BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, Arrigoni E, Saper CB, Fuller PM. Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 2017;8:1405. [PMID: 29123082 DOI: 10.1038/s41467-017-01004-6] [Cited by in Crossref: 69] [Cited by in F6Publishing: 60] [Article Influence: 13.8] [Reference Citation Analysis]
Number Citing Articles
1 Horowitz JM, Horwitz BA. Extreme Neuroplasticity of Hippocampal CA1 Pyramidal Neurons in Hibernating Mammalian Species. Front Neuroanat 2019;13:9. [PMID: 30814935 DOI: 10.3389/fnana.2019.00009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
2 Wakabayashi KT, Feja M, Baindur AN, Bruno MJ, Bhimani RV, Park J, Hausknecht K, Shen RY, Haj-Dahmane S, Bass CE. Chemogenetic activation of ventral tegmental area GABA neurons, but not mesoaccumbal GABA terminals, disrupts responding to reward-predictive cues. Neuropsychopharmacology 2019;44:372-80. [PMID: 29875446 DOI: 10.1038/s41386-018-0097-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
3 Peever J, Fuller PM. Neuroscience: A Distributed Neural Network Controls REM Sleep. Curr Biol 2016;26:R34-5. [PMID: 26766231 DOI: 10.1016/j.cub.2015.11.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
4 Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F. A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep. Neuron 2019;102:1053-1065.e4. [PMID: 31006556 DOI: 10.1016/j.neuron.2019.03.033] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 13.3] [Reference Citation Analysis]
5 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
6 López-ferreras L, Eerola K, Shevchouk O, Richard J, Nilsson F, Jansson L, Hayes M, Skibicka K. The supramammillary nucleus controls anxiety-like behavior; key role of GLP-1R. Psychoneuroendocrinology 2020;119:104720. [DOI: 10.1016/j.psyneuen.2020.104720] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
7 Arrigoni E, Fuller PM. The Circuit, Cellular, and Synaptic Bases of Sleep-Wake Regulation. Handbook of Sleep Research. Elsevier; 2019. pp. 65-88. [DOI: 10.1016/b978-0-12-813743-7.00005-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Heiss JE, Yamanaka A, Kilduff TS. Parallel Arousal Pathways in the Lateral Hypothalamus. eNeuro 2018;5:ENEURO. [PMID: 30225361 DOI: 10.1523/ENEURO.0228-18.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Venner A, Todd WD, Fraigne J, Bowrey H, Eban-Rothschild A, Kaur S, Anaclet C. Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep 2019;42:zsz023. [PMID: 30722061 DOI: 10.1093/sleep/zsz023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
10 Fujita H, Kodama T, du Lac S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife 2020;9:e58613. [PMID: 32639229 DOI: 10.7554/eLife.58613] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
11 Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019;22:106-19. [PMID: 30559475 DOI: 10.1038/s41593-018-0288-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 18.3] [Reference Citation Analysis]
12 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
13 Anaclet C, De Luca R, Venner A, Malyshevskaya O, Lazarus M, Arrigoni E, Fuller PM. Genetic Activation, Inactivation, and Deletion Reveal a Limited And Nuanced Role for Somatostatin-Containing Basal Forebrain Neurons in Behavioral State Control. J Neurosci 2018;38:5168-81. [PMID: 29735555 DOI: 10.1523/JNEUROSCI.2955-17.2018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Robert V, Therreau L, Chevaleyre V, Lepicard E, Viollet C, Cognet J, Huang AJ, Boehringer R, Polygalov D, McHugh TJ, Piskorowski RA. Local circuit allowing hypothalamic control of hippocampal area CA2 activity and consequences for CA1. Elife 2021;10:e63352. [PMID: 34003113 DOI: 10.7554/eLife.63352] [Reference Citation Analysis]
15 Barreto-Cordero LM, Ríos-Carrillo J, Roldán-Roldán G, Rasia-Filho AA, Flores G, Bringas ME, Briones-Aranda A, Picazo O. Cyclic changes and actions of progesterone and allopregnanolone on cognition and hippocampal basal (stratum oriens) dendritic spines of female rats. Behav Brain Res 2020;379:112355. [PMID: 31730784 DOI: 10.1016/j.bbr.2019.112355] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
