BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gallo O, Locatello LG, Mazzoni A, Novelli L, Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol 2021;14:305-16. [PMID: 33244161 DOI: 10.1038/s41385-020-00359-2] [Cited by in Crossref: 102] [Cited by in F6Publishing: 111] [Article Influence: 34.0] [Reference Citation Analysis]
Number Citing Articles
1 Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. Sci Total Environ 2023;859:160163. [PMID: 36395835 DOI: 10.1016/j.scitotenv.2022.160163] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Aksyuk AA, Bansal H, Wilkins D, Stanley AM, Sproule S, Maaske J, Sanikommui S, Hartman WR, Sobieszczyk ME, Falsey AR, Kelly EJ. AZD1222-induced nasal antibody responses are shaped by prior SARS-CoV-2 infection and correlate with virologic outcomes in breakthrough infection. Cell Rep Med 2023;4:100882. [PMID: 36610390 DOI: 10.1016/j.xcrm.2022.100882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Banu S, Nagaraj R, Idris MM. A proteomic perspective and involvement of cytokines in SARS-CoV-2 infection. PLoS One 2023;18:e0279998. [PMID: 36608055 DOI: 10.1371/journal.pone.0279998] [Reference Citation Analysis]
4 Wu CT, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, Jiang S, He W, Demeter J, Knight MG, Turn RE, Rojas-Hernandez LS, Ye C, Chiem K, Shon J, Martinez-Sobrido L, Bertozzi CR, Nolan GP, Nayak JV, Milla C, Andino R, Jackson PK. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023;186:112-130.e20. [PMID: 36580912 DOI: 10.1016/j.cell.2022.11.030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chee J, Chern B, Loh WS, Mullol J, Wang Y. Pathophysiology of SARS-CoV-2 Infection of Nasal Respiratory and Olfactory Epithelia and Its Clinical Impact. Curr Allergy Asthma Rep 2023;:1-11. [PMID: 36598732 DOI: 10.1007/s11882-022-01059-6] [Reference Citation Analysis]
6 Mishra S, Dash TK, Panda G. Speech phoneme and spectral smearing based non-invasive COVID-19 detection. Front Artif Intell 2022;5:1035805. [PMID: 36686850 DOI: 10.3389/frai.2022.1035805] [Reference Citation Analysis]
7 Nardelli C, Scaglione GL, Testa D, Setaro M, Russo F, Di Domenico C, Atripaldi L, Zollo M, Corrado F, Salvatore P, Pinchera B, Gentile I, Capoluongo E. Nasal Microbiome in COVID-19: A Potential Role of Corynebacterium in Anosmia. Curr Microbiol 2022;80:53. [PMID: 36583787 DOI: 10.1007/s00284-022-03106-x] [Reference Citation Analysis]
8 Nishi K, Yoshimoto S, Tanaka T, Kimura S, Shinchi Y, Yamano T. A Potential Novel Treatment for Chronic Cough in Long COVID Patients: Clearance of Epipharyngeal Residual SARS-CoV-2 Spike RNA by Epipharyngeal Abrasive Therapy. Cureus 2023;15:e33421. [PMID: 36618501 DOI: 10.7759/cureus.33421] [Reference Citation Analysis]
9 Jin R, Niu C, Wu F, Zhou S, Han T, Zhang Z, Li E, Zhang X, Xu S, Wang J, Tian S, Chen W, Ye Q, Cao C, Cheng L. DNA damage contributes to age-associated differences in SARS-CoV-2 infection. Aging Cell 2022;21:e13729. [PMID: 36254583 DOI: 10.1111/acel.13729] [Reference Citation Analysis]
10 Shin H, Kim S, Jo A, Won J, Gil CH, Yoon SY, Cha H, Kim HJ. Intranasal inoculation of IFN-λ resolves SARS-CoV-2 lung infection via the rapid reduction of viral burden and improvement of tissue damage. Front Immunol 2022;13:1009424. [PMID: 36524125 DOI: 10.3389/fimmu.2022.1009424] [Reference Citation Analysis]
