1 |
Bose SK, Kennedy K, Peranteau WH. Foetal genome editing. Curr Opin Obstet Gynecol 2023;35:134-9. [PMID: 36924409 DOI: 10.1097/GCO.0000000000000854] [Reference Citation Analysis]
|
2 |
López-Tena M, Farrera-Soler L, Barluenga S, Winssinger N. Pseudo-Complementary G:C Base Pair for Mixed Sequence dsDNA Invasion and Its Applications in Diagnostics (SARS-CoV-2 Detection). JACS Au 2023;3:449-58. [PMID: 36873687 DOI: 10.1021/jacsau.2c00588] [Reference Citation Analysis]
|
3 |
Gao K, Li J, Song H, Han H, Wang Y, Yin B, Farmer DL, Murthy N, Wang A. In utero delivery of mRNA to the heart, diaphragm and muscle with lipid nanoparticles. Bioact Mater 2023;25:387-98. [PMID: 36844366 DOI: 10.1016/j.bioactmat.2023.02.011] [Reference Citation Analysis]
|
4 |
De A, Ko YT. Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out. Expert Opin Drug Deliv 2023;20:175-87. [PMID: 36588456 DOI: 10.1080/17425247.2023.2162876] [Reference Citation Analysis]
|
5 |
Kumar V, Wahane A, Gupta A, Manautou JE, Bahal R. Multivalent Lactobionic Acid and N-Acetylgalactosamine-Conjugated Peptide Nucleic Acids for Efficient In Vivo Targeting of Hepatocytes. Adv Healthc Mater 2023;:e2202859. [PMID: 36636995 DOI: 10.1002/adhm.202202859] [Reference Citation Analysis]
|
6 |
Singh K. Prenatal Interventions for the Treatment of Congenital Disorders. Regenerative Medicine 2023. [DOI: 10.1007/978-981-19-6008-6_12] [Reference Citation Analysis]
|
7 |
Berkowitz CL, Luks VL, Puc M, Peranteau WH. Molecular and Cellular In Utero Therapy. Clin Perinatol 2022;49:811-20. [PMID: 36328600 DOI: 10.1016/j.clp.2022.06.005] [Reference Citation Analysis]
|
8 |
Cruz LJ, Rezaei S, Grosveld F, Philipsen S, Eich C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front Genome Ed 2022;4. [DOI: 10.3389/fgeed.2022.1030285] [Reference Citation Analysis]
|
9 |
Gao K, Li J, Song H, Han H, Wang Y, Yin B, Farmer DL, Murthy N, Wang A. Non-viral gene editingin uterowith lipid nanoparticles complexed to mRNA.. [DOI: 10.1101/2022.10.14.512310] [Reference Citation Analysis]
|
10 |
Piotrowski-Daspit AS, Barone C, Lin CY, Deng Y, Wu D, Binns TC, Xu E, Ricciardi AS, Putman R, Garrison A, Nguyen R, Gupta A, Fan R, Glazer PM, Saltzman WM, Egan ME. In vivo correction of cystic fibrosis mediated by PNA nanoparticles. Sci Adv 2022;8:eabo0522. [PMID: 36197984 DOI: 10.1126/sciadv.abo0522] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
11 |
Arnold AM, Bradley AM, Taylor KL, Kennedy ZC, Omberg KM. The Promise of Emergent Nanobiotechnologies for In Vivo Applications and Implications for Safety and Security. Health Secur 2022;20:408-23. [PMID: 36286588 DOI: 10.1089/hs.2022.0014] [Reference Citation Analysis]
|
12 |
Herzeg A, Almeida-Porada G, Charo RA, David AL, Gonzalez-Velez J, Gupta N, Lapteva L, Lianoglou B, Peranteau W, Porada C, Sanders SJ, Sparks TN, Stitelman DH, Struble E, Sumner CJ, MacKenzie TC. Prenatal Somatic Cell Gene Therapies: Charting a Path Toward Clinical Applications (Proceedings of the CERSI-FDA Meeting). J Clin Pharmacol 2022;62 Suppl 1:S36-52. [PMID: 36106778 DOI: 10.1002/jcph.2127] [Reference Citation Analysis]
|
13 |
de Coppi P, Loukogeorgakis S, Götherström C, David AL, Almeida-porada G, Chan JKY, Deprest J, Wong KKY, Tam PKH. Regenerative medicine: prenatal approaches. The Lancet Child & Adolescent Health 2022;6:643-653. [DOI: 10.1016/s2352-4642(22)00192-4] [Reference Citation Analysis]
|
14 |
