1 |
Obeng EM, Fulcher AJ, Wagstaff KM. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering. Biotechnol Adv 2023;64:108108. [PMID: 36740026 DOI: 10.1016/j.biotechadv.2023.108108] [Reference Citation Analysis]
|
2 |
Levak Zorinc M, Demir-Yilmaz I, Formosa-Dague C, Vrana I, Gašparović B, Horvat L, Butorac A, Frkanec R, Ivošević DeNardis N. Reconstructed membrane vesicles from the microalga Dunaliella as a potential drug delivery system. Bioelectrochemistry 2023;150:108360. [PMID: 36621049 DOI: 10.1016/j.bioelechem.2022.108360] [Reference Citation Analysis]
|
3 |
Tang Z, Wang X, Tang M, Wu J, Zhang J, Liu X, Gao F, Fu Y, Tang P, Li C. Overcoming the On-Target Toxicity in Antibody-Mediated Therapies via an Indirect Active Targeting Strategy. Adv Sci (Weinh) 2023;10:e2206912. [PMID: 36683161 DOI: 10.1002/advs.202206912] [Reference Citation Analysis]
|
4 |
Gorachinov F, Mraiche F, Moustafa DA, Hishari O, Ismail Y, Joseph J, Crcarevska MS, Dodov MG, Geskovski N, Goracinova K. Nanotechnology - a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer. Beilstein J Nanotechnol 2023;14:240-61. [PMID: 36865093 DOI: 10.3762/bjnano.14.23] [Reference Citation Analysis]
|
5 |
Hamadani CM, Mahdi F, Merrell A, Flanders J, Cao R, Vashisth P, Pride MC, Hunter AN, Singh G, Roman G, Paris JJ, Tanner EEL. Ionic Liquid Coating-Driven Nanoparticle Delivery to the Brain: Applications for NeuroHIV. Res Sq 2023:rs. [PMID: 36824802 DOI: 10.21203/rs.3.rs-2574352/v1] [Reference Citation Analysis]
|
6 |
Wang Y, Li Z, Mo F, Chen-Mayfield TJ, Saini A, LaMere AM, Hu Q. Chemically engineering cells for precision medicine. Chem Soc Rev 2023;52:1068-102. [PMID: 36633324 DOI: 10.1039/d2cs00142j] [Reference Citation Analysis]
|
7 |
Palange AL, Mascolo DD, Ferreira M, Gawne PJ, Spanò R, Felici A, Bono L, Moore TL, Salerno M, Armirotti A, Decuzzi P. Boosting the Potential of Chemotherapy in Advanced Breast Cancer Lung Metastasis via Micro-Combinatorial Hydrogel Particles. Adv Sci (Weinh) 2023;:e2205223. [PMID: 36683230 DOI: 10.1002/advs.202205223] [Reference Citation Analysis]
|
8 |
Gao Y, Chen X, Wang B, Wang S, Wang J, Ren L, Jin WK, Han H, Wang L. Engineering Platelets with PDL1 Antibodies and Iron Oxide Nanoparticles for Postsurgical Cancer Immunotherapy. ACS Appl Bio Mater 2023;6:257-66. [PMID: 36502393 DOI: 10.1021/acsabm.2c00869] [Reference Citation Analysis]
|
9 |
Wang S, Ma S, Li R, Qi X, Han K, Guo L, Li X. Probing the Interaction Between Supercarrier RBC Membrane and Nanoparticles for Optimal Drug Delivery. J Mol Biol 2023;435:167539. [PMID: 35292348 DOI: 10.1016/j.jmb.2022.167539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Lu J, Gao X, Wang S, He Y, Ma X, Zhang T, Liu X. Advanced strategies to evade the mononuclear phagocyte system clearance of nanomaterials. Exploration 2023. [DOI: 10.1002/exp.20220045] [Reference Citation Analysis]
|
11 |
Bhide AR, Suri M, Katnoria S, Kaur S, Jirwankar YB, Dighe VD, Jindal AB. Evaluation of Pharmacokinetics, Biodistribution, and Antimalarial Efficacy of Artemether-Loaded Polymeric Nanorods. Mol Pharm 2023;20:118-27. [PMID: 36384279 DOI: 10.1021/acs.molpharmaceut.2c00507] [Reference Citation Analysis]
|
12 |
Wei W, Zhang Y, Lin Z, Wu X, Fan W, Chen J. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. J Drug Target 2023;31:1-13. [PMID: 35857432 DOI: 10.1080/1061186X.2022.2104299] [Reference Citation Analysis]
|
13 |
Wang C, Wang J, Zhang Z, Wang Q, Shang L. DNA-Polyelectrolyte Composite Responsive Microparticles for Versatile Chemotherapeutics Cleaning. Research (Wash D C) 2023;6:0083. [PMID: 36939415 DOI: 10.34133/research.0083] [Reference Citation Analysis]
|
14 |
Calderón-Garcidueñas L, Torres-Jardón R, Greenough GP, Kulesza R, González-Maciel A, Reynoso-Robles R, García-Alonso G, Chávez-Franco DA, García-Rojas E, Brito-Aguilar R, Silva-Pereyra HG, Ayala A, Stommel EW, Mukherjee PS. Sleep matters: Neurodegeneration spectrum heterogeneity, combustion and friction ultrafine particles, industrial nanoparticle pollution, and sleep disorders-Denial is not an option. Front Neurol 2023;14:1117695. [PMID: 36923490 DOI: 10.3389/fneur.2023.1117695] [Reference Citation Analysis]
|
15 |
Cooley MB, Abenojar EC, Wegierak D, Sen Gupta A, Kolios MC, Exner AA. Characterization of the interaction of nanobubble ultrasound contrast agents with human blood components. Bioactive Materials 2023;19:642-52. [DOI: 10.1016/j.bioactmat.2022.05.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
16 |
Liang X, Li H, Li X, Tian X, Zhang A, Luo Q, Duan J, Chen Y, Pang L, Li C, Liang XJ, Zeng Y, Yang J. Highly sensitive H(2)O(2)-scavenging nano-bionic system for precise treatment of atherosclerosis. Acta Pharm Sin B 2023;13:372-89. [PMID: 36815039 DOI: 10.1016/j.apsb.2022.04.002] [Reference Citation Analysis]
|
17 |
Salvador WOS, Ribeiro IAB, Nogueira DES, Ferreira FC, Cabral JMS, Rodrigues CAV. Bioprocess Economic Modeling: Decision Support Tools for the Development of Stem Cell Therapy Products. Bioengineering (Basel) 2022;9. [PMID: 36550997 DOI: 10.3390/bioengineering9120791] [Reference Citation Analysis]
|
18 |
Andrew Pskowski, Prosenjit Bagchi, Jeffrey D. Zahn. Hematocrit skewness along sequential bifurcations within a microfluidic network induces significant changes in downstream red blood cell partitioning. Biomicrofluidics 2022;16:064104. [PMID: 36483019 DOI: 10.1063/5.0110235] [Reference Citation Analysis]
|
19 |
Krivić H, Himbert S, Rheinstädter MC. Perspective on the Application of Erythrocyte Liposome-Based Drug Delivery for Infectious Diseases. Membranes (Basel) 2022;12. [PMID: 36557133 DOI: 10.3390/membranes12121226] [Reference Citation Analysis]
|
20 |
Zheng BD, Xiao MT. Red blood cell membrane nanoparticles for tumor phototherapy. Colloids Surf B Biointerfaces 2022;220:112895. [PMID: 36242941 DOI: 10.1016/j.colsurfb.2022.112895] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
21 |
Meng D, Yang S, Yang Y, Zhang L, Cui L. Synergistic chemotherapy and phototherapy based on red blood cell biomimetic nanomaterials. J Control Release 2022;352:146-62. [PMID: 36252749 DOI: 10.1016/j.jconrel.2022.10.019] [Reference Citation Analysis]
|
22 |