11 Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022;10:1052436. [PMID: 36507266 DOI: 10.3389/fbioe.2022.1052436] [Reference Citation Analysis]
12 Mossadeq S, Shah R, Shah V, Bagul M. Formulation, Device, and Clinical Factors Influencing the Targeted Delivery of COVID-19 Vaccines to the Lungs. AAPS PharmSciTech 2022;24:2. [DOI: 10.1208/s12249-022-02455-x] [Reference Citation Analysis]
13 Ho HM, Huang CY, Yang CH, Liu SJ, Chen HW, Yu GY, Chen JK, Chuang TH, Huang MH. Formulation of SARS-CoV-2 Spike Protein with CpG Oligodeoxynucleotides and Squalene Nanoparticles Modulates Immunological Aspects Following Intranasal Delivery. Pharmaceutics 2022;14. [PMID: 36432730 DOI: 10.3390/pharmaceutics14112539] [Reference Citation Analysis]
14 Ashhurst AS, Johansen MD, Maxwell JWC, Stockdale S, Ashley CL, Aggarwal A, Siddiquee R, Miemczyk S, Nguyen DH, Mackay JP, Counoupas C, Byrne SN, Turville S, Steain M, Triccas JA, Hansbro PM, Payne RJ, Britton WJ. Mucosal TLR2-activating protein-based vaccination induces potent pulmonary immunity and protection against SARS-CoV-2 in mice. Nat Commun 2022;13:6972. [PMID: 36379950 DOI: 10.1038/s41467-022-34297-3] [Reference Citation Analysis]
15 Ganesan S, Acosta H, Brigolin C, Orange K, Trabbic K, Chen C, Lien CE, Lin YJ, Lin MY, Chuang YS, Fattom A, Bitko V. Intranasal nanoemulsion adjuvanted S-2P vaccine demonstrates protection in hamsters and induces systemic, cell-mediated and mucosal immunity in mice. PLoS One 2022;17:e0272594. [PMID: 36322572 DOI: 10.1371/journal.pone.0272594] [Reference Citation Analysis]
16 Batiha GE, Al-Gareeb AI, Rotimi D, Adeyemi OS, Al-Kuraishy HM. Common NLRP3 inflammasome inhibitors and Covid-19: Divide and conquer. Sci Afr 2022;18:e01407. [PMID: 36310607 DOI: 10.1016/j.sciaf.2022.e01407] [Reference Citation Analysis]
17 Joseph J. Harnessing Nasal Immunity with IgA to Prevent Respiratory Infections. Immuno 2022;2:571-583. [DOI: 10.3390/immuno2040036] [Reference Citation Analysis]
18 Gauthier NPG, Locher K, MacDonald C, Chorlton SD, Charles M, Manges AR. Alterations in the nasopharyngeal microbiome associated with SARS-CoV-2 infection status and disease severity. PLoS One 2022;17:e0275815. [PMID: 36240246 DOI: 10.1371/journal.pone.0275815] [Reference Citation Analysis]
19 Radotra B, Challa S. Pathogenesis and Pathology of COVID-Associated Mucormycosis: What Is New and Why. Curr Fungal Infect Rep 2022;:1-15. [PMID: 36193101 DOI: 10.1007/s12281-022-00443-z] [Reference Citation Analysis]
20 Wang M, Chang W, Zhang L, Zhang Y. Pyroptotic cell death in SARS-CoV-2 infection: revealing its roles during the immunopathogenesis of COVID-19. Int J Biol Sci 2022;18:5827-48. [PMID: 36263178 DOI: 10.7150/ijbs.77561] [Reference Citation Analysis]
21 Ayass MA, Cao W, Zhang J, Dai J, Zhu K, Tripathi T, Griko N, Pashkov V, Abi-mosleh L. Noninvasive nasopharyngeal proteomics of COVID-19 patient identify abnormalities related to complement and coagulation cascade and mucosal immune system. PLoS ONE 2022;17:e0274228. [DOI: 10.1371/journal.pone.0274228] [Reference Citation Analysis]