Economos NG, Thapar U, Balasubramanian N, Karras GI, Glazer PM. An ELISA-based platform for rapid identification of structure-dependent nucleic acid-protein interactions detects novel DNA triplex interactors. J Biol Chem 2022;:102398. [PMID: 35988651 DOI: 10.1016/j.jbc.2022.102398] [Reference Citation Analysis]
|
15 |
. Genetic Diseases and Nanotechnology‐Based Theranostics. Nanoparticles for Therapeutic Applications 2022. [DOI: 10.1002/9781119764205.ch5] [Reference Citation Analysis]
|
16 |
Ahmad A. Safety and Toxicity Implications of Multifunctional Drug Delivery Nanocarriers on Reproductive Systems In Vitro and In Vivo. Front Toxicol 2022;4. [DOI: 10.3389/ftox.2022.895667] [Reference Citation Analysis]
|
17 |
Maassel NL, Wu DH, Yung NK, Bauer-Pisani T, Elizabeth Guerra M, Ullrich SJ, Mark Saltzman W, Stitelman DH. Intra-amniotic Injection of Poly(lactic-co-glycolic Acid) Microparticles Loaded with Growth Factor: Effect on Tissue Coverage and Cellular Apoptosis in the Rat Model of Myelomeningocele. J Am Coll Surg 2022;234:1010-9. [PMID: 35703790 DOI: 10.1097/XCS.0000000000000156] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
18 |
Kojima A, Nakao J, Shimada N, Yoshida N, Abe Y, Mikame Y, Yamamoto T, Wada T, Maruyama A, Yamayoshi A. Selective Photo-Crosslinking Detection of Methylated Cytosine in DNA Duplex Aided by a Cationic Comb-Type Copolymer. ACS Biomater Sci Eng 2022;8:1799-805. [PMID: 35263539 DOI: 10.1021/acsbiomaterials.2c00048] [Reference Citation Analysis]
|
19 |
Luks VL, Mandl H, Dirito J, Barone C, Freedman-weiss MR, Ricciardi AS, Tietjen GG, Egan ME, Saltzman WM, Stitelman DH. Surface conjugation of antibodies improves nanoparticle uptake in bronchial epithelial cells. PLoS ONE 2022;17:e0266218. [DOI: 10.1371/journal.pone.0266218] [Reference Citation Analysis]
|
20 |
Aiba Y, Shibata M, Shoji O. Sequence-Specific Recognition of Double-Stranded DNA by Peptide Nucleic Acid Forming Double-Duplex Invasion Complex. Applied Sciences 2022;12:3677. [DOI: 10.3390/app12073677] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
21 |
Lederer CW, Koniali L, Buerki-thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022;14:793. [DOI: 10.3390/pharmaceutics14040793] [Reference Citation Analysis]
|
22 |
Hendriks S, Grady C, Wasserman D, Wendler D, Bianchi DW, Berkman BE. A New Ethical Framework for Assessing the Unique Challenges of Fetal Therapy Trials. Am J Bioeth 2022;22:45-61. [PMID: 33455521 DOI: 10.1080/15265161.2020.1867932] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
|
23 |
Ullrich SJ, Yung NK, Bauer-pisani TJ, Maassel NL, Guerra ME, Freedman-weiss M, Ahle SL, Ricciardi AS, Sauler M, Saltzman WM, Piotrowski-daspit AS, Stitelman DH. In utero delivery of miRNA induces epigenetic alterations and corrects pulmonary pathology in congenital diaphragmatic hernia.. [DOI: 10.1101/2022.02.27.482144] [Reference Citation Analysis]
|
24 |
Peddi NC, Marasandra Ramesh H, Gude SS, Gude SS, Vuppalapati S. Intrauterine Fetal Gene Therapy: Is That the Future and Is That Future Now? Cureus 2022. [DOI: 10.7759/cureus.22521] [Reference Citation Analysis]
|
25 |
Malik S, Kumar V, Liu CH, Shih KC, Krueger S, Nieh MP, Bahal R. Head on Comparison of Self- and Nano-assemblies of Gamma Peptide Nucleic Acid Amphiphiles. Adv Funct Mater 2022;32:2109552. [PMID: 35210986 DOI: 10.1002/adfm.202109552] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
26 |