Song H, Kim DI, Abbasi SA, Latifi Gharamaleki N, Kim E, Jin C, Kim S, Hwang J, Kim JY, Chen XZ, Nelson BJ, Pané S, Choi H. Multi-target cell therapy using a magnetoelectric microscale biorobot for targeted delivery and selective differentiation of SH-SY5Y cells via magnetically driven cell stamping. Mater Horiz 2022;9:3031-8. [PMID: 36129054 DOI: 10.1039/d2mh00693f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
23 |
Youden B, Jiang R, Carrier AJ, Servos MR, Zhang X. A Nanomedicine Structure-Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano 2022;16:17497-551. [PMID: 36322785 DOI: 10.1021/acsnano.2c06337] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
24 |
Zelepukin IV, Griaznova OY, Shevchenko KG, Ivanov AV, Baidyuk EV, Serejnikova NB, Volovetskiy AB, Deyev SM, Zvyagin AV. Flash drug release from nanoparticles accumulated in the targeted blood vessels facilitates the tumour treatment. Nat Commun 2022;13:6910. [PMID: 36376302 DOI: 10.1038/s41467-022-34718-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
25 |
Tao Y, Lan X, Zhang Y, Fu C, Liu L, Cao F, Guo W. Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.11.014] [Reference Citation Analysis]
|
26 |
Liu T, Gao C, Gu D, Tang H. Cell-based carrier for targeted hitchhiking delivery. Drug Deliv Transl Res 2022;12:2634-48. [PMID: 35499717 DOI: 10.1007/s13346-022-01149-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Hu Z, Xu S, Zhang H, Ji X. Aggregates of fluorescent gels assembled by interfacial dynamic bonds. Aggregate. [DOI: 10.1002/agt2.283] [Reference Citation Analysis]
|
28 |
An HH, Gagne AL, Maguire JA, Pavani G, Abdulmalik O, Gadue P, French DL, Westhoff CM, Chou ST. The use of pluripotent stem cells to generate diagnostic tools for transfusion medicine. Blood 2022;140:1723-34. [PMID: 35977098 DOI: 10.1182/blood.2022015883] [Reference Citation Analysis]
|
29 |
Albert C, Bracaglia L, Koide A, DiRito J, Lysyy T, Harkins L, Edwards C, Richfield O, Grundler J, Zhou K, Denbaum E, Ketavarapu G, Hattori T, Perincheri S, Langford J, Feizi A, Haakinson D, Hosgood SA, Nicholson ML, Pober JS, Saltzman WM, Koide S, Tietjen GT. Monobody adapter for functional antibody display on nanoparticles for adaptable targeted delivery applications. Nat Commun 2022;13:5998. [PMID: 36220817 DOI: 10.1038/s41467-022-33490-8] [Reference Citation Analysis]
|
30 |
Tang X, Li D, Gu Y, Zhao Y, Li A, Qi F, Liu J. Natural cell based biomimetic cellular transformers for targeted therapy of digestive system cancer. Theranostics 2022;12:7080-107. [PMID: 36276645 DOI: 10.7150/thno.75937] [Reference Citation Analysis]
|
31 |
Li J, Ding Y, Cheng Q, Gao C, Wei J, Wang Z, Huang Q, Wang R. Supramolecular erythrocytes-hitchhiking drug delivery system for specific therapy of acute pneumonia. J Control Release 2022;350:777-86. [PMID: 35995300 DOI: 10.1016/j.jconrel.2022.08.029] [Reference Citation Analysis]
|
32 |
Zheng J, Lu C, Yang M, Sun J, Zhang J, Meng Y, Wang Y, Li Z, Yang Y, Gong W, Gao C. Lung-Targeted Delivery of Cepharanthine by an Erythrocyte-Anchoring Strategy for the Treatment of Acute Lung Injury. Pharmaceutics 2022;14. [PMID: 36145566 DOI: 10.3390/pharmaceutics14091820] [Reference Citation Analysis]
|
33 |
Tao Y, Lan X, Zhang Y, Xiao Y, Wang J, Chen H, Liu L, Liang XJ, Guo W. Navigations of the targeting pathway of nanomedicines towards tumor. Expert Opin Drug Deliv 2022. [PMID: 35929954 DOI: 10.1080/17425247.2022.2110064] [Reference Citation Analysis]
|
34 |
Gaikwad H, Wang G, Li Y, Bourne D, Simberg D. Surface Modification of Erythrocytes with Lipid Anchors: Structure-Activity Relationship for Optimal Membrane Incorporation, in vivo Retention, and Immunocompatibility. Adv Nanobiomed Res 2022;2:2200037. [PMID: 36591390 DOI: 10.1002/anbr.202200037] [Reference Citation Analysis]
|
35 |
Mehdi-alamdarlou S, Ahmadi F, Azadi A, Shahbazi M, Heidari R, Ashrafi H. A cell-mimicking platelet-based drug delivery system as a potential carrier of dimethyl fumarate for multiple sclerosis. International Journal of Pharmaceutics 2022. [DOI: 10.1016/j.ijpharm.2022.122084] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
36 |
Lenders V, Escudero R, Koutsoumpou X, Armengol Álvarez L, Rozenski J, Soenen SJ, Zhao Z, Mitragotri S, Baatsen P, Allegaert K, Toelen J, Manshian BB. Modularity of RBC hitchhiking with polymeric nanoparticles: testing the limits of non-covalent adsorption. J Nanobiotechnology 2022;20:333. [PMID: 35842697 DOI: 10.1186/s12951-022-01544-0] [Reference Citation Analysis]
|
37 |
Zhang E, Phan P, Algarni HA, Zhao Z. Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Reference Citation Analysis]
|
38 |
Zhao Z, Kim J, Suja VC, Kapate N, Gao Y, Guo J, Muzykantov VR, Mitragotri S. Red Blood Cell Anchoring Enables Targeted Transduction and Re-Administration of AAV-Mediated Gene Therapy. Adv Sci (Weinh) 2022;:e2201293. [PMID: 35780495 DOI: 10.1002/advs.202201293] [Reference Citation Analysis]
|
39 |
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022;20:305. [PMID: 35761279 DOI: 10.1186/s12951-022-01510-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
40 |
Yao H, Wang Z, Wang N, Deng Z, Liu G, Zhou J, Chen S, Shi J, Zhu G. Enhancing Circulation and Tumor Accumulation of Carboplatin via an Erythrocyte-Anchored Prodrug Strategy. Angew Chem Int Ed Engl 2022;61:e202203838. [PMID: 35352863 DOI: 10.1002/anie.202203838] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
41 |
Glassman PM, Villa CH, Marcos-Contreras OA, Hood ED, Walsh LR, Greineder CF, Myerson JW, Shuvaeva T, Puentes L, Brenner JS, Siegel DL, Muzykantov VR. Targeted In Vivo Loading of Red Blood Cells Markedly Prolongs Nanocarrier Circulation. Bioconjug Chem 2022. [PMID: 35710322 DOI: 10.1021/acs.bioconjchem.2c00196] [Reference Citation Analysis]
|
42 |
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022;14. [PMID: 35745705 DOI: 10.3390/pharmaceutics14061132] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
43 |
Xu X, Li T, Jin K. Bioinspired and Biomimetic Nanomedicines for Targeted Cancer Therapy. Pharmaceutics 2022;14:1109. [PMID: 35631695 DOI: 10.3390/pharmaceutics14051109] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
|
44 |
Gao C, Wang Q, Li J, Kwong CHT, Wei J, Xie B, Lu S, Lee SMY, Wang R. In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for targeted therapy of melanoma. Sci Adv 2022;8:eabn1805. [PMID: 35544569 DOI: 10.1126/sciadv.abn1805] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
45 |
