1 |
Marinho LSR, Chiarantin GMD, Ikebara JM, Cardoso DS, de Lima-Vasconcellos TH, Higa GSV, Ferraz MSA, De Pasquale R, Takada SH, Papes F, Muotri AR, Kihara AH. The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools. Semin Cell Dev Biol 2023;144:67-76. [PMID: 36115764 DOI: 10.1016/j.semcdb.2022.09.007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
Seah C, Huckins LM, Brennand KJ. Stem Cell Models for Context-Specific Modeling in Psychiatric Disorders. Biol Psychiatry 2023;93:642-50. [PMID: 36658083 DOI: 10.1016/j.biopsych.2022.09.033] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Penning LC, van den Boom R. Companion animal organoid technology to advance veterinary regenerative medicine. Front Vet Sci 2023;10. [DOI: 10.3389/fvets.2023.1032835] [Reference Citation Analysis]
|
4 |
Appan D, Hsu SM, Hsu WH, Chou SJ. Patterning the cerebral cortex into distinct functional domains during development. Curr Opin Neurobiol 2023;80:102698. [PMID: 36893490 DOI: 10.1016/j.conb.2023.102698] [Reference Citation Analysis]
|
5 |
Wenzel TJ, Le J, He J, Alcorn J, Mousseau DD. Fundamental Neurochemistry Review: Incorporating a greater diversity of cell types, including microglia, in brain organoid cultures improves clinical translation. J Neurochem 2023;164:560-82. [PMID: 36517959 DOI: 10.1111/jnc.15741] [Reference Citation Analysis]
|
6 |
Wu X, Xu Y, Chen G, Tan Q, Zhu Y. Transplanted brain organoids become mature and intelligent. Biomedical Technology 2023;1:48-51. [DOI: 10.1016/j.bmt.2022.11.006] [Reference Citation Analysis]
|
7 |
Patrício D, Santiago J, Mano JF, Fardilha M. Organoids of the male reproductive system: Challenges, opportunities, and their potential use in fertility research. WIREs Mech Dis 2023;15:e1590. [PMID: 36442887 DOI: 10.1002/wsbm.1590] [Reference Citation Analysis]
|
8 |
Becerra-Calixto A, Mukherjee A, Ramirez S, Sepulveda S, Sinha T, Al-Lahham R, De Gregorio N, Gherardelli C, Soto C. Lewy Body-like Pathology and Loss of Dopaminergic Neurons in Midbrain Organoids Derived from Familial Parkinson's Disease Patient. Cells 2023;12. [PMID: 36831291 DOI: 10.3390/cells12040625] [Reference Citation Analysis]
|
9 |
Horvath TD, Haidacher SJ, Engevik MA, Luck B, Ruan W, Ihekweazu F, Bajaj M, Hoch KM, Oezguen N, Spinler JK, Versalovic J, Haag AM. Interrogation of the mammalian gut-brain axis using LC-MS/MS-based targeted metabolomics with in vitro bacterial and organoid cultures and in vivo gnotobiotic mouse models. Nat Protoc 2023;18:490-529. [PMID: 36352124 DOI: 10.1038/s41596-022-00767-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Halonen SK. Use of in vitro derived human neuronal models to study host-parasite interactions of Toxoplasma gondii in neurons and neuropathogenesis of chronic toxoplasmosis. Front Cell Infect Microbiol 2023;13:1129451. [PMID: 36968101 DOI: 10.3389/fcimb.2023.1129451] [Reference Citation Analysis]
|
11 |
Mayhew CN, Singhania R. A review of protocols for brain organoids and applications for disease modeling. STAR Protoc 2022;4:101860. [PMID: 36566384 DOI: 10.1016/j.xpro.2022.101860] [Reference Citation Analysis]
|
12 |
Kurishev AO, Karpov DS, Nadolinskaia NI, Goncharenko AV, Golimbet VE. CRISPR/Cas-Based Approaches to Study Schizophrenia and Other Neurodevelopmental Disorders. Int J Mol Sci 2022;24. [PMID: 36613684 DOI: 10.3390/ijms24010241] [Reference Citation Analysis]
|
13 |
Martins-costa C, Pham V, Sidhaye J, Novatchkova M, Peer A, Möseneder P, Corsini NS, Knoblich JA. Morphogenesis and development of human telencephalic organoids in the absence and presence of exogenous ECM.. [DOI: 10.1101/2022.12.06.519271] [Reference Citation Analysis]
|
14 |