16 Gompf HS, Anaclet C. The neuroanatomy and neurochemistry of sleep-wake control. Curr Opin Physiol 2020;15:143-51. [PMID: 32647777 DOI: 10.1016/j.cophys.2019.12.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
17 Chazalon M, Dumas S, Bernard JF, Sahly I, Tronche F, de Kerchove d'Exaerde A, Hamon M, Adrien J, Fabre V, Bonnavion P. The GABAergic Gudden's dorsal tegmental nucleus: A new relay for serotonergic regulation of sleep-wake behavior in the mouse. Neuropharmacology 2018;138:315-30. [PMID: 29908240 DOI: 10.1016/j.neuropharm.2018.06.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
18 López-Ferreras L, Eerola K, Mishra D, Shevchouk OT, Richard JE, Nilsson FH, Hayes MR, Skibicka KP. GLP-1 modulates the supramammillary nucleus-lateral hypothalamic neurocircuit to control ingestive and motivated behavior in a sex divergent manner. Mol Metab 2019;20:178-93. [PMID: 30528281 DOI: 10.1016/j.molmet.2018.11.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
19 Carstens KE, Dudek SM. Regulation of synaptic plasticity in hippocampal area CA2. Curr Opin Neurobiol 2019;54:194-9. [PMID: 30120016 DOI: 10.1016/j.conb.2018.07.008] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
20 Mickelsen LE, Flynn WF, Springer K, Wilson L, Beltrami EJ, Bolisetty M, Robson P, Jackson AC. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. Elife 2020;9:e58901. [PMID: 33119507 DOI: 10.7554/eLife.58901] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
21 Li Y, Bao H, Luo Y, Yoan C, Sullivan HA, Quintanilla L, Wickersham I, Lazarus M, Shih YI, Song J. Supramammillary nucleus synchronizes with dentate gyrus to regulate spatial memory retrieval through glutamate release. Elife 2020;9:e53129. [PMID: 32167473 DOI: 10.7554/eLife.53129] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
22 Silkis IG. The Role of Hypothalamus in the Formation of Neural Representations of Object–Place Associations in the Hippocampus during Wakefulness and Paradoxical Sleep. Neurochem J 2021;15:139-47. [DOI: 10.1134/s1819712421020148] [Reference Citation Analysis]
23 Kesner AJ, Calva CB, Ikemoto S. Seeking motivation and reward: roles of dopamine, hippocampus and supramammillo-septal pathway. Progress in Neurobiology 2022. [DOI: 10.1016/j.pneurobio.2022.102252] [Reference Citation Analysis]
24 Agostinelli LJ, Geerling JC, Scammell TE. Basal forebrain subcortical projections. Brain Struct Funct 2019;224:1097-117. [PMID: 30612231 DOI: 10.1007/s00429-018-01820-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
25 Nollet M, Wisden W, Franks NP. Sleep deprivation and stress: a reciprocal relationship. Interface Focus 2020;10:20190092. [PMID: 32382403 DOI: 10.1098/rsfs.2019.0092] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 9.5] [Reference Citation Analysis]
26 Kesner AJ, Shin R, Calva CB, Don RF, Junn S, Potter CT, Ramsey LA, Abou-Elnaga AF, Cover CG, Wang DV, Lu H, Yang Y, Ikemoto S. Supramammillary neurons projecting to the septum regulate dopamine and motivation for environmental interaction in mice. Nat Commun 2021;12:2811. [PMID: 33990558 DOI: 10.1038/s41467-021-23040-z] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
27 Peever J, Fuller PM. The Biology of REM Sleep. Current Biology 2017;27:R1237-48. [DOI: 10.1016/j.cub.2017.10.026] [Cited by in Crossref: 103] [Cited by in F6Publishing: 87] [Article Influence: 20.6] [Reference Citation Analysis]
28 Li YD, Luo YJ, Chen ZK, Quintanilla L, Cherasse Y, Zhang L, Lazarus M, Huang ZL, Song J. Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent regulation of memory and anxiety-like behavior. Nat Neurosci 2022;25:630-45. [PMID: 35524139 DOI: 10.1038/s41593-022-01065-x] [Reference Citation Analysis]
