 Hu C, Zhang J, Yuan H, Gao T, Jiang H, Yan J, Wenzhong Gao D, Wang F. Black swan event small-sample transfer learning (BEST-L) and its case study on electrical power prediction in COVID-19. Applied Energy 2022;309:118458. [DOI: 10.1016/j.apenergy.2021.118458] [Reference Citation Analysis]
3 He S, Leanse LG, Feng Y. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases. Adv Drug Deliv Rev 2021;178:113922. [PMID: 34461198 DOI: 10.1016/j.addr.2021.113922] [Reference Citation Analysis]
4 McGrath SP, Benton ML, Tavakoli M, Tatonetti NP. Predictions, Pivots, and a Pandemic: a Review of 2020's Top Translational Bioinformatics Publications. Yearb Med Inform 2021;30:219-25. [PMID: 34479393 DOI: 10.1055/s-0041-1726540] [Reference Citation Analysis]
5 Topaloglu MY, Morrell EM, Rajendran S, Topaloglu U. In the Pursuit of Privacy: The Promises and Predicaments of Federated Learning in Healthcare. Front Artif Intell 2021;4:746497. [PMID: 34693280 DOI: 10.3389/frai.2021.746497] [Reference Citation Analysis]
6 Werder K, Ramesh B, Zhang R(. Establishing Data Provenance for Responsible Artificial Intelligence Systems. ACM Trans Manage Inf Syst 2022;13:1-23. [DOI: 10.1145/3503488] [Reference Citation Analysis]
7 Dayan I, Roth HR, Zhong A, Harouni A, Gentili A, Abidin AZ, Liu A, Costa AB, Wood BJ, Tsai CS, Wang CH, Hsu CN, Lee CK, Ruan P, Xu D, Wu D, Huang E, Kitamura FC, Lacey G, de Antônio Corradi GC, Nino G, Shin HH, Obinata H, Ren H, Crane JC, Tetreault J, Guan J, Garrett JW, Kaggie JD, Park JG, Dreyer K, Juluru K, Kersten K, Rockenbach MABC, Linguraru MG, Haider MA, AbdelMaseeh M, Rieke N, Damasceno PF, E Silva PMC, Wang P, Xu S, Kawano S, Sriswasdi S, Park SY, Grist TM, Buch V, Jantarabenjakul W, Wang W, Tak WY, Li X, Lin X, Kwon YJ, Quraini A, Feng A, Priest AN, Turkbey B, Glicksberg B, Bizzo B, Kim BS, Tor-Díez C, Lee CC, Hsu CJ, Lin C, Lai CL, Hess CP, Compas C, Bhatia D, Oermann EK, Leibovitz E, Sasaki H, Mori H, Yang I, Sohn JH, Murthy KNK, Fu LC, de Mendonça MRF, Fralick M, Kang MK, Adil M, Gangai N, Vateekul P, Elnajjar P, Hickman S, Majumdar S, McLeod SL, Reed S, Gräf S, Harmon S, Kodama T, Puthanakit T, Mazzulli T, de Lavor VL, Rakvongthai Y, Lee YR, Wen Y, Gilbert FJ, Flores MG, Li Q. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med 2021;27:1735-43. [PMID: 34526699 DOI: 10.1038/s41591-021-01506-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Abedi V, Razavi SM, Khan A, Avula V, Tompe A, Poursoroush A, Vafaei Sadr A, Li J, Zand R. Artificial Intelligence: A Shifting Paradigm in Cardio-Cerebrovascular Medicine. J Clin Med 2021;10:5710. [PMID: 34884412 DOI: 10.3390/jcm10235710] [Reference Citation Analysis]
9 Thompson HM, Sharma B, Bhalla S, Boley R, McCluskey C, Dligach D, Churpek MM, Karnik NS, Afshar M. Bias and fairness assessment of a natural language processing opioid misuse classifier: detection and mitigation of electronic health record data disadvantages across racial subgroups. J Am Med Inform Assoc 2021:ocab148. [PMID: 34383925 DOI: 10.1093/jamia/ocab148] [Reference Citation Analysis]
10 Sorin V, Klang E. Artificial Intelligence and Health Care Disparities in Radiology. Radiology 2021;301:E443. [PMID: 34546129 DOI: 10.1148/radiol.2021210566] [Reference Citation Analysis]
11 Huang X, Jin K, Zhu J, Xue Y, Si K, Zhang C, Meng S, Gong W, Ye J. A Structure-Related Fine-Grained Deep Learning System With Diversity Data for Universal Glaucoma Visual Field Grading. Front Med 2022;9:832920. [DOI: 10.3389/fmed.2022.832920] [Reference Citation Analysis]