Gaddam RR, Dhuri K, Kim YR, Jacobs JS, Kumar V, Li Q, Irani K, Bahal R, Vikram A. γ Peptide Nucleic Acid-Based miR-122 Inhibition Rescues Vascular Endothelial Dysfunction in Mice Fed a High-Fat Diet. J Med Chem 2022. [PMID: 35133835 DOI: 10.1021/acs.jmedchem.1c01831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
27 |
Piotrowski-daspit AS, Barone C, Lin C, Deng Y, Wu D, Binns TC, Xu E, Ricciardi AS, Putman R, Nguyen R, Gupta A, Fan R, Glazer PM, Saltzman WM, Egan ME. In vivo correction of cystic fibrosis mediated by PNA nanoparticles.. [DOI: 10.1101/2022.01.28.478191] [Reference Citation Analysis]
|
28 |
Swingle KL, Billingsley MM, Bose SK, White B, Palanki R, Dave A, Patel SK, Gong N, Hamilton AG, Alameh MG, Weissman D, Peranteau WH, Mitchell MJ. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J Control Release 2022;341:616-33. [PMID: 34742747 DOI: 10.1016/j.jconrel.2021.10.031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
29 |
Schwab ME, MacKenzie TC. Prenatal Gene Therapy. Clin Obstet Gynecol 2021;64:876-85. [PMID: 34618719 DOI: 10.1097/GRF.0000000000000655] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
30 |
Coons B, Peranteau WH. Prenatal Gene Therapy for Metabolic Disorders. Clin Obstet Gynecol 2021;64:904-16. [PMID: 34652302 DOI: 10.1097/GRF.0000000000000662] [Reference Citation Analysis]
|
31 |
Dhuri K, Gaddam RR, Vikram A, Slack FJ, Bahal R. Therapeutic Potential of Chemically Modified, Synthetic, Triplex Peptide Nucleic Acid-Based Oncomir Inhibitors for Cancer Therapy. Cancer Res 2021;81:5613-24. [PMID: 34548334 DOI: 10.1158/0008-5472.CAN-21-0736] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
32 |
Momin MY, Gaddam RR, Kravitz M, Gupta A, Vikram A. The Challenges and Opportunities in the Development of MicroRNA Therapeutics: A Multidisciplinary Viewpoint. Cells 2021;10:3097. [PMID: 34831320 DOI: 10.3390/cells10113097] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
33 |
Ho PY, Zhang Z, Hayes ME, Curd A, Dib C, Rayburn M, Tam SN, Srivastava T, Hriniak B, Li XJ, Leonard S, Wang L, Tarighat S, Sim DS, Fiandaca M, Coull JM, Ebens A, Fordyce M, Czechowicz A. Peptide nucleic acid-dependent artifact can lead to false-positive triplex gene editing signals. Proc Natl Acad Sci U S A 2021;118:e2109175118. [PMID: 34732575 DOI: 10.1073/pnas.2109175118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
34 |
Nakao J, Yamamoto T, Yamayoshi A. Therapeutic application of sequence-specific binding molecules for novel genome editing tools. Drug Metab Pharmacokinet 2021;42:100427. [PMID: 34974332 DOI: 10.1016/j.dmpk.2021.100427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
35 |
Sharma A, Sah N, Kannan S, Kannan RM. Targeted drug delivery for maternal and perinatal health: Challenges and opportunities. Adv Drug Deliv Rev 2021;177:113950. [PMID: 34454979 DOI: 10.1016/j.addr.2021.113950] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
36 |
Zhan X, Deng L, Chen G. Mechanisms and applications of peptide nucleic acids selectively binding to double-stranded RNA. Biopolymers 2021;:e23476. [PMID: 34581432 DOI: 10.1002/bip.23476] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
37 |
Malik S, Saltzman WM, Bahal R. Extracellular vesicles mediated exocytosis of antisense peptide nucleic acids. Mol Ther Nucleic Acids 2021;25:302-15. [PMID: 34458012 DOI: 10.1016/j.omtn.2021.07.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
