BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Berg EL, Pride MC, Petkova SP, Lee RD, Copping NA, Shen Y, Adhikari A, Fenton TA, Pedersen LR, Noakes LS, Nieman BJ, Lerch JP, Harris S, Born HA, Peters MM, Deng P, Cameron DL, Fink KD, Beitnere U, O'Geen H, Anderson AE, Dindot SV, Nash KR, Weeber EJ, Wöhr M, Ellegood J, Segal DJ, Silverman JL. Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome. Transl Psychiatry 2020;10:39. [PMID: 32066685 DOI: 10.1038/s41398-020-0720-2] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 20.5] [Reference Citation Analysis]
Number Citing Articles
1 Berz A, Pasquini de Souza C, Wöhr M, Steinmüller S, Bruntsch M, Schäfer MK, Schwarting RKW. Contingent Social Interaction Does Not Prevent Habituation towards Playback of Pro-Social 50-kHz Calls: Behavioral Responses and Brain Activation Patterns. Brain Sciences 2022;12:1474. [DOI: 10.3390/brainsci12111474] [Reference Citation Analysis]
2 Reznik DL, Yang MV, de la Haza PA, Jain A, Spanjaard M, Theiss S, Schaaf CP, Malovannaya A, Strong TV, Veeraragavan S, Samaco RC. A truncating mutation of Magel2 in the rat modelled for the study of Schaaf-Yang and Prader-Willi syndromes alters select behavioral and physiological outcomes.. [DOI: 10.1101/2022.08.09.503377] [Reference Citation Analysis]
3 Beitnere U, Vilanova-cuevas B, Christian SG, Taylor C, Berg EL, Copping NA, Dindot SV, Silverman JL, Gareau MG, Segal DJ. Unique features of the gut microbiome characterized in animal models of Angelman Syndrome.. [DOI: 10.1101/2022.07.05.498914] [Reference Citation Analysis]
4 Silverman JL, Thurm A, Ethridge SB, Soller MM, Petkova SP, Abel T, Bauman MD, Brodkin ES, Harony-Nicolas H, Wöhr M, Halladay A. Reconsidering animal models used to study autism spectrum disorder: Current state and optimizing future. Genes Brain Behav 2022;21:e12803. [PMID: 35285132 DOI: 10.1111/gbb.12803] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
5 Nenninger AW, Willman M, Willman J, Stewart E, Mesidor P, Novoa M, Morrill NK, Alvarez L, Joly-Amado A, Peters MM, Gulick D, Nash KR. Improving Gene Therapy for Angelman Syndrome with Secreted Human UBE3A. Neurotherapeutics 2022. [PMID: 35534672 DOI: 10.1007/s13311-022-01239-2] [Reference Citation Analysis]
6 Petkova SP, Adhikari A, Berg EL, Fenton TA, Duis J, Silverman JL. Gait as a quantitative translational outcome measure in Angelman syndrome. Autism Res 2022. [PMID: 35274462 DOI: 10.1002/aur.2697] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Pandya NJ, Meier S, Tyanova S, Terrigno M, Wang C, Punt AM, Mientjes EJ, Vautheny A, Distel B, Kremer T, Elgersma Y, Jagasia R. A cross-species spatiotemporal proteomic analysis identifies UBE3A-dependent signaling pathways and targets. Mol Psychiatry 2022. [PMID: 35264729 DOI: 10.1038/s41380-022-01484-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Dodge A, Morrill N, Weeber EJ, Nash KR. Recovery of Angelman syndrome rat deficits with UBE3A protein supplementation. Molecular and Cellular Neuroscience 2022. [DOI: 10.1016/j.mcn.2022.103724] [Reference Citation Analysis]
9 Nakano Y, Susa K, Yanagi T, Hiraoka Y, Suzuki T, Mori T, Ando F, Mandai S, Fujiki T, Rai T, Uchida S, Sohara E. Generation of NPHP1 knockout human pluripotent stem cells by a practical biallelic gene deletion strategy using CRISPR/Cas9 and ssODN. In Vitro Cell Dev Biol Anim 2022. [PMID: 35165826 DOI: 10.1007/s11626-022-00655-0] [Reference Citation Analysis]
10 Deng P, Halmai JANM, Beitnere U, Cameron D, Martinez ML, Lee CC, Waldo JJ, Thongphanh K, Adhikari A, Copping N, Petkova SP, Lee RD, Lock S, Palomares M, O’geen H, Carter J, Gonzalez CE, Buchanan FKB, Anderson JD, Fierro FA, Nolta JA, Tarantal AF, Silverman JL, Segal DJ, Fink KD. An in vivo Cell-Based Delivery Platform for Zinc Finger Artificial Transcription Factors in Pre-clinical Animal Models. Front Mol Neurosci 2022;14:789913. [DOI: 10.3389/fnmol.2021.789913] [Reference Citation Analysis]