Desai P, Rimal R, Sahnoun SEM, Mottaghy FM, Möller M, Morgenroth A, Singh S. Radiolabeled Nanocarriers as Theranostics—Advancement from Peptides to Nanocarriers. Small. [DOI: 10.1002/smll.202200673] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
46 |
Chen W, Chen Q, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong M, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu F, Zhong Z, Zhang X, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem . [DOI: 10.1007/s11426-022-1243-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
47 |
Hamadani CM, Chandrasiri I, Yaddehige ML, Dasanayake GS, Owolabi I, Flynt A, Hossain M, Liberman L, Lodge TP, Werfel TA, Watkins DL, Tanner EEL. Improved nanoformulation and bio-functionalization of linear-dendritic block copolymers with biocompatible ionic liquids. Nanoscale 2022;14:6021-36. [PMID: 35362493 DOI: 10.1039/d2nr00538g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
48 |
Mills JA, Liu F, Jarrett TR, Fletcher NL, Thurecht KJ. Nanoparticle based medicines: approaches for evading and manipulating the mononuclear phagocyte system and potential for clinical translation. Biomater Sci 2022. [PMID: 35419582 DOI: 10.1039/d2bm00181k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
|
49 |
Zheng J, Lu C, Ding Y, Zhang J, Tan F, Liu J, Yang G, Wang Y, Li Z, Yang M, Yang Y, Gong W, Gao C. Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties. Int J Pharm 2022;619:121719. [PMID: 35390488 DOI: 10.1016/j.ijpharm.2022.121719] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
50 |
Parodi A, Kostyushev D, Brezgin S, Kostyusheva A, Borodina T, Akasov R, Frolova A, Chulanov V, Zamyatnin AA. Biomimetic approaches for targeting tumor inflammation. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.04.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
51 |
Khursheed R, Paudel KR, Gulati M, Vishwas S, Jha NK, Hansbro PM, Oliver BG, Dua K, Singh SK. Expanding the arsenal against pulmonary diseases using surface-functionalized polymeric micelles: breakthroughs and bottlenecks. Nanomedicine (Lond) 2022. [PMID: 35332783 DOI: 10.2217/nnm-2021-0451] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
|
52 |
Ferguson LT, Hood ED, Shuvaeva T, Shuvaev VV, Basil MC, Wang Z, Nong J, Ma X, Wu J, Myerson JW, Marcos-Contreras OA, Katzen J, Carl JM, Morrisey EE, Cantu E, Villa CH, Mitragotri S, Muzykantov VR, Brenner JS. Dual Affinity to RBCs and Target Cells (DART) Enhances Both Organ- and Cell Type-Targeting of Intravascular Nanocarriers. ACS Nano 2022;16:4666-83. [PMID: 35266686 DOI: 10.1021/acsnano.1c11374] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
|
53 |
Himbert S, Gastaldo IP, Ahmed R, Pomier KM, Cowbrough B, Jahagirdar D, Ros S, Juhasz J, Stöver HDH, Ortega J, Melacini G, Bowdish DME, Rheinstädter MC. Erythro-VLPs: Anchoring SARS-CoV-2 spike proteins in erythrocyte liposomes. PLoS One 2022;17:e0263671. [PMID: 35275926 DOI: 10.1371/journal.pone.0263671] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
54 |
Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living Cell for Drug Delivery. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.03.001] [Reference Citation Analysis]
|
55 |
Zhang Q, Bao J, Duan T, Hu M, He Y, Wang J, Hu R, Tang J. Nanomicelle-Microsphere Composite as a Drug Carrier to Improve Lung-Targeting Specificity for Lung Cancer. Pharmaceutics 2022;14:510. [DOI: 10.3390/pharmaceutics14030510] [Reference Citation Analysis]
|
56 |
Cooley MB, Abenojar EC, Wegierak D, Gupta AS, Kolios MC, Exner AA. Characterization of the Interaction of Nanobubble Ultrasound Contrast Agents with Human Blood Components.. [DOI: 10.1101/2022.02.11.480110] [Reference Citation Analysis]
|
57 |
Chettab K, Matera EL, Lafond M, Coralie D, Favin-Lévêque C, Goy C, Strakhova R, Mestas JL, Lafon C, Dumontet C. Proof of Concept: Protein Delivery into Human Erythrocytes Using Stable Cavitation. Mol Pharm 2022. [PMID: 35147436 DOI: 10.1021/acs.molpharmaceut.1c00907] [Reference Citation Analysis]
|
58 |
Grayston A, Zhang Y, Garcia-Gabilondo M, Arrúe M, Martin A, Kopcansky P, Timko M, Kovac J, Strbak O, Castellote L, Belloli S, Moresco RM, Picchio M, Roig A, Rosell A. Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke. J Cereb Blood Flow Metab 2022;42:237-52. [PMID: 34229512 DOI: 10.1177/0271678X211028816] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
59 |
Tang K, Wang X, Niu M, Wang X, Zhou G, Shi J, Yu Y, Chen Z, Li C. Augmenting the Precise Targeting of Antimicrobial Peptides (AMPs) and AMP‐Based Drug Delivery via Affinity‐Filtering Strategy. Adv Funct Materials 2022;32:2111344. [DOI: 10.1002/adfm.202111344] [Reference Citation Analysis]
|
60 |
Avsievich T, Zhu R, Popov A, Bykov A, Meglinski I. Blood–nanomaterials interactions. Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood 2022. [DOI: 10.1016/b978-0-12-823971-1.00002-7] [Reference Citation Analysis]
|
61 |
Gagliardi M, Cecchini M. Bio-inspired nanoparticles as drug delivery vectors. Nanoparticle Therapeutics 2022. [DOI: 10.1016/b978-0-12-820757-4.00002-8] [Reference Citation Analysis]
|
62 |
Myerson JW, Patel PN, Rubey KM, Zamora ME, Zaleski MH, Habibi N, Walsh LR, Lee YW, Luther DC, Ferguson LT, Marcos-Contreras OA, Glassman PM, Mazaleuskaya LL, Johnston I, Hood ED, Shuvaeva T, Wu J, Zhang HY, Gregory JV, Kiseleva RY, Nong J, Grosser T, Greineder CF, Mitragotri S, Worthen GS, Rotello VM, Lahann J, Muzykantov VR, Brenner JS. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nat Nanotechnol 2022;17:86-97. [PMID: 34795440 DOI: 10.1038/s41565-021-00997-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 23.0] [Reference Citation Analysis]
|
63 |
Parhiz H, Brenner JS, Patel P, Papp TE, Shahnawaz H, Li Q, Shi R, Zamora M, Yadegari A, Marcos-Contreras OA, Natesan A, Pardi N, Shuvaev VV, Kiseleva R, Myerson J, Uhler T, Riley RS, Han X, Mitchell MJ, Lam K, Heyes J, Weissman D, Muzykantov V. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). J Control Release 2021:S0168-3659(21)00680-5. [PMID: 34953981 DOI: 10.1016/j.jconrel.2021.12.027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
64 |
Safarpour F, Kharaziha M, Emadi R. Inspiring biomimetic system based on red blood cell membrane vesicles for effective curcumin loading and release. Int J Pharm 2021;613:121419. [PMID: 34954002 DOI: 10.1016/j.ijpharm.2021.121419] [Reference Citation Analysis]
