BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022;7:182. [PMID: 35680856 DOI: 10.1038/s41392-022-01036-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
Number Citing Articles
1 Wen Y, Zhang X, Wei L, Wu M, Cheng Y, Zheng H, Shen A, Fu C, Ali F, Long L, Lu Y, Li J, Peng J. Gastrodin attenuates renal injury and collagen deposition via suppression of the TGF-β1/Smad2/3 signaling pathway based on network pharmacology analysis. Front Pharmacol 2023;14:1082281. [PMID: 36733505 DOI: 10.3389/fphar.2023.1082281] [Reference Citation Analysis]
2 Tepus M, Tonoli E, Verderio EAM. Molecular profiling of urinary extracellular vesicles in chronic kidney disease and renal fibrosis. Front Pharmacol 2022;13:1041327. [PMID: 36712680 DOI: 10.3389/fphar.2022.1041327] [Reference Citation Analysis]
3 Liao S, Lin D, Feng Q, Li F, Qi Y, Feng W, Yang C, Yan L, Ren M, Sun K. Lipid Parameters and the Development of Chronic Kidney Disease: A Prospective Cohort Study in Middle-Aged and Elderly Chinese Individuals. Nutrients 2022;15. [PMID: 36615770 DOI: 10.3390/nu15010112] [Reference Citation Analysis]
4 yuan Q, tang B, Wan C, Xie Y, Xie Y, zhu Y, Su H, Zhang C. PRDM16 deficiency triggered by TGF-β signaling aggravated renal fibrosis by promoting tubular mitochondrial dysfunction.. [DOI: 10.21203/rs.3.rs-2323212/v1] [Reference Citation Analysis]
5 Wang F, Wang S, Wang J, Huang K, Chen G, Peng Y, Liu C, Tao Y. Pharmacological mechanisms of Fuzheng Huayu formula for Aristolochic acid I-induced kidney fibrosis through network pharmacology. Front Pharmacol 2022;13:1056865. [PMID: 36569327 DOI: 10.3389/fphar.2022.1056865] [Reference Citation Analysis]
6 Huang H, Tong Y, Fu T, Lin D, Li H, Xu L, Zhang S, Yin Y, Gao Y. Effect of Bining decoction on gouty nephropathy: a network pharmacology analysis and preliminary validation of gut microbiota in a mouse model. Ann Transl Med 2022;10:1271. [PMID: 36618800 DOI: 10.21037/atm-22-5523] [Reference Citation Analysis]
7 Park CH, Yoo TH. TGF-β Inhibitors for Therapeutic Management of Kidney Fibrosis. Pharmaceuticals (Basel) 2022;15. [PMID: 36558936 DOI: 10.3390/ph15121485] [Reference Citation Analysis]
8 Garibotto G, Picciotto D, Esposito P. Treatment of Chronic Kidney Disease: Moving Forward. J Clin Med 2022;11. [PMID: 36498523 DOI: 10.3390/jcm11236948] [Reference Citation Analysis]
9 Xiang T, Zhao S, Wu Y, Li L, Fu P, Ma L. Novel post-translational modifications in the kidneys for human health and diseases. Life Sciences 2022. [DOI: 10.1016/j.lfs.2022.121188] [Reference Citation Analysis]
10 Zuzda K, Grycuk W, Małyszko J, Małyszko J. Kidney and lipids: novel potential therapeutic targets for dyslipidemia in kidney disease? Expert Opin Ther Targets 2022;26:995-1009. [PMID: 36548906 DOI: 10.1080/14728222.2022.2161887] [Reference Citation Analysis]
11 Tao S, Yang L, Wu C, Hu Y, Guo F, Ren Q, Ma L, Fu P. Gambogenic acid alleviates kidney fibrosis via epigenetic inhibition of EZH2 to regulate Smad7-dependent mechanism. Phytomedicine 2022;106:154390. [PMID: 35994849 DOI: 10.1016/j.phymed.2022.154390] [Reference Citation Analysis]