BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C. Therapeutic peptides: current applications and future directions. Sig Transduct Target Ther 2022;7. [DOI: 10.1038/s41392-022-00904-4] [Cited by in Crossref: 40] [Cited by in F6Publishing: 48] [Article Influence: 40.0] [Reference Citation Analysis]
Number Citing Articles
1 Chen J, Ye J, Song T, Lu Z, Xiong J. Flowability, binding and release property of “self-lubricating” microcrystalline cellulose. Industrial Crops and Products 2023;196:116501. [DOI: 10.1016/j.indcrop.2023.116501] [Reference Citation Analysis]
2 Nugrahadi PP, Hinrichs WLJ, Frijlink HW, Schöneich C, Avanti C. Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics 2023;15:935. [DOI: 10.3390/pharmaceutics15030935] [Reference Citation Analysis]
3 Tonin G, Klen J. Eptifibatide, an Older Therapeutic Peptide with New Indications: From Clinical Pharmacology to Everyday Clinical Practice. IJMS 2023;24:5446. [DOI: 10.3390/ijms24065446] [Reference Citation Analysis]
4 Gattringer J, Gruber CW, Hellinger R. Peptide modulators of cell migration: Overview, applications and future development. Drug Discov Today 2023;:103554. [PMID: 36921670 DOI: 10.1016/j.drudis.2023.103554] [Reference Citation Analysis]
5 Chowdhary S, Pelzer T, Saathoff M, Quaas E, Pendl J, Fulde M, Koksch B. Fine‐tuning the antimicrobial activity of β‐hairpin peptides with fluorinated amino acids. Peptide Science 2023. [DOI: 10.1002/pep2.24306] [Reference Citation Analysis]
6 Komar AA. Molecular Peptide Grafting as a Tool to Create Novel Protein Therapeutics. Molecules 2023;28. [PMID: 36903628 DOI: 10.3390/molecules28052383] [Reference Citation Analysis]
7 Kehr D, Ritterhoff J, Glaser M, Jarosch L, Salazar RE, Spaich K, Varadi K, Birkenstock J, Egger M, Gao E, Koch WJ, Katus HA, Frey N, Jungmann A, Busch C, Mather PJ, Ruhparwar A, Völkers M, Wade RC, Most P. S100A1ct: a synthetic peptide derived from human S100A1 protein improves cardiac contractile performance and survival in pre-clinical heart failure models.. [DOI: 10.1101/2023.03.04.531024] [Reference Citation Analysis]
8 Díaz-perlas C, Oller-salvia B. Chemically Enhanced Peptide and Protein Therapeutics. Pharmaceutics 2023;15:827. [DOI: 10.3390/pharmaceutics15030827] [Reference Citation Analysis]
9 Das A, Adhikari S, Deka D, Bisgin A, Paul S, Balidya N, Boga I, Banerjee A, Pathak S. An Updated Review on Recent Advances in the Usage of Novel Therapeutic Peptides for Breast Cancer Treatment. Int J Pept Res Ther 2023;29:32. [DOI: 10.1007/s10989-023-10503-8] [Reference Citation Analysis]
10 Yu C, E R, Zhang XW, Hu WQ, Bao G, Li Y, Liu Y, He Z, Li J, Ma W, Mou LY, Wang R, Sun W. NaClO-Mediated Cross Installation of Indoles and Azoles Benefits Anticancer Hit Discovery. ChemMedChem 2023;18:e202200651. [PMID: 36585386 DOI: 10.1002/cmdc.202200651] [Reference Citation Analysis]
11 Velazhahan V, McCann BL, Bignell E, Tate CG. Developing novel antifungals: lessons from G protein-coupled receptors. Trends Pharmacol Sci 2023;44:162-74. [PMID: 36801017 DOI: 10.1016/j.tips.2022.12.002] [Reference Citation Analysis]
12 Lee MF, Anasir MI, Poh CL. Development of novel antiviral peptides against dengue serotypes 1-4. Virology 2023;580:10-27. [PMID: 36739680 DOI: 10.1016/j.virol.2023.01.016] [Reference Citation Analysis]