38 |
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021;176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
39 |
Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine Hypoxia and Epigenetic Programming in Lung Development and Disease. Biomedicines 2021;9:944. [PMID: 34440150 DOI: 10.3390/biomedicines9080944] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
40 |
Zhytnik L, Peters M, Tilk K, Simm K, Tõnisson N, Reimand T, Maasalu K, Acharya G, Krjutškov K, Salumets A. From late fatherhood to prenatal screening of monogenic disorders: evidence and ethical concerns. Hum Reprod Update 2021:dmab023. [PMID: 34329448 DOI: 10.1093/humupd/dmab023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
41 |
Mackenzie TC, Schwab ME. In Utero Stem Cell Transplantation, Enzyme Replacement, and Gene Therapy. Genetic Disorders and the Fetus 2021. [DOI: 10.1002/9781119676980.ch30] [Reference Citation Analysis]
|
42 |
Bose SK, Menon P, Peranteau WH. InUtero Gene Therapy: Progress and Challenges. Trends Mol Med 2021;27:728-30. [PMID: 34176774 DOI: 10.1016/j.molmed.2021.05.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
|
43 |
Perera JDR, Carufe KEW, Glazer PM. Peptide nucleic acids and their role in gene regulation and editing. Biopolymers 2021;:e23460. [PMID: 34129732 DOI: 10.1002/bip.23460] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
44 |
Anurogo D, Yuli Prasetyo Budi N, Thi Ngo MH, Huang YH, Pawitan JA. Cell and Gene Therapy for Anemia: Hematopoietic Stem Cells and Gene Editing. Int J Mol Sci 2021;22:6275. [PMID: 34200975 DOI: 10.3390/ijms22126275] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
45 |
Yung NK, Maassel NL, Ullrich SJ, Ricciardi AS, Stitelman DH. A narrative review of in utero gene therapy: advances, challenges, and future considerations. Transl Pediatr 2021;10:1486-96. [PMID: 34189107 DOI: 10.21037/tp-20-89] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
46 |
Yao J, Wang Y, Cao C, Song R, Bi D, Zhang H, Li Y, Qin G, Hou N, Zhang N, Zhang J, Guo W, Yang S, Wang Y, Zhao J. CRISPR/Cas9-mediated correction of MITF homozygous point mutation in a Waardenburg syndrome 2A pig model. Mol Ther Nucleic Acids 2021;24:986-99. [PMID: 34094716 DOI: 10.1016/j.omtn.2021.04.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
47 |
Ullrich SJ, Freedman-Weiss M, Ahle S, Mandl HK, Piotrowski-Daspit AS, Roberts K, Yung N, Maassel N, Bauer-Pisani T, Ricciardi AS, Egan ME, Glazer PM, Saltzman WM, Stitelman DH. Nanoparticles for delivery of agents to fetal lungs. Acta Biomater 2021;123:346-53. [PMID: 33484911 DOI: 10.1016/j.actbio.2021.01.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
48 |
Brusson M, Miccio A. Genome editing approaches to β-hemoglobinopathies. Prog Mol Biol Transl Sci 2021;182:153-83. [PMID: 34175041 DOI: 10.1016/bs.pmbts.2021.01.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
49 |
Nelson KM, Irvin-Choy N, Hoffman MK, Gleghorn JP, Day ES. Diseases and conditions that impact maternal and fetal health and the potential for nanomedicine therapies. Adv Drug Deliv Rev 2021;170:425-38. [PMID: 33002575 DOI: 10.1016/j.addr.2020.09.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
50 |
Peranteau WH, Flake AW. The Future of In Utero Gene Therapy. Mol Diagn Ther 2020;24:135-42. [PMID: 32020561 DOI: 10.1007/s40291-020-00445-y] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
51 |