Li X, Shopit A, Wang J. A Comprehensive Update of Cerebral Organoids between Applications and Challenges. Oxidative Medicine and Cellular Longevity 2022;2022:1-10. [DOI: 10.1155/2022/7264649] [Reference Citation Analysis]
|
15 |
Brás J, Henriques D, Moreira R, Santana MM, Silva-pedrosa R, Adão D, Braz S, Álvaro AR, de Almeida LP, Mendonça LS. Establishment and characterization of human pluripotent stem cells-derived brain organoids to model cerebellar diseases. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-16369-y] [Reference Citation Analysis]
|
16 |
Yu J, Wang K, Zheng D. Brain organoids for addressing COVID-19 challenge. Front Neurosci 2022;16. [DOI: 10.3389/fnins.2022.1055601] [Reference Citation Analysis]
|
17 |
Herring CA, Simmons RK, Freytag S, Poppe D, Moffet JJD, Pflueger J, Buckberry S, Vargas-Landin DB, Clément O, Echeverría EG, Sutton GJ, Alvarez-Franco A, Hou R, Pflueger C, McDonald K, Polo JM, Forrest ARR, Nowak AK, Voineagu I, Martelotto L, Lister R. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 2022;185:4428-4447.e28. [PMID: 36318921 DOI: 10.1016/j.cell.2022.09.039] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
18 |
Conti E, Harschnitz O. Human stem cell models to study placode development, function and pathology. Development 2022;149. [DOI: 10.1242/dev.200831] [Reference Citation Analysis]
|
19 |
Ma C, Seong H, Li X, Yu X, Xu S, Li Y, Chimenti I. Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells International 2022;2022:1-20. [DOI: 10.1155/2022/2150680] [Reference Citation Analysis]
|
20 |
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022;11:2647. [DOI: 10.3390/cells11172647] [Reference Citation Analysis]
|
21 |
Glasauer SMK, Goderie SK, Rauch JN, Guzman E, Audouard M, Bertucci T, Joy S, Rommelfanger E, Luna G, Keane-Rivera E, Lotz S, Borden S, Armando AM, Quehenberger O, Temple S, Kosik KS. Human tau mutations in cerebral organoids induce a progressive dyshomeostasis of cholesterol. Stem Cell Reports 2022:S2213-6711(22)00371-X. [PMID: 35985329 DOI: 10.1016/j.stemcr.2022.07.011] [Reference Citation Analysis]
|
22 |
Vértesy Á, Eichmüller OL, Naas J, Novatchkova M, Esk C, Balmaña M, Ladstaetter S, Bock C, von Haeseler A, Knoblich JA. Gruffi: an algorithm for computational removal of stressed cells from brain organoid transcriptomic datasets. EMBO J 2022;:e111118. [PMID: 35919947 DOI: 10.15252/embj.2022111118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
23 |
Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell 2022;185:2756-69. [PMID: 35868278 DOI: 10.1016/j.cell.2022.06.051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
24 |
Fosse V, Oldoni E, Gerardi C, Banzi R, Fratelli M, Bietrix F, Ussi A, Andreu AL, Mccormack E, the PERMIT Group. Evaluating Translational Methods for Personalized Medicine—A Scoping Review. JPM 2022;12:1177. [DOI: 10.3390/jpm12071177] [Reference Citation Analysis]
|
25 |
Farcy S, Albert A, Gressens P, Baffet AD, El Ghouzzi V. Cortical Organoids to Model Microcephaly. Cells 2022;11:2135. [DOI: 10.3390/cells11142135] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
26 |
Romero-Morales AI, Robertson GL, Rastogi A, Rasmussen ML, Temuri H, McElroy GS, Chakrabarty RP, Hsu L, Almonacid PM, Millis BA, Chandel NS, Cartailler JP, Gama V. Human iPSC-derived cerebral organoids model features of Leigh syndrome and reveal abnormal corticogenesis. Development 2022;149. [PMID: 35792828 DOI: 10.1242/dev.199914] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
|
27 |
Wang Y, Hu N, Li X. Genetic and Epigenetic Regulation of Brain Organoids. Front Cell Dev Biol 2022;10:948818. [DOI: 10.3389/fcell.2022.948818] [Reference Citation Analysis]
|
28 |