|
65 |
Ding Y, Lv B, Zheng J, Lu C, Liu J, Lei Y, Yang M, Wang Y, Li Z, Yang Y, Gong W, Han J, Gao C. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J Control Release 2021;341:702-15. [PMID: 34933051 DOI: 10.1016/j.jconrel.2021.12.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
|
66 |
Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. Nat Rev Mater. [DOI: 10.1038/s41578-021-00394-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
|
67 |
Chen C, Zhang Y, Chen Z, Yang H, Gu Z. Cellular transformers for targeted therapy. Adv Drug Deliv Rev 2021;179:114032. [PMID: 34736989 DOI: 10.1016/j.addr.2021.114032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
68 |
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021;179:113914. [PMID: 34363861 DOI: 10.1016/j.addr.2021.113914] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
|
69 |
Gupta A, Das R, Makabenta JM, Gupta A, Zhang X, Jeon T, Huang R, Liu Y, Gopalakrishnan S, Milán RC, Rotello VM. Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections. Mater Horiz 2021;8:3424-31. [PMID: 34700339 DOI: 10.1039/d1mh01408k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
70 |
Wang F, Zong R, Chen G. Erythrocyte-enabled immunomodulation for vaccine delivery. J Control Release 2021;341:314-28. [PMID: 34838929 DOI: 10.1016/j.jconrel.2021.11.035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
71 |
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021;341:227-46. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
|
72 |
Wang N, Deng Z, Zhu Q, Zhao J, Xie K, Shi P, Wang Z, Chen X, Wang F, Shi J, Zhu G. An erythrocyte-delivered photoactivatable oxaliplatin nanoprodrug for enhanced antitumor efficacy and immune response. Chem Sci 2021;12:14353-62. [PMID: 34880985 DOI: 10.1039/d1sc02941j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
|
73 |
Calderón-Garcidueñas L, Stommel EW, Rajkumar RP, Mukherjee PS, Ayala A. Particulate Air Pollution and Risk of Neuropsychiatric Outcomes. What We Breathe, Swallow, and Put on Our Skin Matters. Int J Environ Res Public Health 2021;18:11568. [PMID: 34770082 DOI: 10.3390/ijerph182111568] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
74 |
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021;178:113992. [PMID: 34597748 DOI: 10.1016/j.addr.2021.113992] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
|
75 |
Stater EP, Sonay AY, Hart C, Grimm J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat Nanotechnol 2021;16:1180-94. [PMID: 34759355 DOI: 10.1038/s41565-021-01017-9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 20.0] [Reference Citation Analysis]
|
76 |
Hussain B, Kasinath V, Madsen JC, Bromberg J, Tullius SG, Abdi R. Intra-Organ Delivery of Nanotherapeutics for Organ Transplantation. ACS Nano 2021. [PMID: 34714050 DOI: 10.1021/acsnano.1c04707] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
77 |
Nikfar M, Razizadeh M, Paul R, Muzykantov V, Liu Y. A numerical study on drug delivery via multiscale synergy of cellular hitchhiking onto red blood cells. Nanoscale 2021;13:17359-72. [PMID: 34590654 DOI: 10.1039/d1nr04057j] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
78 |
Gómez Flores V, Martínez-Martínez A, Roacho Pérez JA, Acosta Bezada J, Aguirre-Tostado FS, García Casillas PE. Biointeraction of Erythrocyte Ghost Membranes with Gold Nanoparticles Fluorescents. Materials (Basel) 2021;14:6390. [PMID: 34771916 DOI: 10.3390/ma14216390] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
79 |
Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M, Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021;279:121202. [PMID: 34749072 DOI: 10.1016/j.biomaterials.2021.121202] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
|
80 |
Chou HC, Lo CH, Chang LH, Chiu SJ, Hu TM. Organosilica colloids as nitric oxide carriers: Pharmacokinetics and biocompatibility. Colloids Surf B Biointerfaces 2021;208:112136. [PMID: 34628305 DOI: 10.1016/j.colsurfb.2021.112136] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
81 |
Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, Zhang Z. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm Sin B 2021;11:3060-91. [PMID: 33977080 DOI: 10.1016/j.apsb.2021.04.023] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
|
82 |
Kawassaki RK, Romano M, Dietrich N, Araki K. Titanium and Iron Oxide Nanoparticles for Cancer Therapy: Surface Chemistry and Biological Implications. Front Nanotechnol 2021;3:735434. [DOI: 10.3389/fnano.2021.735434] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
83 |
Wang L, Wang X, Yang F, Liu Y, Meng L, Pang Y, Zhang M, Chen F, Pan C, Lin S, Zhu X, Leong KW, Liu J. Systemic antiviral immunization by virus-mimicking nanoparticles-decorated erythrocytes. Nano Today 2021;40:101280. [PMID: 34512795 DOI: 10.1016/j.nantod.2021.101280] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
|
84 |
Chen S, Zhong Y, Fan W, Xiang J, Wang G, Zhou Q, Wang J, Geng Y, Sun R, Zhang Z, Piao Y, Wang J, Zhuo J, Cong H, Jiang H, Ling J, Li Z, Yang D, Yao X, Xu X, Zhou Z, Tang J, Shen Y. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat Biomed Eng 2021;5:1019-37. [PMID: 33859387 DOI: 10.1038/s41551-021-00701-4] [Cited by in Crossref: 66] [Cited by in F6Publishing: 66] [Article Influence: 33.0] [Reference Citation Analysis]
|
85 |
Xu X, Deng G, Sun Z, Luo Y, Liu J, Yu X, Zhao Y, Gong P, Liu G, Zhang P, Pan F, Cai L, Tang BZ. A Biomimetic Aggregation-Induced Emission Photosensitizer with Antigen-Presenting and Hitchhiking Function for Lipid Droplet Targeted Photodynamic Immunotherapy. Adv Mater 2021;33:e2102322. [PMID: 34247428 DOI: 10.1002/adma.202102322] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 16.0] [Reference Citation Analysis]
|
86 |
Mehrizi TZ. Hemocompatibility and Hemolytic Effects of Functionalized Nanoparticles on Red Blood Cells: A Recent Review Study. NANO 2021;16:2130007. [DOI: 10.1142/s1793292021300073] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
87 |
Harmand TJ, Pishesha N, Rehm FBH, Ma W, Pinney WB, Xie YJ, Ploegh HL. Asparaginyl Ligase-Catalyzed One-Step Cell Surface Modification of Red Blood Cells. ACS Chem Biol 2021;16:1201-7. [PMID: 34129316 DOI: 10.1021/acschembio.1c00216] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
88 |