Palanki R, Peranteau WH, Mitchell MJ. Delivery technologies for in utero gene therapy. Adv Drug Deliv Rev 2021;169:51-62. [PMID: 33181188 DOI: 10.1016/j.addr.2020.11.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
|
52 |
Frati G, Miccio A. Genome Editing for β-Hemoglobinopathies: Advances and Challenges. J Clin Med 2021;10:482. [PMID: 33525591 DOI: 10.3390/jcm10030482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
53 |
Oyaghire SN, Quijano E, Piotrowski-Daspit AS, Saltzman WM, Glazer PM. Poly(Lactic-co-Glycolic Acid) Nanoparticle Delivery of Peptide Nucleic Acids In Vivo. Methods Mol Biol 2020;2105:261-81. [PMID: 32088877 DOI: 10.1007/978-1-0716-0243-0_17] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
|
54 |
Hsieh WC, Ly DH. A Robust Method for Preparing Optically Pure MiniPEG-Containing Gamma PNA Monomers. Methods Mol Biol 2020;2105:17-33. [PMID: 32088862 DOI: 10.1007/978-1-0716-0243-0_2] [Reference Citation Analysis]
|
55 |
Riley RS, Kashyap MV, Billingsley MM, White B, Alameh MG, Bose SK, Zoltick PW, Li H, Zhang R, Cheng AY, Weissman D, Peranteau WH, Mitchell MJ. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci Adv 2021;7:eaba1028. [PMID: 33523869 DOI: 10.1126/sciadv.aba1028] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 21.5] [Reference Citation Analysis]
|
56 |
Lai Q, Dong B, Nie K, Shi H, Liang B, Liu Z. Synthesis and Characterisation of Photolabile SPhNPPOC-Protected (R)-MiniPEG Containing Chiral γ-Peptide Nucleic Acid Monomers. Aust J Chem 2021;74:199. [DOI: 10.1071/ch20017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
57 |
Volpi S, Cancelli U, Neri M, Corradini R. Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals (Basel) 2020;14:14. [PMID: 33375595 DOI: 10.3390/ph14010014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
|
58 |
Kiani AK, Paolacci S, Scanzano P, Michelini S, Capodicasa N, D'Agruma L, Notarangelo A, Tonini G, Piccinelli D, Farshid KR, Petralia P, Fulcheri E, Buffelli F, Chiurazzi P, Terranova C, Plotti F, Angioli R, Castori M, Pös O, Szemes T, Bertelli M. Prenatal genetic diagnosis: Fetal therapy as a possible solution to a positive test. Acta Biomed 2020;91:e2020021. [PMID: 33170180 DOI: 10.23750/abm.v91i13-S.10534] [Reference Citation Analysis]
|
59 |
Félix AJ, Solé A, Noé V, Ciudad CJ. Gene Correction of Point Mutations Using PolyPurine Reverse Hoogsteen Hairpins Technology. Front Genome Ed 2020;2:583577. [DOI: 10.3389/fgeed.2020.583577] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
|
60 |
Malik S, Slack FJ, Bahal R. Formulation of PLGA nanoparticles containing short cationic peptide nucleic acids. MethodsX 2020;7:101115. [PMID: 33145187 DOI: 10.1016/j.mex.2020.101115] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
|
61 |
O'Connell AE, Guseh S, Lapteva L, Cummings CL, Wilkins-Haug L, Chan J, Peranteau WH, Almeida-Porada G, Kourembanas S. Gene and Stem Cell Therapies for Fetal Care: A Review. JAMA Pediatr 2020;174:985-91. [PMID: 32597943 DOI: 10.1001/jamapediatrics.2020.1519] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
62 |
Figueroa-Espada CG, Hofbauer S, Mitchell MJ, Riley RS. Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Adv Drug Deliv Rev 2020;160:244-61. [PMID: 32956719 DOI: 10.1016/j.addr.2020.09.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
|
63 |