29 Chachlaki K, Prevot V. Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 2020;177:5437-58. [PMID: 31347144 DOI: 10.1111/bph.14800] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
30 Wu Y, Wang L, Yang F, Xi W. Neural Circuits for Sleep-Wake Regulation. Adv Exp Med Biol 2020;1284:91-112. [PMID: 32852742 DOI: 10.1007/978-981-15-7086-5_8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Chen CR, Zhong YH, Jiang S, Xu W, Xiao L, Wang Z, Qu WM, Huang ZL. Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife 2021;10:e69909. [PMID: 34787078 DOI: 10.7554/eLife.69909] [Reference Citation Analysis]
32 Zhu KJ, Aiani LM, Pedersen NP. Reconfigurable 3D-Printed headplates for reproducible and rapid implantation of EEG, EMG and depth electrodes in mice. J Neurosci Methods 2020;333:108566. [PMID: 31870688 DOI: 10.1016/j.jneumeth.2019.108566] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
33 Bjørkum AA, Carrasco Duran A, Frode B, Sinha Roy D, Rosendahl K, Birkeland E, Stuhr L. Human blood serum proteome changes after 6 hours of sleep deprivation at night. Sleep Science Practice 2021;5. [DOI: 10.1186/s41606-021-00066-2] [Reference Citation Analysis]
34 Erickson ETM, Ferrari LL, Gompf HS, Anaclet C. Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control. Front Neurosci 2019;13:755. [PMID: 31417341 DOI: 10.3389/fnins.2019.00755] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
35 Kowalczyk T, Staszelis A, Kaźmierska-Grębowska P, Tokarski K, Caban B. The Role of the Posterior Hypothalamus in the Modulation and Production of Rhythmic Theta Oscillations. Neuroscience 2021;470:100-15. [PMID: 34271089 DOI: 10.1016/j.neuroscience.2021.07.001] [Reference Citation Analysis]
36 Jiang J, Zou G, Liu J, Zhou S, Xu J, Sun H, Zou Q, Gao JH. Functional connectivity of the human hypothalamus during wakefulness and nonrapid eye movement sleep. Hum Brain Mapp 2021;42:3667-79. [PMID: 33960583 DOI: 10.1002/hbm.25461] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Varin C, Bonnavion P. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. Handb Exp Pharmacol 2019;253:153-206. [PMID: 30689084 DOI: 10.1007/164_2018_183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
38 Verstegen AMJ, Klymko N, Zhu L, Mathai JC, Kobayashi R, Venner A, Ross RA, VanderHorst VG, Arrigoni E, Geerling JC, Zeidel ML. Non-Crh Glutamatergic Neurons in Barrington's Nucleus Control Micturition via Glutamatergic Afferents from the Midbrain and Hypothalamus. Curr Biol 2019;29:2775-2789.e7. [PMID: 31422881 DOI: 10.1016/j.cub.2019.07.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
39 Hindman J, Bowren MD, Bruss J, Wright B, Geerling JC, Boes AD. Thalamic strokes that severely impair arousal extend into the brainstem. Ann Neurol 2018;84:926-30. [PMID: 30421457 DOI: 10.1002/ana.25377] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
40 Mátyás F, Komlósi G, Babiczky Á, Kocsis K, Barthó P, Barsy B, Dávid C, Kanti V, Porrero C, Magyar A, Szűcs I, Clasca F, Acsády L. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat Neurosci 2018;21:1551-62. [PMID: 30349105 DOI: 10.1038/s41593-018-0251-9] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
41 Boes AD, Fischer D, Geerling JC, Bruss J, Saper CB, Fox MD. Connectivity of sleep- and wake-promoting regions of the human hypothalamus observed during resting wakefulness. Sleep 2018;41. [PMID: 29850898 DOI: 10.1093/sleep/zsy108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
42 Brown RE, Spratt TJ, Kaplan GB. Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022:S0361-9230(22)00116-2. [PMID: 35550156 DOI: 10.1016/j.brainresbull.2022.05.002] [Reference Citation Analysis]
43 Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, Finn MB, Manis M, Geerling JC, Fuller PM, Lucey BP, Holtzman DM. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 2019;363:880-4. [PMID: 30679382 DOI: 10.1126/science.aav2546] [Cited by in Crossref: 185] [Cited by in F6Publishing: 176] [Article Influence: 61.7] [Reference Citation Analysis]