Zheng H, Feng Y, Tang J, Ma S. Interfacing brain organoids with precision medicine and machine learning. Cell Reports Physical Science 2022;3:100974. [DOI: 10.1016/j.xcrp.2022.100974] [Reference Citation Analysis]
|
29 |
Lange J, Zhou H, Mctague A. Cerebral Organoids and Antisense Oligonucleotide Therapeutics: Challenges and Opportunities. Front Mol Neurosci 2022;15:941528. [DOI: 10.3389/fnmol.2022.941528] [Reference Citation Analysis]
|
30 |
Kaluthantrige Don F, Kalebic N. Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Front Cell Dev Biol 2022;10:917166. [DOI: 10.3389/fcell.2022.917166] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
31 |
Cao Y. The uses of 3D human brain organoids for neurotoxicity evaluations: A review. Neurotoxicology 2022;91:84-93. [PMID: 35561940 DOI: 10.1016/j.neuro.2022.05.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
32 |
De Kleijn KMA, Straasheijm KR, Zuure WA, Martens GJM. Molecular Signature of Neuroinflammation Induced in Cytokine-Stimulated Human Cortical Spheroids. Biomedicines 2022;10:1025. [DOI: 10.3390/biomedicines10051025] [Reference Citation Analysis]
|
33 |
Simkin D, Ambrosi C, Marshall KA, Williams LA, Eisenberg J, Gharib M, Dempsey GT, George AL Jr, McManus OB, Kiskinis E. 'Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol Sci 2022;43:392-405. [PMID: 35427475 DOI: 10.1016/j.tips.2022.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
34 |
Son J, Park SJ, Ha T, Lee SN, Cho HY, Choi JW. Electrophysiological Monitoring of Neurochemical-Based Neural Signal Transmission in a Human Brain-Spinal Cord Assembloid. ACS Sens 2022;7:409-14. [PMID: 35044765 DOI: 10.1021/acssensors.1c02279] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
35 |
Gumbs SBH, Kübler R, Gharu L, Schipper PJ, Borst AL, Snijders GJLJ, Ormel PR, van Berlekom AB, Wensing AMJ, de Witte LD, Nijhuis M. Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses. J Neurovirol 2022. [PMID: 35138593 DOI: 10.1007/s13365-021-01049-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
|
36 |
Ossola C, Kalebic N. Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Front Neurosci 2021;15:817218. [PMID: 35069108 DOI: 10.3389/fnins.2021.817218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
37 |
Maurissen TL, Pavlou G, Bichsel C, Villaseñor R, Kamm RD, Ragelle H. Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature. JPM 2022;12:148. [DOI: 10.3390/jpm12020148] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
38 |
Tang B, Zeng W, Song LL, Wang HM, Qu LQ, Lo HH, Yu L, Wu AG, Wong VKW, Law BYK. Extracellular Vesicle Delivery of Neferine for the Attenuation of Neurodegenerative Disease Proteins and Motor Deficit in an Alzheimer’s Disease Mouse Model. Pharmaceuticals 2022;15:83. [DOI: 10.3390/ph15010083] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
39 |
Taupitz J. What Is, or Should Be, the Legal Status of Brain Organoids? Advances in Neuroethics 2022. [DOI: 10.1007/978-3-030-97641-5_5] [Reference Citation Analysis]
|
40 |
Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol 2021;4:1387. [PMID: 34893703 DOI: 10.1038/s42003-021-02910-8] [Cited by in Crossref: 48] [Cited by in F6Publishing: 41] [Article Influence: 24.0] [Reference Citation Analysis]
|
41 |
Gulimiheranmu M, Li S, Zhou J. In Vitro Recapitulation of Neuropsychiatric Disorders with Pluripotent Stem Cells-Derived Brain Organoids. Int J Environ Res Public Health 2021;18:12431. [PMID: 34886158 DOI: 10.3390/ijerph182312431] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
42 |
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021;15:776809. [PMID: 34803599 DOI: 10.3389/fnins.2021.776809] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
|
43 |
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021;10:3082. [PMID: 34831305 DOI: 10.3390/cells10113082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