Wang L, Kempton JB, Jiang H, Jodelka FM, Brigande AM, Dumont RA, Rigo F, Lentz JJ, Hastings ML, Brigande JV. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction. Nucleic Acids Res 2020;48:5065-80. [PMID: 32249312 DOI: 10.1093/nar/gkaa194] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
|
64 |
Sii-felice K, Negre O, Brendel C, Tubsuwan A, Morel-à-l’huissier E, Filardo C, Payen E. Innovative Therapies for Hemoglobin Disorders. BioDrugs 2020;34:625-47. [DOI: 10.1007/s40259-020-00439-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
65 |
Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. Adv Mater 2020;32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
|
66 |
Malik S, Lim J, Slack FJ, Braddock DT, Bahal R. Next generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles. J Control Release 2020;327:406-19. [PMID: 32835710 DOI: 10.1016/j.jconrel.2020.08.026] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 7.7] [Reference Citation Analysis]
|
67 |
Dolgin E. In utero intervention to stem the damage of cystic fibrosis. Nature 2020;583:S6-S7. [DOI: 10.1038/d41586-020-02108-8] [Reference Citation Analysis]
|
68 |
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020;5:90. [PMID: 32532965 DOI: 10.1038/s41392-020-0196-9] [Cited by in Crossref: 80] [Cited by in F6Publishing: 87] [Article Influence: 26.7] [Reference Citation Analysis]
|
69 |
Sato M, Takabayashi S, Akasaka E, Nakamura S. Recent Advances and Future Perspectives of In Vivo Targeted Delivery of Genome-Editing Reagents to Germ Cells, Embryos, and Fetuses in Mice. Cells 2020;9:E799. [PMID: 32225003 DOI: 10.3390/cells9040799] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
|
70 |
Muangkaew P, Vilaivan T. Modulation of DNA and RNA by PNA. Bioorg Med Chem Lett 2020;30:127064. [PMID: 32147357 DOI: 10.1016/j.bmcl.2020.127064] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
|
71 |
Canady TD, Berlyoung AS, Martinez JA, Emanuelson C, Telmer CA, Bruchez MP, Armitage BA. Enhanced Hybridization Selectivity Using Structured GammaPNA Probes. Molecules 2020;25:E970. [PMID: 32098111 DOI: 10.3390/molecules25040970] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
|
72 |
Economos NG, Oyaghire S, Quijano E, Ricciardi AS, Saltzman WM, Glazer PM. Peptide Nucleic Acids and Gene Editing: Perspectives on Structure and Repair. Molecules 2020;25:E735. [PMID: 32046275 DOI: 10.3390/molecules25030735] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
|
73 |
Magrin E, Miccio A, Cavazzana M. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Blood 2019;134:1203-13. [PMID: 31467062 DOI: 10.1182/blood.2019000949] [Cited by in Crossref: 50] [Cited by in F6Publishing: 53] [Article Influence: 16.7] [Reference Citation Analysis]
|
74 |
Nelson CE, Duvall CL, Prokop A, Gersbach CA, Davidson JM. Gene delivery into cells and tissues. Principles of Tissue Engineering 2020. [DOI: 10.1016/b978-0-12-818422-6.00030-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
75 |
Kunitomo Y, Britto CJ. The Evolution of Precision Medicine in Cystic Fibrosis. Precision in Pulmonary, Critical Care, and Sleep Medicine 2020. [DOI: 10.1007/978-3-030-31507-8_5] [Reference Citation Analysis]
|
76 |
Félix AJ, Ciudad CJ, Noé V. Correction of the aprt Gene Using Repair-Polypurine Reverse Hoogsteen Hairpins in Mammalian Cells. Mol Ther Nucleic Acids 2020;19:683-95. [PMID: 31945727 DOI: 10.1016/j.omtn.2019.12.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
|
77 |