22 Qi F, Cao Y, Zhang S, Zhang Z. Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Front Immunol 2022;13:964976. [DOI: 10.3389/fimmu.2022.964976] [Reference Citation Analysis]
23 Latifi-pupovci H. Molecular mechanisms involved in pathogenicity of SARS-CoV-2: Immune evasion and implications for therapeutic strategies. Biomedicine & Pharmacotherapy 2022;153:113368. [DOI: 10.1016/j.biopha.2022.113368] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Morita A, Murakami A, Uchihara T, Ohashi N, Ryu K, Watanabe Y, Ochi S, Okudaira K, Hirasaki Y, Namiki T. Case Report: Acupuncture is an effective treatment for olfactory dysfunction in the post COVID-19 condition. Front Neurol 2022;13:916944. [DOI: 10.3389/fneur.2022.916944] [Reference Citation Analysis]
25 Russell MW, Mestecky J. Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol 2022;13:957107. [DOI: 10.3389/fimmu.2022.957107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Espeseth AS, Yuan M, Citron M, Reiserova L, Morrow G, Wilson A, Horton M, Rukhman M, Kinek K, Hou F, Li SL, Li F, Choi Y, Heidecker G, Luo B, Wu G, Zhang L, Strable E, DeStefano J, Secore S, Mukhopadhyay TK, Richardson DD, Sayeed E, Welch LS, Bett AJ, Feinberg MB, Gupta SB, Cooper CL, Parks CL. Preclinical immunogenicity and efficacy of a candidate COVID-19 vaccine based on a vesicular stomatitis virus-SARS-CoV-2 chimera. EBioMedicine 2022;82:104203. [PMID: 35915046 DOI: 10.1016/j.ebiom.2022.104203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Park JW, Wang X, Xu RH. Revealing the mystery of persistent smell loss in Long COVID patients. Int J Biol Sci 2022;18:4795-808. [PMID: 35874953 DOI: 10.7150/ijbs.73485] [Reference Citation Analysis]
28 Bennet S, Kaufmann M, Takami K, Sjaarda C, Douchant K, Moslinger E, Wong H, Reed DE, Ellis AK, Vanner S, Colautti RI, Sheth PM. Small-molecule metabolome identifies potential therapeutic targets against COVID-19. Sci Rep 2022;12:10029. [PMID: 35705626 DOI: 10.1038/s41598-022-14050-y] [Reference Citation Analysis]
29 Gauthier NP, Locher K, Macdonald C, Chorlton SD, Charles M, Manges AR. Alterations in the Nasopharyngeal Microbiome Associated with SARS-CoV-2 Infection Status and Disease Severity.. [DOI: 10.1101/2022.06.13.22276358] [Reference Citation Analysis]
30 Devi P, Maurya R, Mehta P, Shamim U, Yadav A, Chattopadhyay P, Kanakan A, Khare K, Vasudevan JS, Sahni S, Mishra P, Tyagi A, Jha S, Budhiraja S, Tarai B, Pandey R. Increased Abundance of Achromobacter xylosoxidans and Bacillus cereus in Upper Airway Transcriptionally Active Microbiome of COVID-19 Mortality Patients Indicates Role of Co-Infections in Disease Severity and Outcome. Microbiol Spectr 2022;:e0231121. [PMID: 35579429 DOI: 10.1128/spectrum.02311-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Zhao M, Tian C, Cong S, Di X, Wang K. From COVID-19 to Sarcoidosis: How Similar Are These Two Diseases? Front Immunol 2022;13:877303. [DOI: 10.3389/fimmu.2022.877303] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Kamal Arefin M, Banu SS, Nasir Uddin AKM, Nurul Fattah Rumi SK, Khan M, Kaiser A, Arafat MS, Chowdhury JA, Khan MAS, Hasan MJ. Virucidal Effect of Povidone Iodine on SARS-CoV-2 in Nasopharynx: An Open-label Randomized Clinical Trial. Indian J Otolaryngol Head Neck Surg 2022. [DOI: 10.1007/s12070-022-03106-0] [Reference Citation Analysis]