13 Abo Gabal R, Osama S, Hanafy N, Oraby A. Micellization thermodynamics as a function of the temperature of a cationic zwitterionic dodecyl phosphocholine and anionic sodium dodecyl sulfate mixed micelles with fluorometry. Appl Phys A 2023;129:201. [DOI: 10.1007/s00339-023-06482-8] [Reference Citation Analysis]
14 Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs. Pharm Res 2023;40:617-32. [PMID: 36869247 DOI: 10.1007/s11095-023-03486-0] [Reference Citation Analysis]
15 Jabeen M, Biswas P, Islam MT, Paul R. Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications. Viruses 2023;15:640. [DOI: 10.3390/v15030640] [Reference Citation Analysis]
16 Krishna Sunkari Y, Kumar Siripuram V, Flajolet M. Diversity-Oriented Synthesis (DOS) of On-DNA Peptidomimetics from Acid-Derived Phosphonium Ylides. Chemistry 2023;29:e202203037. [PMID: 36653313 DOI: 10.1002/chem.202203037] [Reference Citation Analysis]
17 Kaguchi R, Katsuyama A, Sato T, Takahashi S, Horiuchi M, Yokota SI, Ichikawa S. Discovery of Biologically Optimized Polymyxin Derivatives Facilitated by Peptide Scanning and In Situ Screening Chemistry. J Am Chem Soc 2023;145:3665-81. [PMID: 36708325 DOI: 10.1021/jacs.2c12971] [Reference Citation Analysis]
18 Galzitskaya OV, Grishin SY, Glyakina AV, Dovidchenko NV, Konstantinova AV, Kravchenko SV, Surin AK. The Strategies of Development of New Non-Toxic Inhibitors of Amyloid Formation. Int J Mol Sci 2023;24. [PMID: 36835194 DOI: 10.3390/ijms24043781] [Reference Citation Analysis]
19 Patel S, Vyas VK, Mehta PJ. A Review on Forced Degradation Strategies to Establish the Stability of Therapeutic Peptide Formulations. Int J Pept Res Ther 2023;29:22. [DOI: 10.1007/s10989-023-10492-8] [Reference Citation Analysis]
20 Yang J, Tabuchi Y, Katsuki R, Taki M. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Int J Mol Sci 2023;24. [PMID: 36834935 DOI: 10.3390/ijms24043525] [Reference Citation Analysis]
21 Debeljak J, Korošec P, Šelb J, Rijavec M, Košnik M, Lunder M. Combination of Experimental and Bioinformatic Approaches for Identification of Immunologically Relevant Protein-Peptide Interactions. Biomolecules 2023;13. [PMID: 36830679 DOI: 10.3390/biom13020310] [Reference Citation Analysis]
22 Zhang B, Xu W, Yin C, Tang Y. Characterization of low-level D-amino acid isomeric impurities of Semaglutide using liquid chromatography-high resolution tandem mass spectrometry. J Pharm Biomed Anal 2023;224:115164. [PMID: 36462248 DOI: 10.1016/j.jpba.2022.115164] [Reference Citation Analysis]
23 Bellavita R, Maione A, Braccia S, Sinoca M, Galdiero S, Galdiero E, Falanga A. Myxinidin-Derived Peptide against Biofilms Caused by Cystic Fibrosis Emerging Pathogens. Int J Mol Sci 2023;24. [PMID: 36834512 DOI: 10.3390/ijms24043092] [Reference Citation Analysis]
24 Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free Biosynthesis of Peptidomimetics. Biotechnol Bioprocess Eng 2023;:1-17. [PMID: 36778039 DOI: 10.1007/s12257-022-0268-5] [Reference Citation Analysis]
25 Al-Talib H, Abdulwahab MH, Murad K, Amiruddin ND, Mohamed NN. Antimicrobial Effects of Tetraspanin CD9 Peptide against Microbiota Causing Armpit Malodour. Antibiotics (Basel) 2023;12. [PMID: 36830182 DOI: 10.3390/antibiotics12020271] [Reference Citation Analysis]