Malik S, Asmara B, Moscato Z, Mukker JK, Bahal R. Advances in Nanoparticle-based Delivery of Next Generation Peptide Nucleic Acids. Curr Pharm Des 2018;24:5164-74. [PMID: 30657037 DOI: 10.2174/1381612825666190117164901] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
78 |
Velino C, Carella F, Adamiano A, Sanguinetti M, Vitali A, Catalucci D, Bugli F, Iafisco M. Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis. Front Bioeng Biotechnol 2019;7:406. [PMID: 31921811 DOI: 10.3389/fbioe.2019.00406] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
|
79 |
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. Curr Stem Cell Rep 2019;5:145-61. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
80 |
. Novel Gene-Editing Technique Cures β-Thalassemia in Utero: A novel peptide nucleic acid-based gene-editing technique using a nanoparticle delivery system seemingly cured beta thalassemia in fetal mice. Am J Med Genet A 2018;176:2052-3. [PMID: 30380190 DOI: 10.1002/ajmg.a.40655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
81 |
Mandl HK, Quijano E, Suh HW, Sparago E, Oeck S, Grun M, Glazer PM, Saltzman WM. Optimizing biodegradable nanoparticle size for tissue-specific delivery. J Control Release 2019;314:92-101. [PMID: 31654688 DOI: 10.1016/j.jconrel.2019.09.020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 6.0] [Reference Citation Analysis]
|
82 |
Saarbach J, Sabale PM, Winssinger N. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr Opin Chem Biol 2019;52:112-24. [PMID: 31541865 DOI: 10.1016/j.cbpa.2019.06.006] [Cited by in Crossref: 76] [Cited by in F6Publishing: 66] [Article Influence: 19.0] [Reference Citation Analysis]
|
83 |
Rashnonejad A, Amini Chermahini G, Gündüz C, Onay H, Aykut A, Durmaz B, Baka M, Su Q, Gao G, Özkınay F. Fetal Gene Therapy Using a Single Injection of Recombinant AAV9 Rescued SMA Phenotype in Mice. Mol Ther 2019;27:2123-33. [PMID: 31543414 DOI: 10.1016/j.ymthe.2019.08.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
|
84 |
Ong AAL, Tan J, Bhadra M, Dezanet C, Patil KM, Chong MS, Kierzek R, Decout JL, Roca X, Chen G. RNA Secondary Structure-Based Design of Antisense Peptide Nucleic Acids for Modulating Disease-Associated Aberrant Tau Pre-mRNA Alternative Splicing. Molecules 2019;24:E3020. [PMID: 31434312 DOI: 10.3390/molecules24163020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
|
85 |
Ong AAL, Toh DK, Krishna MS, Patil KM, Okamura K, Chen G. Incorporating 2-Thiouracil into Short Double-Stranded RNA-Binding Peptide Nucleic Acids for Enhanced Recognition of A-U Pairs and for Targeting a MicroRNA Hairpin Precursor. Biochemistry 2019;58:3444-53. [PMID: 31318532 DOI: 10.1021/acs.biochem.9b00521] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|
86 |
Tahmasbi Rad A, Malik S, Yang L, Oberoi-Khanuja TK, Nieh MP, Bahal R. A universal discoidal nanoplatform for the intracellular delivery of PNAs. Nanoscale 2019;11:12517-29. [PMID: 31188378 DOI: 10.1039/c9nr03667a] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
|
87 |
DeWeerdt S. Prenatal gene therapy offers the earliest possible cure. Nature 2018;564:S6-8. [PMID: 30542187 DOI: 10.1038/d41586-018-07643-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
|
88 |
Dong B, Nie K, Shi H, Yao X, Chao L, Liang B, Liu Z. Synthesis and characterization of (R)-miniPEG-containing chiral γ-peptide nucleic acids using the Fmoc strategy. Tetrahedron Letters 2019;60:1430-1433. [DOI: 10.1016/j.tetlet.2019.04.038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