33 Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022;14:975. [DOI: 10.3390/v14050975] [Reference Citation Analysis]
34 Kao M, Yang J, Balasubramaniam A, Traisaeng S, Jackson Yang A, Yang JJ, Salamon BP, Herr DR, Huang C. Colonization of nasal cavities by Staphylococcus epidermidis mitigates SARS‐CoV‐2 nucleocapsid phosphoprotein‐induced interleukin (IL)‐6 in the lung. Microbial Biotechnology. [DOI: 10.1111/1751-7915.13994] [Reference Citation Analysis]
35 Fais F, Juskeviciene R, Francardo V, Mateos S, Guyard M, Viollet C, Constant S, Borelli M, Hohenfeld IP. Drug-Free Nasal Spray as a Barrier against SARS-CoV-2 and Its Delta Variant: In Vitro Study of Safety and Efficacy in Human Nasal Airway Epithelia. Int J Mol Sci 2022;23:4062. [PMID: 35409423 DOI: 10.3390/ijms23074062] [Reference Citation Analysis]
36 Desheva Y. Introductory Chapter: Current Trends in Vaccine Development. Vaccine Development 2022. [DOI: 10.5772/intechopen.103043] [Reference Citation Analysis]
37 Cha H, Kim H, Joung Y, Kang H, Moon J, Jang H, Park S, Kwon H, Lee I, Kim S, Yong D, Yoon S, Park S, Guk K, Lim E, Park HG, Choo J, Jung J, Kang T. Surface-enhanced Raman scattering-based immunoassay for severe acute respiratory syndrome coronavirus 2. Biosensors and Bioelectronics 2022;202:114008. [DOI: 10.1016/j.bios.2022.114008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
38 Di Battista A. A quantitative microbial risk assessment for touchscreen user interfaces using an asymmetric transfer gradient transmission mode. PLoS ONE 2022;17:e0265565. [DOI: 10.1371/journal.pone.0265565] [Reference Citation Analysis]
39 Chan RWY, Chan KCC, Lui GCY, Tsun JGS, Chan KYY, Yip JSK, Liu S, Yu MWL, Ng RWY, Chong KKL, Wang MH, Chan PKS, Li AM, Lam HS. Mucosal Antibody Response to SARS-CoV-2 in Paediatric and Adult Patients: A Longitudinal Study. Pathogens 2022;11:397. [DOI: 10.3390/pathogens11040397] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Ganesan S, Acosta H, Brigolin C, Orange K, Trabbic K, Chen C, Lien C, Lin Y, Lin M, Chuang Y, Fattom A, Bitko V. Intranasal Nanoemulsion Adjuvanted S-2P Vaccine Demonstrates Protection in Hamsters and Induces Systemic, Cell-Mediated and Mucosal Immunity in Mice.. [DOI: 10.1101/2022.03.22.485323] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Tay DJW, Lew ZZR, Chu JJH, Tan KS. Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us? Front Microbiol 2022;13:844447. [DOI: 10.3389/fmicb.2022.844447] [Reference Citation Analysis]
42 Banerjee S, Banerjee D, Singh A, Saharan VA. A Comprehensive Investigation Regarding the Differentiation of the Procurable COVID-19 Vaccines. AAPS PharmSciTech 2022;23:95. [PMID: 35314902 DOI: 10.1208/s12249-022-02247-3] [Reference Citation Analysis]
43 Paiva JD, Neto PC, Harvey A. Evaluation of the efficiency of chemical cartridges for respiratory protection against SARS-CoV-2. Cogent Engineering 2022;9:2049484. [DOI: 10.1080/23311916.2022.2049484] [Reference Citation Analysis]