26 Krishnarjuna B, Sunanda P, Seow J, Tae HS, Robinson SD, Belgi A, Robinson AJ, Safavi-Hemami H, Adams DJ, Norton RS. Characterisation of Elevenin-Vc1 from the Venom of Conus victoriae: A Structural Analogue of α-Conotoxins. Mar Drugs 2023;21. [PMID: 36827123 DOI: 10.3390/md21020081] [Reference Citation Analysis]
27 Dhingra N, Bhardwaj R, Bhardwaj U, Kapoor K. Design of hACE2-based small peptide inhibitors against spike protein of SARS-CoV-2: a computational approach. Struct Chem 2023;:1-14. [PMID: 36714014 DOI: 10.1007/s11224-023-02125-z] [Reference Citation Analysis]
28 Banerjee A, Gosavi S. Potential Self-Peptide Inhibitors of the SARS-CoV-2 Main Protease. J Phys Chem B 2023;127:855-65. [PMID: 36689738 DOI: 10.1021/acs.jpcb.2c05917] [Reference Citation Analysis]
29 Shanmugam A, Venkattappan A, Gromiha MM. Structure based Drug Designing Approaches in SARS-CoV-2 Spike Inhibitor Design. Curr Top Med Chem 2022;22:2396-409. [PMID: 36330617 DOI: 10.2174/1568026623666221103091658] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Lamartina CW, Chartier CA, Lee S, Shah NH, Rovis T. Modular Synthesis of Unnatural Peptides via Rh(III)-Catalyzed Diastereoselective Three-Component Carboamidation Reaction. J Am Chem Soc 2023;145:1129-35. [PMID: 36576945 DOI: 10.1021/jacs.2c10793] [Reference Citation Analysis]
31 Garai S, Thomas J, Dey P, Das D. LGBM-ACp: an ensemble model for anticancer peptide prediction and in silico screening with potential drug targets. Mol Divers 2023. [PMID: 36637711 DOI: 10.1007/s11030-023-10602-0] [Reference Citation Analysis]
32 Mahamud AU, Samonty I. Spent hen: Insights into pharmaceutical and commercial prospects. World's Poultry Science Journal 2023. [DOI: 10.1080/00439339.2023.2163954] [Reference Citation Analysis]
33 Rosetti B, Marchesan S. Peptide Inhibitors of Insulin Fibrillation: Current and Future Challenges. Int J Mol Sci 2023;24. [PMID: 36674821 DOI: 10.3390/ijms24021306] [Reference Citation Analysis]
34 Frolov AI, Chankeshwara SV, Abdulkarim Z, Ghiandoni GM. pIChemiSt ─ Free Tool for the Calculation of Isoelectric Points of Modified Peptides. J Chem Inf Model 2023;63:187-96. [PMID: 36573842 DOI: 10.1021/acs.jcim.2c01261] [Reference Citation Analysis]
35 Tramutola A, Lanzillotta S, Aceto G, Pagnotta S, Ruffolo G, Cifelli P, Marini F, Ripoli C, Palma E, Grassi C, Di Domenico F, Perluigi M, Barone E. Intranasal Administration of KYCCSRK Peptide Rescues Brain Insulin Signaling Activation and Reduces Alzheimer's Disease-like Neuropathology in a Mouse Model for Down Syndrome. Antioxidants (Basel) 2023;12. [PMID: 36670973 DOI: 10.3390/antiox12010111] [Reference Citation Analysis]
36 Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands. Front Endocrinol (Lausanne) 2023;14:1119227. [PMID: 36817589 DOI: 10.3389/fendo.2023.1119227] [Reference Citation Analysis]
37 Liu Y, He Z, Ma W, Bao G, Li Y, Yu C, Li J, E R, Xu Z, Wang R, Sun W. Copper(I)-Catalyzed Late-Stage Introduction of Oxime Ethers into Peptides at the Carboxylic Acid Site. Org Lett 2022;24:9248-53. [PMID: 36508502 DOI: 10.1021/acs.orglett.2c03813] [Reference Citation Analysis]