89 |
Dong B, Nie K, Shi H, Chao L, Ma M, Gao F, Liang B, Chen W, Long M, Liu Z. Film-Spotting chiral miniPEG-γPNA array for BRCA1 gene mutation detection. Biosens Bioelectron 2019;136:1-7. [PMID: 31026759 DOI: 10.1016/j.bios.2019.04.027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
|
90 |
Busatto S, Pham A, Suh A, Shapiro S, Wolfram J. Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomed Microdevices 2019;21:46. [PMID: 30989386 DOI: 10.1007/s10544-019-0396-7] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 11.3] [Reference Citation Analysis]
|
91 |
Stephens CJ, Lauron EJ, Kashentseva E, Lu ZH, Yokoyama WM, Curiel DT. Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9. J Control Release 2019;298:128-41. [PMID: 30771412 DOI: 10.1016/j.jconrel.2019.02.009] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 10.5] [Reference Citation Analysis]
|
92 |
Hsieh WC, Shaikh AY, Perera JDR, Thadke SA, Ly DH. Synthesis of ( R)- and ( S)-Fmoc-Protected Diethylene Glycol Gamma PNA Monomers with High Optical Purity. J Org Chem 2019;84:1276-87. [PMID: 30608165 DOI: 10.1021/acs.joc.8b02714] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
|
93 |
Yehia L, Ngeow J, Eng C. PTEN-opathies: from biological insights to evidence-based precision medicine. J Clin Invest 2019;129:452-64. [PMID: 30614812 DOI: 10.1172/JCI121277] [Cited by in Crossref: 93] [Cited by in F6Publishing: 103] [Article Influence: 23.3] [Reference Citation Analysis]
|
94 |
Limongi T, Susa F, Cauda V. Nanoparticles for hematologic diseases detection and treatment. Hematol Med Oncol 2019;4:1000183. [PMID: 33860108 DOI: 10.15761/hmo.1000183] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
|
95 |
Farrelly JS, Bianchi AH, Ricciardi AS, Buzzelli GL, Ahle SL, Freedman-Weiss MR, Luks VL, Saltzman WM, Stitelman DH. Alginate microparticles loaded with basic fibroblast growth factor induce tissue coverage in a rat model of myelomeningocele. J Pediatr Surg 2019;54:80-5. [PMID: 30414695 DOI: 10.1016/j.jpedsurg.2018.10.031] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
|
96 |
Davis R, Gurumurthy A, Hossain MA, Gunn EM, Bungert J. Engineering Globin Gene Expression. Mol Ther Methods Clin Dev 2019;12:102-10. [PMID: 30603654 DOI: 10.1016/j.omtm.2018.12.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
|
97 |
Kofler N, Kraschel KL. Treatment of heritable diseases using CRISPR: Hopes, fears, and reality. Semin Perinatol 2018;42:515-21. [PMID: 30420296 DOI: 10.1053/j.semperi.2018.09.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
|
98 |
Montazersaheb S, Hejazi MS, Nozad Charoudeh H. Potential of Peptide Nucleic Acids in Future Therapeutic Applications. Adv Pharm Bull 2018;8:551-63. [PMID: 30607328 DOI: 10.15171/apb.2018.064] [Cited by in Crossref: 36] [Cited by in F6Publishing: 43] [Article Influence: 7.2] [Reference Citation Analysis]
|
99 |
Malik S, Oyaghire S, Bahal R. Applications of PNA-laden nanoparticles for hematological disorders. Cell Mol Life Sci 2019;76:1057-65. [PMID: 30498995 DOI: 10.1007/s00018-018-2979-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
|
100 |
Hodges CA, Conlon RA. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis 2019;6:97-108. [PMID: 31193992 DOI: 10.1016/j.gendis.2018.11.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 5.4] [Reference Citation Analysis]
|