Li C, Qi Y, Feng J, Zhang X. Cell‐Based Bio‐Hybrid Delivery System for Disease Treatments. Adv NanoBio Res 2021;1:2000052. [DOI: 10.1002/anbr.202000052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
89 |
Luo L, Zang G, Liu B, Qin X, Zhang Y, Chen Y, Zhang H, Wu W, Wang G. Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury. Theranostics 2021;11:8043-56. [PMID: 34335979 DOI: 10.7150/thno.60785] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
|
90 |
Zhang SQ, Fu Q, Zhang YJ, Pan JX, Zhang L, Zhang ZR, Liu ZM. Surface loading of nanoparticles on engineered or natural erythrocytes for prolonged circulation time: strategies and applications. Acta Pharmacol Sin 2021;42:1040-54. [PMID: 33772141 DOI: 10.1038/s41401-020-00606-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
|
91 |
Thomsen T, Reissmann R, Kaba E, Engelhardt B, Klok HA. Covalent and Noncovalent Conjugation of Degradable Polymer Nanoparticles to T Lymphocytes. Biomacromolecules 2021;22:3416-30. [PMID: 34170107 DOI: 10.1021/acs.biomac.1c00488] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
92 |
Wang C, Wang M, Zhang Y, Jia H, Chen B. Cyclic arginine-glycine-aspartic acid-modified red blood cells for drug delivery: synthesis and in vitro evaluation. Journal of Pharmaceutical Analysis 2021. [DOI: 10.1016/j.jpha.2021.06.003] [Reference Citation Analysis]
|
93 |
Bannon MS, López Ruiz A, Corrotea Reyes K, Marquez M, Wallizadeh Z, Savarmand M, Lapres CA, Lahann J, Mcennis K. Nanoparticle Tracking Analysis of Polymer Nanoparticles in Blood Plasma. Part Part Syst Charact 2021;38:2100016. [DOI: 10.1002/ppsc.202100016] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
94 |
Tu L, Luo Z, Wu YL, Huo S, Liang XJ. Gold-based nanomaterials for the treatment of brain cancer. Cancer Biol Med 2021:j. [PMID: 34002583 DOI: 10.20892/j.issn.2095-3941.2020.0524] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
95 |
Zhao Z, Ukidve A, Krishnan V, Fehnel A, Pan DC, Gao Y, Kim J, Evans MA, Mandal A, Guo J, Muzykantov VR, Mitragotri S. Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nat Biomed Eng 2021;5:441-54. [PMID: 33199847 DOI: 10.1038/s41551-020-00644-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 15.5] [Reference Citation Analysis]
|
96 |
Wang C, Huang J, Zhang Y, Jia H, Chen B. Construction and evaluation of red blood cells-based drug delivery system for chemo-photothermal therapy. Colloids Surf B Biointerfaces 2021;204:111789. [PMID: 33932889 DOI: 10.1016/j.colsurfb.2021.111789] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
97 |
Huang SS, Lee KJ, Chen HC, Prajnamitra RP, Hsu CH, Jian CB, Yu XE, Chueh DY, Kuo CW, Chiang TC, Choong OK, Huang SC, Beh CY, Chen LL, Lai JJ, Chen P, Kamp TJ, Tien YW, Lee HM, Hsieh PC. Immune cell shuttle for precise delivery of nanotherapeutics for heart disease and cancer. Sci Adv 2021;7:eabf2400. [PMID: 33893103 DOI: 10.1126/sciadv.abf2400] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
98 |
Teunissen AJP, Burnett ME, Prévot G, Klein ED, Bivona D, Mulder WJM. Embracing nanomaterials' interactions with the innate immune system. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1719. [PMID: 33847441 DOI: 10.1002/wnan.1719] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
99 |
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021;171:108-38. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 23.5] [Reference Citation Analysis]
|
100 |
Prakash S, Kumbhojkar N, Clegg JR, Mitragotri S. Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Current Opinion in Colloid & Interface Science 2021;52:101408. [DOI: 10.1016/j.cocis.2020.101408] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
101 |
Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng 2021;23:225-48. [PMID: 33788581 DOI: 10.1146/annurev-bioeng-121219-024239] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
|
102 |
Li Z, Wang Y, Ding Y, Repp L, Kwon GS, Hu Q. Cell‐Based Delivery Systems: Emerging Carriers for Immunotherapy. Adv Funct Mater 2021;31:2100088. [DOI: 10.1002/adfm.202100088] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
|
103 |
Izzati Mat Rani NN, Alzubaidi ZM, Azhari H, Mustapa F, Iqbal Mohd Amin MC. Novel engineering: Biomimicking erythrocyte as a revolutionary platform for drugs and vaccines delivery. Eur J Pharmacol 2021;900:174009. [PMID: 33722591 DOI: 10.1016/j.ejphar.2021.174009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
104 |
Zarubova J, Zhang X, Hoffman T, Hasani-Sadrabadi MM, Li S. Biomaterial-based immunoengineering to fight COVID-19 and infectious diseases. Matter 2021;4:1528-54. [PMID: 33723531 DOI: 10.1016/j.matt.2021.02.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
105 |
Castro F, Martins C, Silveira MJ, Moura RP, Pereira CL, Sarmento B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv Drug Deliv Rev 2021;170:312-39. [PMID: 32946921 DOI: 10.1016/j.addr.2020.09.001] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
|
106 |
Ukidve A, Cu K, Kumbhojkar N, Lahann J, Mitragotri S. Overcoming biological barriers to improve solid tumor immunotherapy. Drug Deliv Transl Res 2021. [PMID: 33611770 DOI: 10.1007/s13346-021-00923-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
107 |
Thomsen T, Klok H. Chemical Cell Surface Modification and Analysis of Nanoparticle-Modified Living Cells. ACS Appl Bio Mater 2021;4:2293-306. [DOI: 10.1021/acsabm.0c01619] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
108 |
Rossi L, Pierigè F, Aliano MP, Magnani M. Ongoing Developments and Clinical Progress in Drug-Loaded Red Blood Cell Technologies. BioDrugs 2020;34:265-72. [PMID: 32198632 DOI: 10.1007/s40259-020-00415-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
|
109 |
Lu K, Dong S, Xia T, Mao L. Kupffer Cells Degrade 14C-Labeled Few-Layer Graphene to 14CO2 in Liver through Erythrophagocytosis. ACS Nano 2021;15:396-409. [PMID: 33150787 DOI: 10.1021/acsnano.0c07452] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
|
110 |
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021;121:1746-803. [PMID: 33445874 DOI: 10.1021/acs.chemrev.0c00779] [Cited by in Crossref: 89] [Cited by in F6Publishing: 105] [Article Influence: 44.5] [Reference Citation Analysis]
|
111 |