38 Kim D, Jin L, Park EJ, Na DH. Peptide permeation enhancers for improving oral bioavailability of macromolecules. J Pharm Investig 2022. [DOI: 10.1007/s40005-022-00609-4] [Reference Citation Analysis]
39 Gao K, Lian H, Xue C, Zhou J, Yan X. High-Throughput Counting and Sizing of Therapeutic Protein Aggregates in the Nanometer Size Range by Nano-Flow Cytometry. Anal Chem 2022;94:17634-44. [PMID: 36474427 DOI: 10.1021/acs.analchem.2c04382] [Reference Citation Analysis]
40 Kim JC, Park EJ, Na DH. Gastrointestinal Permeation Enhancers for the Development of Oral Peptide Pharmaceuticals. Pharmaceuticals (Basel) 2022;15. [PMID: 36559036 DOI: 10.3390/ph15121585] [Reference Citation Analysis]
41 Bozhkova SA, Gordina EM, Labutin DV, Kudryavtsev KV. Oligopeptide Sortase Inhibitor Modulates Staphylococcus aureus Cell Adhesion and Biofilm Formation. Antibiotics (Basel) 2022;11. [PMID: 36551492 DOI: 10.3390/antibiotics11121836] [Reference Citation Analysis]
42 Jin CZ, Lee JM, Kim CJ, Lee HG, Shin KS. Genomic Insight into Shimazuella Soli Sp. Nov. Isolated from Soil and Its Putative Novel Class II Lasso Peptide. Bioengineering (Basel) 2022;9. [PMID: 36551018 DOI: 10.3390/bioengineering9120812] [Reference Citation Analysis]
43 Zhang R, Gao K, Sadremomtaz A, Ruiz-moreno AJ, Monti A, Al-dahmani ZM, Gyau B, Doti N, Groves MR. Identification of Hotspots in Synthetic Peptide Inhibitors of the FOXO4:p53 Interaction.. [DOI: 10.21203/rs.3.rs-2361374/v1] [Reference Citation Analysis]
44 Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022;14. [PMID: 36559301 DOI: 10.3390/pharmaceutics14122808] [Reference Citation Analysis]
45 Kim S, Choi I, Han IH, Bae H. Enhanced Therapeutic Effect of Optimized Melittin-dKLA, a Peptide Agent Targeting M2-like Tumor-Associated Macrophages in Triple-Negative Breast Cancer. Int J Mol Sci 2022;23. [PMID: 36555393 DOI: 10.3390/ijms232415751] [Reference Citation Analysis]
46 Sahu D, Gupta C, Yennamalli R, Sharma S, Roy S, Hasan S, Gupta P, Sharma VK, Kashyap S, Kumar S, Dwivedi VP, Panda AK, Das HR, Liu C. Novel Peptide Inhibitor of Human Tumor Necrosis Factor-α has Antiarthritic Activity.. [DOI: 10.1101/2022.12.06.519274] [Reference Citation Analysis]
47 Chernykh AV, Aloshyn D, Kuchkovska YO, Daniliuc CG, Tolmachova NA, Kondratov IS, Zozulya S, Grygorenko OO, Haufe G. Impact of β-perfluoroalkyl substitution of proline on the proteolytic stability of its peptide derivatives. Org Biomol Chem 2022;20:9337-50. [PMID: 36107003 DOI: 10.1039/d2ob01430k] [Reference Citation Analysis]
48 Ageitos L, Torres MDT, de la Fuente-Nunez C. Biologically Active Peptides from Venoms: Applications in Antibiotic Resistance, Cancer, and Beyond. Int J Mol Sci 2022;23. [PMID: 36499761 DOI: 10.3390/ijms232315437] [Reference Citation Analysis]
49 Chen Y, Yeh Y, Su Y, Liao C, Huang C, Cheng Y, Jan J. Cell adhesion inhibiting peptides exhibit potent anticancer activity and modulate intestinal microbiota. Materials & Design 2022;224:111303. [DOI: 10.1016/j.matdes.2022.111303] [Reference Citation Analysis]
50 Tripathi AK, Vishwanatha JK. Role of Anti-Cancer Peptides as Immunomodulatory Agents: Potential and Design Strategy. Pharmaceutics 2022;14. [PMID: 36559179 DOI: 10.3390/pharmaceutics14122686] [Reference Citation Analysis]
