BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fragale JE, Pantazis CB, James MH, Aston-Jones G. The role of orexin-1 receptor signaling in demand for the opioid fentanyl. Neuropsychopharmacology 2019;44:1690-7. [PMID: 31112988 DOI: 10.1038/s41386-019-0420-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Han Y, Yan W, Zheng Y, Khan MZ, Yuan K, Lu L. The rising crisis of illicit fentanyl use, overdose, and potential therapeutic strategies. Transl Psychiatry 2019;9:282. [PMID: 31712552 DOI: 10.1038/s41398-019-0625-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 9.7] [Reference Citation Analysis]
2 Bodnar RJ. Endogenous opiates and behavior: 2019. Peptides 2021;141:170547. [PMID: 33831447 DOI: 10.1016/j.peptides.2021.170547] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Wiskerke J, James MH, Aston-Jones G. The orexin-1 receptor antagonist SB-334867 reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Res 2020;1731:146222. [PMID: 31002819 DOI: 10.1016/j.brainres.2019.04.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
4 Mohammadkhani A, Fragale JE, Pantazis CB, Bowrey HE, James MH, Aston-Jones G. Orexin-1 Receptor Signaling in Ventral Pallidum Regulates Motivation for the Opioid Remifentanil. J Neurosci 2019;39:9831-40. [PMID: 31641055 DOI: 10.1523/JNEUROSCI.0255-19.2019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
5 Venniro M, Banks ML, Heilig M, Epstein DH, Shaham Y. Improving translation of animal models of addiction and relapse by reverse translation. Nat Rev Neurosci 2020;21:625-43. [PMID: 33024318 DOI: 10.1038/s41583-020-0378-z] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
6 Aghajani N, Pourhamzeh M, Azizi H, Semnanian S. Central blockade of orexin type 1 receptors reduces naloxone induced activation of locus coeruleus neurons in morphine dependent rats. Neurosci Lett 2021;755:135909. [PMID: 33892002 DOI: 10.1016/j.neulet.2021.135909] [Reference Citation Analysis]
7 James MH, Fragale JE, Aurora RN, Cooperman NA, Langleben DD, Aston-Jones G. Repurposing the dual orexin receptor antagonist suvorexant for the treatment of opioid use disorder: why sleep on this any longer? Neuropsychopharmacology 2020;45:717-9. [PMID: 31986520 DOI: 10.1038/s41386-020-0619-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
8 Swain Y, Waller NG, Gewirtz JC, Harris AC. Individual Differences in Different Measures of Opioid Self-Administration in Rats Are Accounted for by a Single Latent Variable. Front Psychiatry 2021;12:712163. [PMID: 34557118 DOI: 10.3389/fpsyt.2021.712163] [Reference Citation Analysis]
9 Mehr JB, Mitchison D, Bowrey HE, James MH. Sleep dysregulation in binge eating disorder and "food addiction": the orexin (hypocretin) system as a potential neurobiological link. Neuropsychopharmacology 2021. [PMID: 34145404 DOI: 10.1038/s41386-021-01052-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2020;164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
11 Powell GL, Namba MD, Vannan A, Bonadonna JP, Carlson A, Mendoza R, Chen PJ, Luetdke RR, Blass BE, Neisewander JL. The Long-Acting D3 Partial Agonist MC-25-41 Attenuates Motivation for Cocaine in Sprague-Dawley Rats. Biomolecules 2020;10:E1076. [PMID: 32708461 DOI: 10.3390/biom10071076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 James MH, Aston-Jones G. Introduction to the Special Issue: "Making orexin-based therapies for addiction a reality: What are the steps from here?". Brain Res 2020;1731:146665. [PMID: 31930996 DOI: 10.1016/j.brainres.2020.146665] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
13 James MH, McNally GP, Li X. Editorial: Role of the Thalamus in Motivated Behavior. Front Behav Neurosci 2021;15:720592. [PMID: 34276320 DOI: 10.3389/fnbeh.2021.720592] [Reference Citation Analysis]
14 Matzeu A, Martin-Fardon R. Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci 2020;10:E226. [PMID: 32290110 DOI: 10.3390/brainsci10040226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
15 McGinn MA, Pantazis CB, Tunstall BJ, Marchette RCN, Carlson ER, Said N, Koob GF, Vendruscolo LF. Drug addiction co-morbidity with alcohol: Neurobiological insights. Int Rev Neurobiol 2021;157:409-72. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Matzeu A, Martin-fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022;15:787595. [DOI: 10.3389/fnbeh.2021.787595] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Freeman LR, Bentzley BS, James MH, Aston-Jones G. Sex Differences in Demand for Highly Palatable Foods: Role of the Orexin System. Int J Neuropsychopharmacol 2021;24:54-63. [PMID: 32496559 DOI: 10.1093/ijnp/pyaa040] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
18 Hopf FW. Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020;168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
19 Brown RM, Dayas CV, James MH, Smith RJ. New directions in modelling dysregulated reward seeking for food and drugs. Neurosci Biobehav Rev 2021:S0149-7634(21)00485-1. [PMID: 34736883 DOI: 10.1016/j.neubiorev.2021.10.043] [Reference Citation Analysis]