44 |
Porciúncula LO, Goto-Silva L, Ledur PF, Rehen SK. The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Front Neurosci 2021;15:674563. [PMID: 34483818 DOI: 10.3389/fnins.2021.674563] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
45 |
Kalebic N, Namba T. Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution. Development 2021;148:dev199417. [PMID: 34499710 DOI: 10.1242/dev.199417] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
46 |
Sapir G, Steinberg DJ, Aqeilan RI, Katz-Brull R. Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids-A New Method to Characterize the Metabolism of Brain Organoids? Pharmaceuticals (Basel) 2021;14:878. [PMID: 34577579 DOI: 10.3390/ph14090878] [Reference Citation Analysis]
|
47 |
Porciúncula LO, Goto-silva L, Ledur PF, Rehen SK. The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Front Neurosci 2021;15. [DOI: 10.3389/fnins.2021.674563] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
48 |
Panatta E, Zampieri C, Melino G, Amelio I. Understanding p53 tumour suppressor network. Biol Direct 2021;16:14. [PMID: 34362419 DOI: 10.1186/s13062-021-00298-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
|
49 |
Steinberg DJ, Repudi S, Saleem A, Kustanovich I, Viukov S, Abudiab B, Banne E, Mahajnah M, Hanna JH, Stern S, Carlen PL, Aqeilan RI. Modeling genetic epileptic encephalopathies using brain organoids. EMBO Mol Med 2021;13:e13610. [PMID: 34268881 DOI: 10.15252/emmm.202013610] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
50 |
Edlow BL, Sanz LRD, Polizzotto L, Pouratian N, Rolston JD, Snider SB, Thibaut A, Stevens RD, Gosseries O; Curing Coma Campaign and its contributing members. Therapies to Restore Consciousness in Patients with Severe Brain Injuries: A Gap Analysis and Future Directions. Neurocrit Care 2021;35:68-85. [PMID: 34236624 DOI: 10.1007/s12028-021-01227-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
|
51 |
Brémond Martin C, Simon Chane C, Clouchoux C, Histace A. Recent Trends and Perspectives in Cerebral Organoids Imaging and Analysis. Front Neurosci 2021;15:629067. [PMID: 34276279 DOI: 10.3389/fnins.2021.629067] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
52 |
Timis TL, Florian IA, Susman S, Florian IS. Involvement of Microglia in the Pathophysiology of Intracranial Aneurysms and Vascular Malformations-A Short Overview. Int J Mol Sci 2021;22:6141. [PMID: 34200256 DOI: 10.3390/ijms22116141] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
53 |
Betjes MA, Zheng X, Kok RNU, van Zon JS, Tans SJ. Cell Tracking for Organoids: Lessons From Developmental Biology. Front Cell Dev Biol 2021;9:675013. [PMID: 34150770 DOI: 10.3389/fcell.2021.675013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
|
54 |
Melrose J, Hayes AJ, Bix G. The CNS/PNS Extracellular Matrix Provides Instructive Guidance Cues to Neural Cells and Neuroregulatory Proteins in Neural Development and Repair. Int J Mol Sci 2021;22:5583. [PMID: 34070424 DOI: 10.3390/ijms22115583] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
|
55 |
Coccia E, Ahfeldt T. Towards physiologically relevant human pluripotent stem cell (hPSC) models of Parkinson's disease. Stem Cell Res Ther 2021;12:253. [PMID: 33926571 DOI: 10.1186/s13287-021-02326-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
56 |
Lattanzi W, Ripoli C, Greco V, Barba M, Iavarone F, Minucci A, Urbani A, Grassi C, Parolini O. Basic and Preclinical Research for Personalized Medicine. J Pers Med 2021;11:354. [PMID: 33946634 DOI: 10.3390/jpm11050354] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
57 |