51 Cheng Q, Zeng P, Chi Chan EW, Chen S. Development of Peptide-based Metallo-β-lactamase Inhibitors as a New Strategy to Combat Antimicrobial Resistance: A Mini-review. Curr Pharm Des 2022;28:3538-45. [PMID: 36177630 DOI: 10.2174/1381612828666220929154255] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 González-lópez NM, Insuasty-cepeda DS, Huertas-ortiz KA, Reyes-calderón JE, Martínez-ramírez JA, Fierro-medina R, Jenny Rivera-monroy Z, García-castañeda JE. Gradient Retention Factor Concept Applied to Method Development for Peptide Analysis by Means of RP-HPLC. ACS Omega 2022. [DOI: 10.1021/acsomega.2c04907] [Reference Citation Analysis]
53 Shulga DA, Kudryavtsev KV. Theoretical Studies of Leu-Pro-Arg-Asp-Ala Pentapeptide (LPRDA) Binding to Sortase A of Staphylococcus aureus. Molecules 2022;27. [PMID: 36500275 DOI: 10.3390/molecules27238182] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Chemtob S, Rosenstein Y, Auvynet C. Editorial: Use of small peptides in the treatment of inflammatory diseases. Front Pharmacol 2022;13:1090014. [PMID: 36506563 DOI: 10.3389/fphar.2022.1090014] [Reference Citation Analysis]
55 Huang KY, Kao HJ, Weng TH, Chen CH, Weng SL. iDVIP: identification and characterization of viral integrase inhibitory peptides. Brief Bioinform 2022;23:bbac406. [PMID: 36215051 DOI: 10.1093/bib/bbac406] [Reference Citation Analysis]
56 Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022;10. [PMID: 36428526 DOI: 10.3390/biomedicines10112958] [Reference Citation Analysis]
57 Maeng J, Lee K. Systemic and brain delivery of antidiabetic peptides through nasal administration using cell-penetrating peptides. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1068495] [Reference Citation Analysis]
58 Hitesh P. Gelli, Ruben Vazquez-Uribe, Morten Otto Alexander Sommer. Screening for effective cell-penetrating peptides with minimal impact on epithelial cells and gut commensals in vitro. Front Pharmacol 2022;13:1049324. [PMID: 36408245 DOI: 10.3389/fphar.2022.1049324] [Reference Citation Analysis]
59 Molloy EM, Feldmann R, Hertweck C. Peptide splicing is a prevalent biosynthetic strategy for installing β-amino acid pharmacophores. Chem 2022;8:2894-2897. [DOI: 10.1016/j.chempr.2022.10.012] [Reference Citation Analysis]
60 Yang Lu J, Qi Bu Z, Tao Huang W. Peptide-based sensing of Pb2+, molecular logic computing, information encoding, cryptography, and steganography. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.108198] [Reference Citation Analysis]
61 El Hauadi K, Resina L, Zanuy D, Esteves T, Ferreira FC, Pérez-Madrigal MM, Alemán C. Dendritic Self-assembled Structures from Therapeutic Charged Pentapeptides. Langmuir 2022;38:12905-14. [PMID: 36229043 DOI: 10.1021/acs.langmuir.2c02010] [Reference Citation Analysis]
62 Porosk L, Langel Ü. Approaches for evaluation of novel CPP-based cargo delivery systems. Front Pharmacol 2022;13:1056467. [DOI: 10.3389/fphar.2022.1056467] [Reference Citation Analysis]
63 Kurpet K, Chwatko G. S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules 2022;27:6640. [PMID: 36235175 DOI: 10.3390/molecules27196640] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Perlikowska R, Silva J, Alves C, Susano P, Pedrosa R. The Therapeutic Potential of Naturally Occurring Peptides in Counteracting SH-SY5Y Cells Injury. IJMS 2022;23:11778. [DOI: 10.3390/ijms231911778] [Reference Citation Analysis]