44 Liang Y, Shi W, Xiang A, Hu D, Wang L, Zhang L. The NAergic locus coeruleus-ventrolateral preoptic area neural circuit mediates rapid arousal from sleep. Curr Biol 2021:S0960-9822(21)00826-5. [PMID: 34270948 DOI: 10.1016/j.cub.2021.06.031] [Reference Citation Analysis]
45 Cai X, Qiao J, Kulkarni P, Harding IC, Ebong E, Ferris CF. Imaging the effect of the circadian light-dark cycle on the glymphatic system in awake rats. Proc Natl Acad Sci U S A 2020;117:668-76. [PMID: 31848247 DOI: 10.1073/pnas.1914017117] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
46 Abbruzzese G, Kulisevsky J, Bergmans B, Gomez-Esteban JC, Kägi G, Raw J, Stefani A, Warnecke T, Jost WH; SYNAPSES Study Investigators Group. A European Observational Study to Evaluate the Safety and the Effectiveness of Safinamide in Routine Clinical Practice: The SYNAPSES Trial. J Parkinsons Dis 2021;11:187-98. [PMID: 33104040 DOI: 10.3233/JPD-202224] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
47 Silkis IG, Markevich VA. Possible Mechanisms of the Influence of the Supramillary Nucleus on the Functioning of the Dentate Gyrus and the CA2 Field of the Hippocamsus (Role of Disinhibition). Neurochem J 2020;14:375-83. [DOI: 10.1134/s181971242004011x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
48 Venner A, De Luca R, Sohn LT, Bandaru SS, Verstegen AMJ, Arrigoni E, Fuller PM. An Inhibitory Lateral Hypothalamic-Preoptic Circuit Mediates Rapid Arousals from Sleep. Curr Biol 2019;29:4155-4168.e5. [PMID: 31761703 DOI: 10.1016/j.cub.2019.10.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
49 Fernandez-Lamo I, Gomez-Dominguez D, Sanchez-Aguilera A, Oliva A, Morales AV, Valero M, Cid E, Berenyi A, Menendez de la Prida L. Proximodistal Organization of the CA2 Hippocampal Area. Cell Rep 2019;26:1734-1746.e6. [PMID: 30759386 DOI: 10.1016/j.celrep.2019.01.060] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
50 Hashimotodani Y, Karube F, Yanagawa Y, Fujiyama F, Kano M. Supramammillary Nucleus Afferents to the Dentate Gyrus Co-release Glutamate and GABA and Potentiate Granule Cell Output. Cell Rep 2018;25:2704-2715.e4. [PMID: 30517859 DOI: 10.1016/j.celrep.2018.11.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
51 Kaur S, De Luca R, Khanday MA, Bandaru SS, Thomas RC, Broadhurst RY, Venner A, Todd WD, Fuller PM, Arrigoni E, Saper CB. Role of serotonergic dorsal raphe neurons in hypercapnia-induced arousals. Nat Commun 2020;11:2769. [PMID: 32488015 DOI: 10.1038/s41467-020-16518-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
52 Luo T, Yu S, Cai S, Zhang Y, Jiao Y, Yu T, Yu W. Parabrachial Neurons Promote Behavior and Electroencephalographic Arousal From General Anesthesia. Front Mol Neurosci 2018;11:420. [PMID: 30564094 DOI: 10.3389/fnmol.2018.00420] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
53 Billwiller F, Castillo L, Elseedy H, Ivanov AI, Scapula J, Ghestem A, Carponcy J, Libourel PA, Bras H, Abdelmeguid NE, Krook-Magnuson E, Soltesz I, Bernard C, Luppi PH, Esclapez M. GABA-glutamate supramammillary neurons control theta and gamma oscillations in the dentate gyrus during paradoxical (REM) sleep. Brain Struct Funct 2020;225:2643-68. [PMID: 32970253 DOI: 10.1007/s00429-020-02146-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
54 Zhang Y, Stoelzel C, Ezrokhi M, Tsai TH, Cincotta AH. Activation State of the Supramammillary Nucleus Regulates Body Composition and Peripheral Fuel Metabolism. Neuroscience 2021;466:125-47. [PMID: 33991623 DOI: 10.1016/j.neuroscience.2021.05.005] [Reference Citation Analysis]
55 [DOI: 10.1101/331025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
56 Ibrahim KM, Ariffin MZ, Khanna S. Modulation of Septo-Hippocampal Neural Responses in Anesthetized and Behaving Rats by Septal AMPA Receptor Mechanisms. Front Neural Circuits 2021;15:663633. [PMID: 34177470 DOI: 10.3389/fncir.2021.663633] [Reference Citation Analysis]