11 Berz AC, Wöhr M, Schwarting RKW. Response Calls Evoked by Playback of Natural 50-kHz Ultrasonic Vocalizations in Rats. Front Behav Neurosci 2022;15:812142. [DOI: 10.3389/fnbeh.2021.812142] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Cosgrove JA, Kelly LK, Kiffmeyer EA, Kloth AD. Sex-dependent influence of postweaning environmental enrichment in Angelman syndrome model mice. Brain Behav 2022;:e2468. [PMID: 34985196 DOI: 10.1002/brb3.2468] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Berg EL, Silverman JL. Measuring Social Communication in Rodent Models of Neurodevelopmental Disorders. Encyclopedia of Behavioral Neuroscience, 2nd edition 2022. [DOI: 10.1016/b978-0-12-819641-0.00002-5] [Reference Citation Analysis]
14 Berg EL, Silverman JL. Animal models of autism. The Neuroscience of Autism 2022. [DOI: 10.1016/b978-0-12-816393-1.00010-5] [Reference Citation Analysis]
15 Berg EL, Jami SA, Petkova SP, Berz A, Fenton TA, Lerch JP, Segal DJ, Gray JA, Ellegood J, Wöhr M, Silverman JL. Excessive Laughter-like Vocalizations, Microcephaly, and Translational Outcomes in the Ube3a Deletion Rat Model of Angelman Syndrome. J Neurosci 2021;41:8801-14. [PMID: 34475199 DOI: 10.1523/JNEUROSCI.0925-21.2021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
16 Heussler HS. Emerging Therapies and challenges for individuals with Angelman syndrome. Curr Opin Psychiatry 2021;34:123-8. [PMID: 33395098 DOI: 10.1097/YCO.0000000000000674] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Copping NA, McTighe SM, Fink KD, Silverman JL. Emerging Gene and Small Molecule Therapies for the Neurodevelopmental Disorder Angelman Syndrome. Neurotherapeutics 2021. [PMID: 34528170 DOI: 10.1007/s13311-021-01082-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
18 Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol Autism 2021;12:59. [PMID: 34526125 DOI: 10.1186/s13229-021-00467-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
19 Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome.. [DOI: 10.1101/2021.08.13.456299] [Reference Citation Analysis]
20 Petkova SP, Duis JD, Silverman JL. Gait as a Quantitative Translational Outcome Measure in Angelman Syndrome.. [DOI: 10.1101/2021.08.13.456146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Wöhr M, Kisko TM, Schwarting RKW. Social Behavior and Ultrasonic Vocalizations in a Genetic Rat Model Haploinsufficient for the Cross-Disorder Risk Gene Cacna1c. Brain Sci 2021;11:724. [PMID: 34072335 DOI: 10.3390/brainsci11060724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Zhuang Q, Zheng X, Becker B, Lei W, Xu X, Kendrick KM. Intranasal vasopressin like oxytocin increases social attention by influencing top-down control, but additionally enhances bottom-up control.. [DOI: 10.1101/2021.05.21.445212] [Reference Citation Analysis]
23 Lagunas T, Plassmeyer SP, Friedman RZ, Rieger MA, Fischer AD, Lucero AFA, An J, Sanders SJ, Cohen BA, Dougherty JD. A Cre-dependent massively parallel reporter assay allows for cell-type specific assessment of the functional effects of genetic variants in vivo.. [DOI: 10.1101/2021.05.17.444514] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Yu Y, Wei X, Deng Q, Lan Q, Guo Y, Han L, Yuan Y, Fan P, Wu P, Shangguan S, Liu Y, Lai Y, Volpe G, Esteban MA, Liu C, Hou Y, Liu L. Single-Nucleus Chromatin Accessibility Landscape Reveals Diversity in Regulatory Regions Across Distinct Adult Rat Cortex. Front Mol Neurosci 2021;14:651355. [PMID: 34079438 DOI: 10.3389/fnmol.2021.651355] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
25 Yang K, Longo L, Narita Z, Cascella N, Nucifora FC, Coughlin JM, Nestadt G, Sedlak TW, Mihaljevic M, Wang M, Kenkare A, Nagpal A, Sethi M, Kelly A, Di Carlo P, Kamath V, Faria A, Barker P, Sawa A. A multimodal study of a first episode psychosis cohort: potential markers of antipsychotic treatment resistance.. [DOI: 10.1101/2021.05.03.442450] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Kulkarni KR, Schafer M, Berner L, Fiore VG, Heflin M, Hutchison K, Calhoun V, Filbey F, Pandey G, Schiller D, Gu X. An interpretable connectivity-based decoding model for classification of chronic marijuana use.. [DOI: 10.1101/2021.05.04.442433] [Reference Citation Analysis]