65 Dorgham K, Murail S, Tuffery P, Savier E, Bravo J, Rebollo A. Binding and Kinetic Analysis of Human Protein Phosphatase PP2A Interactions with Caspase 9 Protein and the Interfering Peptide C9h. Pharmaceutics 2022;14:2055. [DOI: 10.3390/pharmaceutics14102055] [Reference Citation Analysis]
66 André AS, Moutinho I, Dias JNR, Aires-da-silva F. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front Microbiol 2022;13:962124. [DOI: 10.3389/fmicb.2022.962124] [Reference Citation Analysis]
67 Majura JJ, Cao W, Chen Z, Htwe KK, Li W, Du R, Zhang P, Zheng H, Gao J. The current research status and strategies employed to modify food-derived bioactive peptides. Front Nutr 2022;9. [DOI: 10.3389/fnut.2022.950823] [Reference Citation Analysis]
68 Leong EWX, Ge R. Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines 2022;10:2179. [DOI: 10.3390/biomedicines10092179] [Reference Citation Analysis]
69 Du Z, Li Y. Review and perspective on bioactive peptides: A roadmap for research, development, and future opportunities. Journal of Agriculture and Food Research 2022;9:100353. [DOI: 10.1016/j.jafr.2022.100353] [Reference Citation Analysis]
70 Malekos E, Carpenter S. Short open reading frame genes in innate immunity: from discovery to characterization. Trends Immunol 2022;43:741-56. [PMID: 35965152 DOI: 10.1016/j.it.2022.07.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
71 Lin S, Chen X, Chen H, Cai X, Chen X, Wang S. The Bioprospecting of Microbial-Derived Antimicrobial Peptides for Sustainable Agriculture. Engineering 2022. [DOI: 10.1016/j.eng.2022.08.011] [Reference Citation Analysis]
72 Alsaggar M, Al-hazabreh M, Al-tall Y, Al-tarawneh A, Masadeh M. HAZ, A NOVEL PEPTIDE WITH BROAD-SPECTRUM ANTIBACTERIAL ACTIVITY. Saudi Pharmaceutical Journal 2022. [DOI: 10.1016/j.jsps.2022.09.009] [Reference Citation Analysis]
73 Iavorschi M, Lupăescu A, Darie-ion L, Indeykina M, Hitruc GE, Petre BA. Cu and Zn Interactions with Peptides Revealed by High-Resolution Mass Spectrometry. Pharmaceuticals 2022;15:1096. [DOI: 10.3390/ph15091096] [Reference Citation Analysis]
74 Esposito S Dr, Orsatti L Dr, Pucci V Dr. Subcutaneous Catabolism of Peptide Therapeutics: Bioanalytical Approaches and ADME Considerations. Xenobiotica 2022;:1-35. [PMID: 36039395 DOI: 10.1080/00498254.2022.2119180] [Reference Citation Analysis]
75 Majc B, Novak M, Lah TT, Križaj I. Bioactive peptides from venoms against glioma progression. Front Oncol 2022;12:965882. [DOI: 10.3389/fonc.2022.965882] [Reference Citation Analysis]
76 Zhang J, Sun R, Chen Z, Zhou C, Ma C, Zhou M, Chen X, Chen T, Shaw C, Wang L. Evaluation of the Antimicrobial Properties of a Natural Peptide from Vespa mandarinia Venom and Its Synthetic Analogues as a Possible Route to Defeat Drug-Resistant Microbes. Biology 2022;11:1263. [DOI: 10.3390/biology11091263] [Reference Citation Analysis]
77 Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. Biosensors 2022;12:683. [DOI: 10.3390/bios12090683] [Reference Citation Analysis]