Subbaraju SG, Chockaiyan U, Pandi S, Kannan A, Saravanan M. Nanoerythrosome-Biohybrid Microswimmers for Cancer Theranostics Cargo Delivery. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-76263-6_10] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
112 |
Singh MP, Flynn NH, Sethuraman SN, Manouchehri S, Ritchey J, Liu J, Ramsey JD, Pope C, Ranjan A. Reprogramming the rapid clearance of thrombolytics by nanoparticle encapsulation and anchoring to circulating red blood cells. Journal of Controlled Release 2021;329:148-61. [DOI: 10.1016/j.jconrel.2020.11.034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
113 |
Jung SY, Kim HM, Hwang S, Jeung DG, Rhee KJ, Oh JM. Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System. Pharmaceutics 2020;12:E1210. [PMID: 33327415 DOI: 10.3390/pharmaceutics12121210] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
114 |
Pei W, Huang B, Chen S, Wang L, Xu Y, Niu C. Platelet-Mimicking Drug Delivery Nanoparticles for Enhanced Chemo-Photothermal Therapy of Breast Cancer. Int J Nanomedicine 2020;15:10151-67. [PMID: 33363371 DOI: 10.2147/IJN.S285952] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
|
115 |
Ye H, Shen Z, Wei M, Li Y. Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel. Soft Matter 2021;17:40-56. [PMID: 33285555 DOI: 10.1039/d0sm01637c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
116 |
Cao J, Huang D, Peppas NA. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 2020;167:170-88. [PMID: 32622022 DOI: 10.1016/j.addr.2020.06.030] [Cited by in Crossref: 60] [Cited by in F6Publishing: 66] [Article Influence: 20.0] [Reference Citation Analysis]
|
117 |
Aghili ZS, Mirzaei SA, Banitalebi-dehkordi M. A potential hypothesis for 2019-nCoV infection therapy through delivery of recombinant ACE2 by red blood cell-hitchhiking. J of Biol Res-Thessaloniki 2020;27:17. [DOI: 10.1186/s40709-020-00129-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
118 |
Zhao Z, Pan DC, Qi QM, Kim J, Kapate N, Sun T, Shields CW 4th, Wang LL, Wu D, Kwon CJ, He W, Guo J, Mitragotri S. Engineering of Living Cells with Polyphenol-Functionalized Biologically Active Nanocomplexes. Adv Mater 2020;32:e2003492. [PMID: 33150643 DOI: 10.1002/adma.202003492] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
|
119 |
Hamadani CM, Goetz MJ, Mitragotri S, Tanner EEL. Protein-avoidant ionic liquid (PAIL)-coated nanoparticles to increase bloodstream circulation and drive biodistribution. Sci Adv 2020;6:eabd7563. [PMID: 33239302 DOI: 10.1126/sciadv.abd7563] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
120 |
Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, Kulesza R, González-Maciel A, Reynoso-Robles R, Brito-Aguilar R, García-Arreola B, Revueltas-Ficachi P, Barrera-Velázquez JA, García-Alonso G, García-Rojas E, Mukherjee PS, Delgado-Chávez R. Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2020;78:479-503. [PMID: 32955466 DOI: 10.3233/JAD-200891] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
|
121 |
Zhu R, Avsievich T, Popov A, Bykov A, Meglinski I. In vivo nano-biosensing element of red blood cell-mediated delivery. Biosens Bioelectron 2021;175:112845. [PMID: 33262059 DOI: 10.1016/j.bios.2020.112845] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
122 |
Liu S, Zhang Y, Li M, Xiong L, Zhang Z, Yang X, He X, Wang K, Liu J, Mann S. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat Chem 2020;12:1165-73. [DOI: 10.1038/s41557-020-00585-y] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 17.0] [Reference Citation Analysis]
|
123 |
Sheth V, Wang L, Bhattacharya R, Mukherjee P, Wilhelm S. Strategies for Delivering Nanoparticles across Tumor Blood Vessels. Adv Funct Mater 2021;31:2007363. [DOI: 10.1002/adfm.202007363] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
|
124 |
Capossela S, Mathew V, Boos M, Bertolo A, Krupkova O, Stoyanov JV. Novel Fast and Reliable Method for Nano-Erythrosome Production Using Shear Force. Drug Des Devel Ther 2020;14:4547-60. [PMID: 33149552 DOI: 10.2147/DDDT.S258368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
125 |
Guo J, Yu Y, Zhu W, Serda RE, Franco S, Wang L, Lei Q, Agola JO, Noureddine A, Ploetz E, Wuttke S, Brinker CJ. Modular Assembly of Red Blood Cell Superstructures from Metal–Organic Framework Nanoparticle‐Based Building Blocks. Adv Funct Mater 2021;31:2005935. [DOI: 10.1002/adfm.202005935] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
|
126 |
Gregory JV, Vogus DR, Barajas A, Cadena MA, Mitragotri S, Lahann J. Programmable Delivery of Synergistic Cancer Drug Combinations Using Bicompartmental Nanoparticles. Adv Healthc Mater 2020;9:e2000564. [PMID: 32959525 DOI: 10.1002/adhm.202000564] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
|
127 |
Keller JG, Quevedo DF, Faccani L, Costa AL, Landsiedel R, Werle K, Wohlleben W. Dosimetry in vitro - exploring the sensitivity of deposited dose predictions vs. affinity, polydispersity, freeze-thawing, and analytical methods. Nanotoxicology 2021;15:21-34. [PMID: 33100120 DOI: 10.1080/17435390.2020.1836281] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
|
128 |
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020;181:151-67. [PMID: 32243788 DOI: 10.1016/j.cell.2020.02.001] [Cited by in Crossref: 178] [Cited by in F6Publishing: 204] [Article Influence: 59.3] [Reference Citation Analysis]
|
129 |
Rahikkala A, Fontana F, Bauleth-Ramos T, Correia A, Kemell M, Seitsonen J, Mäkilä E, Sarmento B, Salonen J, Ruokolainen J, Hirvonen J, Santos HA. Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Adv 2020;10:35198-205. [PMID: 35515680 DOI: 10.1039/d0ra05900e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
130 |
Thomsen T, Ayoub AB, Psaltis D, Klok HA. Fluorescence-Based and Fluorescent Label-Free Characterization of Polymer Nanoparticle Decorated T Cells. Biomacromolecules 2021;22:190-200. [PMID: 32869972 DOI: 10.1021/acs.biomac.0c00969] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
|
131 |
Di J, Xie F, Xu Y. When liposomes met antibodies: Drug delivery and beyond. Adv Drug Deliv Rev 2020;154-155:151-62. [PMID: 32926944 DOI: 10.1016/j.addr.2020.09.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
|
132 |
Wang P, Jiang S, Li Y, Luo Q, Lin J, Hu L, Xu C, Zhu J, Fan L. Fabrication of hypoxia-responsive and uperconversion nanoparticles-modified RBC micro-vehicles for oxygen delivery and chemotherapy enhancement. Biomater Sci 2020;8:4595-602. [PMID: 32700684 DOI: 10.1039/d0bm00678e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