44 Huang J, Ding Y, Yao J, Zhang M, Zhang Y, Xie Z, Zuo J. Nasal Nanovaccines for SARS-CoV-2 to Address COVID-19. Vaccines 2022;10:405. [DOI: 10.3390/vaccines10030405] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
45 Dhama K, Dhawan M, Tiwari R, Emran TB, Mitra S, Rabaan AA, Alhumaid S, Alawi ZA, Al Mutair A. COVID-19 intranasal vaccines: current progress, advantages, prospects, and challenges. Hum Vaccin Immunother 2022;:1-11. [PMID: 35258416 DOI: 10.1080/21645515.2022.2045853] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
46 Lee MH, Kim BJ. COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity. J Microbiol 2022;60:321-34. [PMID: 35157221 DOI: 10.1007/s12275-022-1621-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Lin Y, Lin M, Chuang Y, Liu LT, Kuo T, Chen C, Ganesan S, Fattom A, Bitko V, Lien C. Protection of Hamsters Challenged with SARS-CoV-2 after Two Doses of MVC-COV1901 Vaccine Followed by a Single Intranasal Booster with Nanoemulsion Adjuvanted S-2P Vaccine.. [DOI: 10.1101/2022.02.24.481901] [Reference Citation Analysis]
48 Hoque MN, Rahman MS, Sarkar MMH, Habib MA, Hossain MA, Khan MS, Islam T. Metagenomic analysis reveals the abundance and diversity of opportunistic fungal pathogens in the nasopharyngeal tract of COVID-19 patients.. [DOI: 10.1101/2022.02.17.480819] [Reference Citation Analysis]
49 Head RJ, Lumbers ER, Jarrott B, Tretter F, Smith G, Pringle KG, Islam S, Martin JH. Systems analysis shows that thermodynamic physiological and pharmacological fundamentals drive COVID-19 and response to treatment. Pharmacol Res Perspect 2022;10:e00922. [PMID: 35106955 DOI: 10.1002/prp2.922] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
50 Zhao F, Ma Q, Yue Q, Chen H. SARS-CoV-2 Infection and Lung Regeneration. Clin Microbiol Rev 2022;:e0018821. [PMID: 35107300 DOI: 10.1128/cmr.00188-21] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
51 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
52 Cereda G, Ciappolino V, Boscutti A, Cantù F, Enrico P, Oldani L, Delvecchio G, Brambilla P. Zinc as a Neuroprotective Nutrient for COVID-19-Related Neuropsychiatric Manifestations: A Literature Review. Adv Nutr 2022;13:66-79. [PMID: 34634109 DOI: 10.1093/advances/nmab110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
53 Uusküla A, Keis A, Toompere K, Planken A, Rebrov K. Cluster randomised, controlled, triple-blind trial assessing the efficacy of intranasally administered virus-neutralising bovine colostrum supplement in preventing SARS-CoV-2 infection in household contacts of SARS-CoV-2-positive individuals: a study protocol. Trials 2022;23. [DOI: 10.1186/s13063-022-06039-9] [Reference Citation Analysis]
54 Shilts MH, Rosas-salazar C, Strickland BA, Kimura KS, Asad M, Sehanobish E, Freeman MH, Wessinger BC, Gupta V, Brown HM, Boone HH, Patel V, Barbi M, Bottalico D, O’neill M, Akbar N, Rajagopala SV, Mallal S, Phillips E, Turner JH, Jerschow E, Das SR. Severe COVID-19 Is Associated With an Altered Upper Respiratory Tract Microbiome. Front Cell Infect Microbiol 2022;11:781968. [DOI: 10.3389/fcimb.2021.781968] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