78 Abi-ghanem C, Jonnalagadda D, Chun J, Kihara Y, Ranscht B. CAQK, a peptide associating with extracellular matrix components targets sites of demyelinating injuries. Front Cell Neurosci 2022;16:908401. [DOI: 10.3389/fncel.2022.908401] [Reference Citation Analysis]
79 Wang LL, Estrada L, Wiggins J, Anantpadma M, Patten JJ, Davey RA, Xiang SH. Ligand-based design of peptide entry inhibitors targeting the endosomal receptor binding site of filoviruses. Antiviral Res 2022;:105399. [PMID: 36007601 DOI: 10.1016/j.antiviral.2022.105399] [Reference Citation Analysis]
80 Lubell WD. Peptide-Based Drug Development. Biomedicines 2022;10:2037. [DOI: 10.3390/biomedicines10082037] [Reference Citation Analysis]
81 Zou J, Zhou M, Xiao X, Liu R. Advance in Hybrid Peptides Synthesis. Macromol Rapid Commun 2022;:e2200575. [PMID: 35978269 DOI: 10.1002/marc.202200575] [Reference Citation Analysis]
82 Apostolopoulos V, Bojarska J, Feehan J, Matsoukas J, Wolf W. Smart therapies against global pandemics: A potential of short peptides. Front Pharmacol 2022;13:914467. [DOI: 10.3389/fphar.2022.914467] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
83 Ciobanasu C. Confocal Laser Scanning Microscopy and Model Membranes to Study Translocation Mechanisms of Membrane Active Peptides. Pharmaceutics 2022;14:1699. [DOI: 10.3390/pharmaceutics14081699] [Reference Citation Analysis]
84 Figueiras A, Domingues C, Jarak I, Santos AI, Parra A, Pais A, Alvarez-lorenzo C, Concheiro A, Kabanov A, Cabral H, Veiga F. New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022;14:1700. [DOI: 10.3390/pharmaceutics14081700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Yoshida J, Takayama K, Kawada M. Short peptides derived from hGAPDH exhibit anti-cancer activity. Bioorg Med Chem 2022;71:116953. [PMID: 35964520 DOI: 10.1016/j.bmc.2022.116953] [Reference Citation Analysis]
86 Quarta E, Esposti LD, Bettini R, Sonvico F, Catalucci D, Iafisco M, De Luca C, Trevisi G, Colombo P, Rossi A, Buttini F, Colombo G. Dry powder inhalation technology for heart targeting applied to calcium phosphate nanoparticles loaded with active substances. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103719] [Reference Citation Analysis]
87 Gonella A, Grizot S, Liu F, López Noriega A, Richard J. Long-acting injectable formulation technologies: Challenges and opportunities for the delivery of fragile molecules. Expert Opin Drug Deliv 2022. [PMID: 35899474 DOI: 10.1080/17425247.2022.2105318] [Reference Citation Analysis]
88 Hansen S, Arafiles JVV, Ochtrop P, Hackenberger CPR. Modular solid-phase synthesis of electrophilic cysteine-selective ethynyl-phosphonamidate peptides. Chem Commun (Camb) 2022;58:8388-91. [PMID: 35792548 DOI: 10.1039/d2cc02379b] [Reference Citation Analysis]
89 Füzesi-levi MG, Ben-nissan G, Listov D, Hayouka Z, Fleishman S, Sharon M. The C-terminal tail of CSNAP attenuates the CSN complex.. [DOI: 10.1101/2022.07.18.500399] [Reference Citation Analysis]
90 Singh S, Yang F, Sivils A, Cegielski V, Chu XP. Amylin and Secretases in the Pathology and Treatment of Alzheimer's Disease. Biomolecules 2022;12:996. [PMID: 35883551 DOI: 10.3390/biom12070996] [Reference Citation Analysis]