133 |
Yang C, Chen F, Ren P, Lofchy L, Wan C, Shen J, Wang G, Gaikwad H, Ponder J, Jordan CT, Scheinman R, Simberg D. Delivery of a model lipophilic membrane cargo to bone marrow via cell-derived microparticles. J Control Release 2020;326:324-34. [PMID: 32682903 DOI: 10.1016/j.jconrel.2020.07.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
134 |
Ukidve A, Zhao Z, Fehnel A, Krishnan V, Pan DC, Gao Y, Mandal A, Muzykantov V, Mitragotri S. Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proc Natl Acad Sci U S A 2020;117:17727-36. [PMID: 32665441 DOI: 10.1073/pnas.2002880117] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 13.3] [Reference Citation Analysis]
|
135 |
Nikitin MP, Zelepukin IV, Shipunova VO, Sokolov IL, Deyev SM, Nikitin PI. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat Biomed Eng 2020;4:717-31. [PMID: 32632229 DOI: 10.1038/s41551-020-0581-2] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 21.0] [Reference Citation Analysis]
|
136 |
Glassman PM, Myerson JW, Ferguson LT, Kiseleva RY, Shuvaev VV, Brenner JS, Muzykantov VR. Targeting drug delivery in the vascular system: Focus on endothelium. Adv Drug Deliv Rev 2020;157:96-117. [PMID: 32579890 DOI: 10.1016/j.addr.2020.06.013] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
|
137 |
Pan DC, Krishnan V, Salinas AK, Kim J, Sun T, Ravid S, Peng K, Wu D, Nurunnabi M, Nelson JA, Niziolek Z, Guo J, Mitragotri S. Hyaluronic acid-doxorubicin nanoparticles for targeted treatment of colorectal cancer. Bioeng Transl Med 2021;6:e10166. [PMID: 33532580 DOI: 10.1002/btm2.10166] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
|
138 |
McHugh KJ. Employing drug delivery strategies to create safe and effective pharmaceuticals for COVID-19. Bioeng Transl Med 2020;5:e10163. [PMID: 32440566 DOI: 10.1002/btm2.10163] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
139 |
Glassman PM, Villa CH, Ukidve A, Zhao Z, Smith P, Mitragotri S, Russell AJ, Brenner JS, Muzykantov VR. Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics 2020;12:E440. [PMID: 32397513 DOI: 10.3390/pharmaceutics12050440] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 14.3] [Reference Citation Analysis]
|
140 |
Buss N, Yasa O, Alapan Y, Akolpoglu MB, Sitti M. Nanoerythrosome-functionalized biohybrid microswimmers. APL Bioeng 2020;4:026103. [PMID: 32548539 DOI: 10.1063/1.5130670] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
|
141 |
Shields CW 4th, Wang LL, Evans MA, Mitragotri S. Materials for Immunotherapy. Adv Mater 2020;32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Cited by in Crossref: 85] [Cited by in F6Publishing: 92] [Article Influence: 28.3] [Reference Citation Analysis]
|
142 |
Habibi N, Quevedo DF, Gregory JV, Lahann J. Emerging methods in therapeutics using multifunctional nanoparticles. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1625] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
|
143 |
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020;12:E276. [PMID: 32197542 DOI: 10.3390/pharmaceutics12030276] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 14.0] [Reference Citation Analysis]
|
144 |
Marcos-Contreras OA, Greineder CF, Kiseleva RY, Parhiz H, Walsh LR, Zuluaga-Ramirez V, Myerson JW, Hood ED, Villa CH, Tombacz I, Pardi N, Seliga A, Mui BL, Tam YK, Glassman PM, Shuvaev VV, Nong J, Brenner JS, Khoshnejad M, Madden T, Weissmann D, Persidsky Y, Muzykantov VR. Selective targeting of nanomedicine to inflamed cerebral vasculature to enhance the blood-brain barrier. Proc Natl Acad Sci U S A 2020;117:3405-14. [PMID: 32005712 DOI: 10.1073/pnas.1912012117] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 19.0] [Reference Citation Analysis]
|
145 |
Hu C, Bai Y, Hou M, Wang Y, Wang L, Cao X, Chan CW, Sun H, Li W, Ge J, Ren K. Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis. Sci Adv 2020;6:eaax5785. [PMID: 32064336 DOI: 10.1126/sciadv.aax5785] [Cited by in Crossref: 106] [Cited by in F6Publishing: 105] [Article Influence: 35.3] [Reference Citation Analysis]
|
146 |
Dong H, Xu X, Wang L, Mo R. Advances in living cell-based anticancer therapeutics. Biomater Sci 2020;8:2344-65. [DOI: 10.1039/d0bm00036a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
|
147 |
Jimenez-escobar M, Pascual-mathey L, Beristain C, Flores-andrade E, Jiménez M, Pascual-pineda L. In vitro and In vivo antioxidant properties of paprika carotenoids nanoemulsions. LWT 2020;118:108694. [DOI: 10.1016/j.lwt.2019.108694] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
|
148 |
Li C, Wang X, Li R, Yang X, Zhong Z, Dai Y, Fan Q, Lin Y, Zhang R, Liang T, Ye Y, Zhou M. Resveratrol-loaded PLGA nanoparticles functionalized with red blood cell membranes as a biomimetic delivery system for prolonged circulation time. Journal of Drug Delivery Science and Technology 2019;54:101369. [DOI: 10.1016/j.jddst.2019.101369] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|
149 |
Zhao Z, Ukidve A, Gao Y, Kim J, Mitragotri S. Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci Adv 2019;5:eaax9250. [PMID: 31763454 DOI: 10.1126/sciadv.aax9250] [Cited by in Crossref: 64] [Cited by in F6Publishing: 63] [Article Influence: 16.0] [Reference Citation Analysis]
|
150 |
Nowak M, Helgeson ME, Mitragotri S. Delivery of Nanoparticles and Macromolecules across the Blood–Brain Barrier. Adv Therap 2020;3:1900073. [DOI: 10.1002/adtp.201900073] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
|
151 |
Pan X, Wang Q, Li S, Wang X, Han X. Bowl‐like Micromotors Using Red Blood Cell Membrane as Template. ChemistrySelect 2019;4:10296-8. [DOI: 10.1002/slct.201902062] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
|
152 |
Simpson JD, Smith SA, Thurecht KJ, Such G. Engineered Polymeric Materials for Biological Applications: Overcoming Challenges of the Bio-Nano Interface. Polymers (Basel) 2019;11:E1441. [PMID: 31480780 DOI: 10.3390/polym11091441] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
|
153 |
Calderón-garcidueñas L, Reynoso-robles R, González-maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. Environmental Research 2019;176:108574. [DOI: 10.1016/j.envres.2019.108574] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 10.8] [Reference Citation Analysis]