55 Gamage AM, Tan KS, Chan WOY, Lew ZZR, Liu J, Tan CW, Rajagopalan D, Lin QXX, Tan LM, Venkatesh PN, Ong YK, Thong M, Lin RTP, Prabhakar S, Wang Y, Wang LF. Human Nasal Epithelial Cells Sustain Persistent SARS-CoV-2 Infection In Vitro, despite Eliciting a Prolonged Antiviral Response. mBio 2022;:e0343621. [PMID: 35038898 DOI: 10.1128/mbio.03436-21] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
56 Бочко О, Клювак О, Зарічна О, Балик У, Бачинська М. ДОСЛІДЖЕННЯ ВПЛИВУ МАКРО ТА МІКРОЧИННИКІВ НА РИНОК ТАВАРІВ ПЕРШОЇ НЕОБХІДНОСТІ В УКРАЇНІ В ПЕРІОД ПАНДЕМІЇ. ФКДПТП 2022;6:387-397. [DOI: 10.18371/fcaptp.v6i41.251467] [Reference Citation Analysis]
57 Zainutdinov SS, Sivolobova GF, Loktev VB, Kochneva GV. [Mucosal immunity and vaccines against viral infections]. Vopr Virusol 2022;66:399-408. [PMID: 35019246 DOI: 10.36233/0507-4088-82] [Reference Citation Analysis]
58 Portilho AI, Correa VA, Gaspar EB, De Gaspari E. Different Platforms, Immune Response Modulators and Challenges in SARS-CoV-2 Vaccination. Frontiers of COVID-19 2022. [DOI: 10.1007/978-3-031-08045-6_26] [Reference Citation Analysis]
59 Errico JM, Adams LJ, Fremont DH. Antibody-mediated immunity to SARS-CoV-2 spike. Adv Immunol 2022;154:1-69. [PMID: 36038194 DOI: 10.1016/bs.ai.2022.07.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
60 Correa VA, Portilho AI, Gaspar EB, De Gaspari E. Humoral Immune Response in SARS-CoV-2 Infection and Its Therapeutic Relevance. Frontiers of COVID-19 2022. [DOI: 10.1007/978-3-031-08045-6_2] [Reference Citation Analysis]
61 Batiha GE, Al-Gareeb DAI, Qusti S, Alshammari EM, Rotimi D, Adeyemi OS, Al-Kuraishy HM. Common NLRP3 inflammasome inhibitors and Covid-19: Divide and Conquer. Sci Afr 2021;:e01084. [PMID: 34957352 DOI: 10.1016/j.sciaf.2021.e01084] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
62 Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, Del Zotto G, Delacher M, Di Rosa F, Santo JD, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021;51:2708-3145. [PMID: 34910301 DOI: 10.1002/eji.202170126] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 29.5] [Reference Citation Analysis]
63 Hoque MN, Sarkar MMH, Rahman MS, Akter S, Banu TA, Goswami B, Jahan I, Hossain MS, Shamsuzzaman AKM, Nafisa T, Molla MMA, Yeasmin M, Ghosh AK, Osman E, Alam SKS, Uzzaman MS, Habib MA, Mahmud ASM, Crandall KA, Islam T, Khan MS. SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiome with inclusion of pathobionts. Sci Rep 2021;11:24042. [PMID: 34911967 DOI: 10.1038/s41598-021-03245-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
64 Chatterjee SK, Saha S, Munoz MNM. Activation of mucosal immunity and novel prophylactic and therapeutic strategy in combating COVID-19. Explor Immunol 2021. [DOI: 10.37349/ei.2021.00025] [Reference Citation Analysis]
65 Banu S, Idris MM, Nagaraj R. A proteomic perspective and involvement of cytokines in SARS-CoV-2 infection.. [DOI: 10.1101/2021.12.06.471525] [Reference Citation Analysis]
66 Mather MW, Jardine L, Talks B, Gardner L, Haniffa M. Complexity of immune responses in COVID-19. Semin Immunol 2021;55:101545. [PMID: 34865933 DOI: 10.1016/j.smim.2021.101545] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
67 Ratcliffe NA, Castro HC, Paixão IC, Evangelho VGO, Azambuja P, Mello CB. Nasal therapy-The missing link in optimising strategies to improve prevention and treatment of COVID-19. PLoS Pathog 2021;17:e1010079. [PMID: 34818380 DOI: 10.1371/journal.ppat.1010079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