57 Root DH, Zhang S, Barker DJ, Miranda-Barrientos J, Liu B, Wang HL, Morales M. Selective Brain Distribution and Distinctive Synaptic Architecture of Dual Glutamatergic-GABAergic Neurons. Cell Rep 2018;23:3465-79. [PMID: 29924991 DOI: 10.1016/j.celrep.2018.05.063] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 14.3] [Reference Citation Analysis]
58 Alexander GM, Riddick NV, McCann KE, Lustberg D, Moy SS, Dudek SM. Modulation of CA2 neuronal activity increases behavioral responses to fear conditioning in female mice. Neurobiol Learn Mem 2019;163:107044. [PMID: 31319167 DOI: 10.1016/j.nlm.2019.107044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
59 Liguori C, Stefani A, Ruffini R, Mercuri NB, Pierantozzi M. Safinamide effect on sleep disturbances and daytime sleepiness in motor fluctuating Parkinson's disease patients: A validated questionnaires-controlled study. Parkinsonism & Related Disorders 2018;57:80-1. [DOI: 10.1016/j.parkreldis.2018.06.033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
60 Melzer S, Monyer H. Diversity and function of corticopetal and corticofugal GABAergic projection neurons. Nat Rev Neurosci 2020;21:499-515. [PMID: 32747763 DOI: 10.1038/s41583-020-0344-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
61 Sil’kis IG. Possible Mechanisms of the Complex Effects of Acetylcholine on Theta Activity, Learning, and Memory. Neurochem J 2019;13:121-36. [DOI: 10.1134/s1819712419020119] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
62 Tabuchi E, Sakaba T, Hashimotodani Y. Excitatory selective LTP of supramammillary glutamatergic/GABAergic cotransmission potentiates dentate granule cell firing. Proc Natl Acad Sci U S A 2022;119:e2119636119. [PMID: 35333647 DOI: 10.1073/pnas.2119636119] [Reference Citation Analysis]
63 Chen S, He L, Huang AJY, Boehringer R, Robert V, Wintzer ME, Polygalov D, Weitemier AZ, Tao Y, Gu M, Middleton SJ, Namiki K, Hama H, Therreau L, Chevaleyre V, Hioki H, Miyawaki A, Piskorowski RA, McHugh TJ. A hypothalamic novelty signal modulates hippocampal memory. Nature 2020;586:270-4. [PMID: 32999460 DOI: 10.1038/s41586-020-2771-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 11.5] [Reference Citation Analysis]
64 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
65 Yamazaki R, Wang D, De Laet A, Maciel R, Agnorelli C, Cabrera S, Arthaud S, Libourel PA, Fort P, Lee H, Luppi PH. Granule cells in the infrapyramidal blade of the dentate gyrus are activated during paradoxical (REM) sleep hypersomnia but not during wakefulness: a study using TRAP mice. Sleep 2021:zsab173. [PMID: 34245290 DOI: 10.1093/sleep/zsab173] [Reference Citation Analysis]
66 Yue XF, Wang AZ, Hou YP, Fan K. Effects of propofol on sleep architecture and sleep-wake systems in rats. Behav Brain Res 2021;411:113380. [PMID: 34033853 DOI: 10.1016/j.bbr.2021.113380] [Reference Citation Analysis]
67 Bringmann H. Genetic sleep deprivation: using sleep mutants to study sleep functions. EMBO Rep 2019;20:e46807. [PMID: 30804011 DOI: 10.15252/embr.201846807] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
68 Le May MV, Hume C, Sabatier N, Schéle E, Bake T, Bergström U, Menzies J, Dickson SL. Activation of the rat hypothalamic supramammillary nucleus by food anticipation, food restriction or ghrelin administration. J Neuroendocrinol 2019;31:e12676. [PMID: 30580497 DOI: 10.1111/jne.12676] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
69 An S, Sun H, Wu M, Xie D, Hu S, Ding H, Cao J. Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit. Current Biology 2021;31:1379-1392.e4. [DOI: 10.1016/j.cub.2021.01.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
70 Plaisier F, Hume C, Menzies J. Neural connectivity between the hypothalamic supramammillary nucleus and appetite- and motivation-related regions of the rat brain. J Neuroendocrinol 2020;32:e12829. [PMID: 31925973 DOI: 10.1111/jne.12829] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]