|
154 |
Lutz H, Hu S, Dinh P, Cheng K. Cells and cell derivatives as drug carriers for targeted delivery. Medicine in Drug Discovery 2019;3:100014. [DOI: 10.1016/j.medidd.2020.100014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
|
155 |
Rossi L, Fraternale A, Bianchi M, Magnani M. Red Blood Cell Membrane Processing for Biomedical Applications. Front Physiol 2019;10:1070. [PMID: 31481901 DOI: 10.3389/fphys.2019.01070] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
|
156 |
Agrahari V, Burnouf PA, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev 2019;148:146-80. [PMID: 30797956 DOI: 10.1016/j.addr.2019.02.008] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
|
157 |
Calderón-Garcidueñas L, González-Maciel A, Mukherjee PS, Reynoso-Robles R, Pérez-Guillé B, Gayosso-Chávez C, Torres-Jardón R, Cross JV, Ahmed IAM, Karloukovski VV, Maher BA. Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts. Environ Res 2019;176:108567. [PMID: 31344533 DOI: 10.1016/j.envres.2019.108567] [Cited by in Crossref: 85] [Cited by in F6Publishing: 87] [Article Influence: 21.3] [Reference Citation Analysis]
|
158 |
Busatto S, Pham A, Suh A, Shapiro S, Wolfram J. Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomed Microdevices 2019;21:46. [PMID: 30989386 DOI: 10.1007/s10544-019-0396-7] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 11.3] [Reference Citation Analysis]
|
159 |
Lusi V, Moore TL, Laurino F, Coclite A, Perreira R, Ferreira M, Rizzuti I, Palomba R, Zunino P, Duocastella M, Mizrahy S, Peer D, Decuzzi P. A tissue chamber chip for assessing nanoparticle mobility in the extravascular space. Biomed Microdevices 2019;21:41. [PMID: 30955101 DOI: 10.1007/s10544-019-0398-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
|
160 |
Mu Q, Wang H, Gu X, Stephen ZR, Yen C, Chang FC, Dayringer CJ, Zhang M. Biconcave Carbon Nanodisks for Enhanced Drug Accumulation and Chemo-Photothermal Tumor Therapy. Adv Healthc Mater 2019;8:e1801505. [PMID: 30856295 DOI: 10.1002/adhm.201801505] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
|
161 |
Qiu Y, Myers DR, Lam WA. The biophysics and mechanics of blood from a materials perspective. Nat Rev Mater 2019;4:294-311. [PMID: 32435512 DOI: 10.1038/s41578-019-0099-y] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
|
162 |
Marcos-Contreras OA, Brenner JS, Kiseleva RY, Zuluaga-Ramirez V, Greineder CF, Villa CH, Hood ED, Myerson JW, Muro S, Persidsky Y, Muzykantov VR. Combining vascular targeting and the local first pass provides 100-fold higher uptake of ICAM-1-targeted vs untargeted nanocarriers in the inflamed brain. J Control Release 2019;301:54-61. [PMID: 30871995 DOI: 10.1016/j.jconrel.2019.03.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
|
163 |
Dias A, Werner M, Ward KR, Fleury JB, Baulin VA. High-throughput 3D visualization of nanoparticles attached to the surface of red blood cells. Nanoscale 2019;11:2282-8. [PMID: 30657510 DOI: 10.1039/c8nr09960j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
|
164 |
Kola SM, Kumar P, Choonara YE, du Toit LC, Pillay V. Hypothesis: Can drug-loaded platelets be used as delivery vehicles for blood-brain barrier penetration? Med Hypotheses 2019;125:75-8. [PMID: 30902155 DOI: 10.1016/j.mehy.2019.02.037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
165 |
Yousefpour P, Ahn L, Tewksbury J, Saha S, Costa SA, Bellucci JJ, Li X, Chilkoti A. Conjugate of Doxorubicin to Albumin-Binding Peptide Outperforms Aldoxorubicin. Small 2019;15:e1804452. [PMID: 30756483 DOI: 10.1002/smll.201804452] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
|
166 |
Huang T, Li N, Gao J. Recent strategies on targeted delivery of thrombolytics. Asian J Pharm Sci 2019;14:233-47. [PMID: 32104455 DOI: 10.1016/j.ajps.2018.12.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
|
167 |
Zelepukin IV, Yaremenko AV, Shipunova VO, Babenyshev AV, Balalaeva IV, Nikitin PI, Deyev SM, Nikitin MP. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale 2019;11:1636-46. [PMID: 30644955 DOI: 10.1039/c8nr07730d] [Cited by in Crossref: 86] [Cited by in F6Publishing: 93] [Article Influence: 21.5] [Reference Citation Analysis]
|
168 |
Chen ZA, Wu SH, Chen P, Chen YP, Mou CY. Critical Features for Mesoporous Silica Nanoparticles Encapsulated into Erythrocytes. ACS Appl Mater Interfaces 2019;11:4790-8. [PMID: 30624037 DOI: 10.1021/acsami.8b18434] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
|
169 |
Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019;48:2967-3014. [DOI: 10.1039/c8cs00805a] [Cited by in Crossref: 229] [Cited by in F6Publishing: 242] [Article Influence: 57.3] [Reference Citation Analysis]
|
170 |
Nguyen TDT, Aryal S, Pitchaimani A, Park S, Key J, Aryal S. Biomimetic surface modification of discoidal polymeric particles. Nanomedicine 2019;16:79-87. [PMID: 30529792 DOI: 10.1016/j.nano.2018.11.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
|
171 |
Kim MW, Kwon SH, Choi JH, Lee A. A Promising Biocompatible Platform: Lipid-Based and Bio-Inspired Smart Drug Delivery Systems for Cancer Therapy. Int J Mol Sci 2018;19:E3859. [PMID: 30518027 DOI: 10.3390/ijms19123859] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
|
172 |
Jiang Q, Liu Y, Guo R, Yao X, Sung S, Pang Z, Yang W. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 2019;192:292-308. [PMID: 30465973 DOI: 10.1016/j.biomaterials.2018.11.021] [Cited by in Crossref: 165] [Cited by in F6Publishing: 176] [Article Influence: 33.0] [Reference Citation Analysis]
|
173 |
Li Z, Hu S, Cheng K. Platelets and their biomimetics for regenerative medicine and cancer therapies. J Mater Chem B 2018;6:7354-65. [PMID: 31372220 DOI: 10.1039/C8TB02301H] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 10.4] [Reference Citation Analysis]
|
174 |
Dianat-moghadam H, Heidarifard M, Jahanban-esfahlan R, Panahi Y, Hamishehkar H, Pouremamali F, Rahbarghazi R, Nouri M. Cancer stem cells-emanated therapy resistance: Implications for liposomal drug delivery systems. Journal of Controlled Release 2018;288:62-83. [DOI: 10.1016/j.jconrel.2018.08.043] [Cited by in Crossref: 62] [Cited by in F6Publishing: 67] [Article Influence: 12.4] [Reference Citation Analysis]
|
175 |
[DOI: 10.1101/2020.04.15.037564] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
|