20 Heinsbroek JA, Giannotti G, Mandel MR, Josey M, Aston-Jones G, James MH, Peters J. A common limiter circuit for opioid choice and relapse identified in a rodent addiction model. Nat Commun 2021;12:4788. [PMID: 34373454 DOI: 10.1038/s41467-021-25080-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Elman I, Howard M, Borodovsky JT, Mysels D, Rott D, Borsook D, Albanese M. Metabolic and Addiction Indices in Patients on Opioid Agonist Medication-Assisted Treatment: A Comparison of Buprenorphine and Methadone. Sci Rep 2020;10:5617. [PMID: 32221389 DOI: 10.1038/s41598-020-62556-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Fragale JE, James MH, Aston-Jones G. Intermittent self-administration of fentanyl induces a multifaceted addiction state associated with persistent changes in the orexin system. Addict Biol 2021;26:e12946. [PMID: 32798290 DOI: 10.1111/adb.12946] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
23 Pantazis CB, James MH, O'Connor S, Shin N, Aston-Jones G. Orexin-1 receptor signaling in ventral tegmental area mediates cue-driven demand for cocaine. Neuropsychopharmacology 2021. [PMID: 34635803 DOI: 10.1038/s41386-021-01173-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Wang C, Chen M, Qin C, Qu X, Shen X, Liu S. Lateral Hypothalamic Orexin Neurons Mediate the Reward Effects of Pain Relief Induced by Electroacupuncture. Front Mol Neurosci 2022;15:812035. [DOI: 10.3389/fnmol.2022.812035] [Reference Citation Analysis]
25 O'connor RM, Kenny PJ. Utility of ‘substance use disorder’ as a heuristic for understanding overeating and obesity. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2022. [DOI: 10.1016/j.pnpbp.2022.110580] [Reference Citation Analysis]
26 McConnell SA, Brandner AJ, Blank BA, Kearns DN, Koob GF, Vendruscolo LF, Tunstall BJ. Demand for fentanyl becomes inelastic following extended access to fentanyl vapor self-administration. Neuropharmacology 2021;182:108355. [PMID: 33091459 DOI: 10.1016/j.neuropharm.2020.108355] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
27 Zhang Y, Rahematpura S, Ragnini KH, Moreno A, Stecyk KS, Kahng MW, Milliken BT, Hayes MR, Doyle RP, Schmidt HD. A novel dual agonist of glucagon-like peptide-1 receptors and neuropeptide Y2 receptors attenuates fentanyl taking and seeking in male rats. Neuropharmacology 2021;192:108599. [PMID: 33965397 DOI: 10.1016/j.neuropharm.2021.108599] [Reference Citation Analysis]
28 James MH, Fragale JE, O'Connor SL, Zimmer BA, Aston-Jones G. The orexin (hypocretin) neuropeptide system is a target for novel therapeutics to treat cocaine use disorder with alcohol coabuse. Neuropharmacology 2021;183:108359. [PMID: 33091458 DOI: 10.1016/j.neuropharm.2020.108359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Mohammadkhani A, James MH, Pantazis CB, Aston-Jones G. Persistent effects of the orexin-1 receptor antagonist SB-334867 on motivation for the fast acting opioid remifentanil. Brain Res 2020;1731:146461. [PMID: 31526801 DOI: 10.1016/j.brainres.2019.146461] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
30 Yen E, Maron JL. Aberrant Feeding and Growth in Neonates With Prenatal Opioid Exposure: Evidence of Neuromodulation and Behavioral Changes. Front Pediatr 2022;9:805763. [DOI: 10.3389/fped.2021.805763] [Reference Citation Analysis]
31 Hammerslag LR, Hofford RS, Kang Q, Kryscio RJ, Beckmann JS, Bardo MT. Changes in fentanyl demand following naltrexone, morphine, and buprenorphine in male rats. Drug Alcohol Depend 2020;207:107804. [PMID: 31862556 DOI: 10.1016/j.drugalcdep.2019.107804] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
32 Fragale JE, James MH, Avila JA, Spaeth AM, Aurora RN, Langleben D, Aston-Jones G. The Insomnia-Addiction Positive Feedback Loop: Role of the Orexin System. Front Neurol Neurosci 2021;45:117-27. [PMID: 34052815 DOI: 10.1159/000514965] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Han Y, Cao L, Yuan K, Shi J, Yan W, Lu L. Unique Pharmacology, Brain Dysfunction, and Therapeutic Advancements for Fentanyl Misuse and Abuse. Neurosci Bull . [DOI: 10.1007/s12264-022-00872-3] [Reference Citation Analysis]
34 Tavakkolifard M, Vousooghi N, Mahboubi S, Golab F, Ejtemaei Mehr S, Zarrindast MR. Evaluation of the relationship between the gene expression level of orexin-1 receptor in the rat blood and prefrontal cortex, novelty-seeking, and proneness to methamphetamine dependence: A candidate biomarker. Peptides 2020;131:170368. [PMID: 32668268 DOI: 10.1016/j.peptides.2020.170368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Martin DA, Gyawali U, Calu DJ. Effects of 5-HT2A receptor stimulation on economic demand for fentanyl after intermittent and continuous access self-administration in male rats. Addict Biol 2021;26:e12926. [PMID: 32458577 DOI: 10.1111/adb.12926] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]