91 Farooq Z, Howell LA, Mccormick PJ. Probing GPCR Dimerization Using Peptides. Front Endocrinol 2022;13:843770. [DOI: 10.3389/fendo.2022.843770] [Reference Citation Analysis]
92 Kosugi T, Ohue M. Solubility-Aware Protein Binding Peptide Design Using AlphaFold. Biomedicines 2022;10:1626. [DOI: 10.3390/biomedicines10071626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
93 Yang B, Gomes Dos Santos A, Puri S, Bak A, Zhou L. The industrial design, translation, and development strategies for long-acting peptide delivery. Expert Opin Drug Deliv 2022. [PMID: 35787229 DOI: 10.1080/17425247.2022.2098276] [Reference Citation Analysis]
94 La Serra MA, Vidossich P, Acquistapace I, Ganesan AK, De Vivo M. Alchemical Free Energy Calculations to Investigate Protein-Protein Interactions: the Case of the CDC42/PAK1 Complex. J Chem Inf Model 2022;62:3023-33. [PMID: 35679463 DOI: 10.1021/acs.jcim.2c00348] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
95 Brekker MA, Sartawi T, Sawatzky TM, Causey CP, Rehman FK, Knuckley B. A peptoid-based inhibitor of protein arginine methyltransferase 1 (PRMT1) induces apoptosis and autophagy in cancer cells. J Biol Chem 2022;298:102205. [PMID: 35764172 DOI: 10.1016/j.jbc.2022.102205] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Khandibharad S, Singh S. Artificial intelligence channelizing protein-peptide interactions pipeline for host-parasite paradigm in IL-10 and IL-12 reciprocity by SHP-1. Biochim Biophys Acta Mol Basis Dis 2022;1868:166466. [PMID: 35750267 DOI: 10.1016/j.bbadis.2022.166466] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Conzelmann C, Muratspahić E, Tomašević N, Münch J, Gruber CW. In vitro Inhibition of HIV-1 by Cyclotide-Enriched Extracts of Viola tricolor. Front Pharmacol 2022;13:888961. [DOI: 10.3389/fphar.2022.888961] [Reference Citation Analysis]
98 Kosugi T, Ohue M. Solubility-aware protein binding peptide design using AlphaFold.. [DOI: 10.1101/2022.05.14.491955] [Reference Citation Analysis]
99 Gambacorta N, Caputo L, Quintieri L, Monaci L, Ciriaco F, Nicolotti O. Rational Discovery of Antiviral Whey Protein-Derived Small Peptides Targeting the SARS-CoV-2 Main Protease. Biomedicines 2022;10:1067. [DOI: 10.3390/biomedicines10051067] [Reference Citation Analysis]
100 Duffuler P, Bhullar KS, de Campos Zani SC, Wu J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. J Agric Food Chem 2022. [PMID: 35302369 DOI: 10.1021/acs.jafc.1c06289] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
101 Basu C, Bhattacharyya S, Chaudhuri P. Role of mangroves in pharmacotherapy. The Basic Handbook of Indian Ethnobotany and Traditional Medicine 2022. [DOI: 10.52756/bhietm.2022.e01.005] [Reference Citation Analysis]
102 Mattei AE, Gutierrez AH, Martin WD, Terry FE, Roberts BJ, Rosenberg AS, De Groot AS. In silico Immunogenicity Assessment for Sequences Containing Unnatural Amino Acids: A Method Using Existing in silico Algorithm Infrastructure and a Vision for Future Enhancements. Front Drug Discov (Lausanne) 2022;2:952326. [PMID: 36945694 DOI: 10.3389/fddsv.2022.952326] [Reference Citation Analysis]
103 Tinku, Gautam P, Choudhary S. Physicochemical insights into the micelle-based drug-delivery of bioactive compounds to the carrier protein. New J Chem . [DOI: 10.1039/d2nj04244d] [Reference Citation Analysis]