Anderson NC, Chen PF, Meganathan K, Afshar Saber W, Petersen AJ, Bhattacharyya A, Kroll KL, Sahin M; Cross-IDDRC Human Stem Cell Working Group. Balancing serendipity and reproducibility: Pluripotent stem cells as experimental systems for intellectual and developmental disorders. Stem Cell Reports 2021;16:1446-57. [PMID: 33861989 DOI: 10.1016/j.stemcr.2021.03.025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
|
58 |
Klegeris A. Targeting neuroprotective functions of astrocytes in neuroimmune diseases. Expert Opin Ther Targets 2021;25:237-41. [PMID: 33836642 DOI: 10.1080/14728222.2021.1915993] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
59 |
Cameron T, Bennet T, Rowe EM, Anwer M, Wellington CL, Cheung KC. Review of Design Considerations for Brain-on-a-Chip Models. Micromachines (Basel) 2021;12:441. [PMID: 33921018 DOI: 10.3390/mi12040441] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
60 |
Jimenez-palomares M, Cristobal A, Carmen Duran Ruiz M. Organoids Models for the Study of Cell-Cell Interactions. Cell Interaction - Molecular and Immunological Basis for Disease Management 2021. [DOI: 10.5772/intechopen.94562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
61 |
Banne E, Abudiab B, Abu-Swai S, Repudi SR, Steinberg DJ, Shatleh D, Alshammery S, Lisowski L, Gold W, Carlen PL, Aqeilan RI. Neurological Disorders Associated with WWOX Germline Mutations-A Comprehensive Overview. Cells 2021;10:824. [PMID: 33916893 DOI: 10.3390/cells10040824] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
|
62 |
Lanjewar SN, Sloan SA. Growing Glia: Cultivating Human Stem Cell Models of Gliogenesis in Health and Disease. Front Cell Dev Biol 2021;9:649538. [PMID: 33842475 DOI: 10.3389/fcell.2021.649538] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
63 |
Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021;12:2041731420985299. [PMID: 33738089 DOI: 10.1177/2041731420985299] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
64 |
Chiang MC, Nicol CJB, Lin CH, Chen SJ, Yen C, Huang RN. Nanogold induces anti-inflammation against oxidative stress induced in human neural stem cells exposed to amyloid-beta peptide. Neurochem Int 2021;145:104992. [PMID: 33609598 DOI: 10.1016/j.neuint.2021.104992] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
|
65 |
Scuderi S, Altobelli GG, Cimini V, Coppola G, Vaccarino FM. Cell-to-Cell Adhesion and Neurogenesis in Human Cortical Development: A Study Comparing 2D Monolayers with 3D Organoid Cultures. Stem Cell Reports 2021;16:264-80. [PMID: 33513360 DOI: 10.1016/j.stemcr.2020.12.019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
|
66 |
Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. Micromachines (Basel) 2021;12:124. [PMID: 33498905 DOI: 10.3390/mi12020124] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
|
67 |
Beck LE, Lee J, Coté C, Dunagin MC, Lukonin I, Salla N, Chang MK, Hughes AJ, Mornin JD, Gartner ZJ, Liberali P, Raj A. Systematically quantifying morphological features reveals constraints on organoid phenotypes.. [DOI: 10.1101/2021.01.08.425947] [Reference Citation Analysis]
|
68 |
Rivetti di Val Cervo P, Besusso D, Conforti P, Cattaneo E. hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat Rev Neurol 2021;17:381-92. [PMID: 33658662 DOI: 10.1038/s41582-021-00465-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
|
69 |
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020;13:E17. [PMID: 33374862 DOI: 10.3390/v13010017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
|
70 |
Lutz B. Neurobiology of cannabinoid receptor signaling
. Dialogues Clin Neurosci 2020;22:207-22. [PMID: 33162764 DOI: 10.31887/DCNS.2020.22.3/blutz] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
|
71 |
[DOI: 10.1101/2020.08.23.263236] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
|