BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Z, Zhang L, Zhou Y, Li L, Zhao J, Qin W, Jin Z, Liu W. Increase in HDAC9 suppresses myoblast differentiation via epigenetic regulation of autophagy in hypoxia. Cell Death Dis 2019;10:552. [PMID: 31320610 DOI: 10.1038/s41419-019-1763-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang F, Sun S, Wang C, Haas M, Yeo S, Guan JL. Targeted therapy for mTORC1-driven tumours through HDAC inhibition by exploiting innate vulnerability of mTORC1 hyper-activation. Br J Cancer 2020;122:1791-802. [PMID: 32336756 DOI: 10.1038/s41416-020-0839-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
2 Elashry MI, Kinde M, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Res Ther 2022;13. [DOI: 10.1186/s13287-022-02730-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Pacifici F, Della-Morte D, Piermarini F, Arriga R, Scioli MG, Capuani B, Pastore D, Coppola A, Rea S, Donadel G, Andreadi A, Abete P, Sconocchia G, Bellia A, Orlandi A, Lauro D. Prdx6 Plays a Main Role in the Crosstalk Between Aging and Metabolic Sarcopenia. Antioxidants (Basel) 2020;9:E329. [PMID: 32316601 DOI: 10.3390/antiox9040329] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
4 Shi Y, He Y, Zhou Y, Li H, Yang D, Li R, Deng Z, Gao Y. LSD1 negatively regulates autophagy in myoblast cells by driving PTEN degradation. Biochemical and Biophysical Research Communications 2020;522:924-30. [DOI: 10.1016/j.bbrc.2019.11.182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Liu F, Di Y, Ma W, Kang X, Li X, Ji Z. HDAC9 exacerbates myocardial infarction via inactivating Nrf2 pathways. J Pharm Pharmacol 2021:rgab065. [PMID: 33963859 DOI: 10.1093/jpp/rgab065] [Reference Citation Analysis]
6 Brancolini C, Di Giorgio E, Formisano L, Gagliano T. Quis Custodiet Ipsos Custodes (Who Controls the Controllers)? Two Decades of Studies on HDAC9. Life (Basel) 2021;11:90. [PMID: 33513699 DOI: 10.3390/life11020090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Sun J, Wang C. Long non-coding RNAs in cardiac hypertrophy. Heart Fail Rev 2020;25:1037-45. [PMID: 31664590 DOI: 10.1007/s10741-019-09882-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
8 Yu A, Zheng Y, Gong Y, Yu R, Yang Z, Chen X. Adiponectin promotes myogenic differentiation via a Mef2C-AdipoR1 positive feedback loop. Gene 2021;771:145380. [PMID: 33359123 DOI: 10.1016/j.gene.2020.145380] [Reference Citation Analysis]
9 Liu S, Fu P, Ning K, Wang R, Yang B, Chen J, Xu H. HIF-1α Negatively Regulates Irisin Expression Which Involves in Muscle Atrophy Induced by Hypoxia. Int J Mol Sci 2022;23:887. [PMID: 35055073 DOI: 10.3390/ijms23020887] [Reference Citation Analysis]
10 Pircher T, Wackerhage H, Aszodi A, Kammerlander C, Böcker W, Saller MM. Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review. Front Physiol 2021;12:684899. [PMID: 34248671 DOI: 10.3389/fphys.2021.684899] [Reference Citation Analysis]
11 Tian H, Liu S, Ren J, Lee JKW, Wang R, Chen P. Role of Histone Deacetylases in Skeletal Muscle Physiology and Systemic Energy Homeostasis: Implications for Metabolic Diseases and Therapy. Front Physiol 2020;11:949. [PMID: 32848876 DOI: 10.3389/fphys.2020.00949] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Nakamura N, Shi X, Darabi R, Li Y. Hypoxia in Cell Reprogramming and the Epigenetic Regulations. Front Cell Dev Biol 2021;9:609984. [PMID: 33585477 DOI: 10.3389/fcell.2021.609984] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Guan X, Yan Q, Wang D, Du G, Zhou J. IGF-1 Signaling Regulates Mitochondrial Remodeling during Myogenic Differentiation. Nutrients 2022;14:1249. [PMID: 35334906 DOI: 10.3390/nu14061249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Son SM, Park SJ, Fernandez-Estevez M, Rubinsztein DC. Autophagy regulation by acetylation-implications for neurodegenerative diseases. Exp Mol Med 2021;53:30-41. [PMID: 33483607 DOI: 10.1038/s12276-021-00556-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Sotthibundhu A, Muangchan P, Phonchai R, Promjantuek W, Chaicharoenaudomrung N, Kunhorm P, Noisa P. Autophagy Promoted Neural Differentiation of Human Placenta-derived Mesenchymal Stem Cells. In Vivo 2021;35:2609-20. [PMID: 34410948 DOI: 10.21873/invivo.12543] [Reference Citation Analysis]
16 Kim J, Lee H, Yi S, Kim K. Gene regulation by histone-modifying enzymes under hypoxic conditions: a focus on histone methylation and acetylation. Exp Mol Med. [DOI: 10.1038/s12276-022-00812-1] [Reference Citation Analysis]
17 Chen Y, Meng J, Lu X, Li X, Wang C. Clustering analysis revealed the autophagy classification and potential autophagy regulators' sensitivity of pancreatic cancer based on multi-omics data. Cancer Med 2022. [PMID: 35684936 DOI: 10.1002/cam4.4932] [Reference Citation Analysis]