27 Berz A, Pasquini de Souza C, Wöhr M, Schwarting RKW. Limited generalizability, pharmacological modulation, and state-dependency of habituation towards pro-social 50-kHz calls in rats. iScience 2021;24:102426. [PMID: 33997703 DOI: 10.1016/j.isci.2021.102426] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Zhu X, Ward J, Cullen B, Lyall DM, Strawbridge RJ, Lyall LM, Smith DJ. Polygenic Risk for Schizophrenia, Brain Structure and Environmental Risk in UK Biobank.. [DOI: 10.1101/2021.04.15.21255587] [Reference Citation Analysis]
29 Adhikari A, Copping NA, Beegle J, Cameron DL, Deng P, O'Geen H, Segal DJ, Fink KD, Silverman JL, Anderson JS. Functional rescue in an Angelman syndrome model following treatment with lentivector transduced hematopoietic stem cells. Hum Mol Genet 2021;30:1067-83. [PMID: 33856035 DOI: 10.1093/hmg/ddab104] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
30 Wöhr M. Measuring mania-like elevated mood through amphetamine-induced 50-kHz ultrasonic vocalizations in rats. Br J Pharmacol 2021. [PMID: 33830495 DOI: 10.1111/bph.15487] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
31 Kojovic N, Natraj S, Mohanty SP, Maillart T, Schaer M. Using 2D Video-based Pose Estimation for Automated Prediction of Autism Spectrum Disorders in Preschoolers.. [DOI: 10.1101/2021.04.01.21254463] [Reference Citation Analysis]
32 Li S, Guo Z, Ioffe JB, Hu Y, Zhen Y, Zhou X. Autism_genepheno: Text mining of gene-phenotype associations reveals new phenotypic profiles of autism-associated genes.. [DOI: 10.1101/2021.03.24.436848] [Reference Citation Analysis]
33 Born HA, Martinez LA, Levine AT, Harris SE, Mehra S, Lee WL, Dindot SV, Nash KR, Silverman JL, Segal DJ, Weeber EJ, Anderson AE. Early Developmental EEG and Seizure Phenotypes in a Full Gene Deletion of Ubiquitin Protein Ligase E3A Rat Model of Angelman Syndrome. eNeuro 2021;8:ENEURO. [PMID: 33531368 DOI: 10.1523/ENEURO.0345-20.2020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
34 Robinson S, Winer JL, Kitase Y, Brigman JL, Jantzie LL. Neonatal administration of erythropoietin attenuates cognitive deficits in adult rats following placental insufficiency. J Neurosci Res 2021. [PMID: 33611820 DOI: 10.1002/jnr.24815] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Copping NA, Silverman JL. Abnormal electrophysiological phenotypes and sleep deficits in a mouse model of Angelman Syndrome. Mol Autism 2021;12:9. [PMID: 33549123 DOI: 10.1186/s13229-021-00416-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
36 Đurić-zdravković A, Japundža-milisavljević M, Maksimović I, Roknić A. Clinical and cognitive characteristics of Angelman syndrome. Spec eduk i rehabilitacija 2021;20:127-44. [DOI: 10.5937/specedreh20-32634] [Reference Citation Analysis]
37 Berg EL, Ching TM, Bruun DA, Rivera JK, Careaga M, Ellegood J, Lerch JP, Wöhr M, Lein PJ, Silverman JL. Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos. J Neurodev Disord 2020;12:40. [PMID: 33327943 DOI: 10.1186/s11689-020-09342-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
38 Wong H, Hooper AWM, Niibori Y, Lee SJ, Hategan LA, Zhang L, Karumuthil-Melethil S, Till SM, Kind PC, Danos O, Bruder JT, Hampson DR. Sexually dimorphic patterns in electroencephalography power spectrum and autism-related behaviors in a rat model of fragile X syndrome. Neurobiol Dis 2020;146:105118. [PMID: 33031903 DOI: 10.1016/j.nbd.2020.105118] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
39 Bachiller S, Alonso-Bellido IM, Real LM, Pérez-Villegas EM, Venero JL, Deierborg T, Armengol JÁ, Ruiz R. The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement. Int J Mol Sci 2020;21:E6429. [PMID: 32899400 DOI: 10.3390/ijms21176429] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
40 Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020;27:84. [PMID: 32741357 DOI: 10.1186/s12929-020-00673-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
41 Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes.. [DOI: 10.1101/2020.03.23.003384] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
42 Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes.. [DOI: 10.1101/2020.03.23.003392] [Reference Citation Analysis]