68 Warner BM, Santry LA, Leacy A, Chan M, Pham PH, Vendramelli R, Pei Y, Tailor N, Valcourt E, Leung A, He S, Griffin BD, Audet J, Willman M, Tierney K, Albietz A, Frost KL, Yates JGE, Mould RC, Chan L, Mehrani Y, Knapp JP, Minott JA, Banadyga L, Safronetz D, Wood H, Booth S, Major PP, Bridle BW, Susta L, Kobasa D, Wootton SK. Intranasal vaccination with a Newcastle disease virus-vectored vaccine protects hamsters from SARS-CoV-2 infection and disease. iScience 2021;24:103219. [PMID: 34632328 DOI: 10.1016/j.isci.2021.103219] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
69 Khaddaj-Mallat R, Aldib N, Bernard M, Paquette AS, Ferreira A, Lecordier S, Saghatelyan A, Flamand L, ElAli A. SARS-CoV-2 deregulates the vascular and immune functions of brain pericytes via Spike protein. Neurobiol Dis 2021;161:105561. [PMID: 34780863 DOI: 10.1016/j.nbd.2021.105561] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
70 Liang F, Wang Y. COVID-19 Anosmia: High Prevalence, Plural Neuropathogenic Mechanisms, and Scarce Neurotropism of SARS-CoV-2? Viruses 2021;13:2225. [PMID: 34835030 DOI: 10.3390/v13112225] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
71 Mazzoni A, Salvati L, Maggi L, Annunziato F, Cosmi L. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Semin Immunol 2021;:101508. [PMID: 34728121 DOI: 10.1016/j.smim.2021.101508] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
72 Elkhatib SK, Alley J, Jepsen M, Smeins L, Barnes A, Naik S, Ackermann MR, Verhoeven D, Kohut ML. Exercise duration modulates upper and lower respiratory fluid cellularity, antiviral activity, and lung gene expression. Physiol Rep 2021;9:e15075. [PMID: 34676696 DOI: 10.14814/phy2.15075] [Reference Citation Analysis]
73 Ji JY, Jo A, Won J, Gil CH, Shin H, Kim S, Jeon YJ, Kim HJ. The nasal symbiont Staphylococcus species restricts the transcription of SARS-CoV-2 entry factors in human nasal epithelium. iScience 2021;24:103172. [PMID: 34604720 DOI: 10.1016/j.isci.2021.103172] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Nakayama T, Lee IT, Jiang S, Matter MS, Yan CH, Overdevest JB, Wu CT, Goltsev Y, Shih LC, Liao CK, Zhu B, Bai Y, Lidsky P, Xiao Y, Zarabanda D, Yang A, Easwaran M, Schürch CM, Chu P, Chen H, Stalder AK, McIlwain DR, Borchard NA, Gall PA, Dholakia SS, Le W, Xu L, Tai CJ, Yeh TH, Erickson-Direnzo E, Duran JM, Mertz KD, Hwang PH, Haslbauer JD, Jackson PK, Menter T, Andino R, Canoll PD, DeConde AS, Patel ZM, Tzankov A, Nolan GP, Nayak JV. Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell Rep Med 2021;2:100421. [PMID: 34604819 DOI: 10.1016/j.xcrm.2021.100421] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
75 Wu X, Cheng L, Fu M, Huang B, Zhu L, Xu S, Shi H, Zhang D, Yuan H, Nawaz W, Yang P, Hu Q, Liu Y, Wu Z. A potent bispecific nanobody protects hACE2 mice against SARS-CoV-2 infection via intranasal administration. Cell Rep 2021;37:109869. [PMID: 34644535 DOI: 10.1016/j.celrep.2021.109869] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 10.5] [Reference Citation Analysis]
76 Gabitzsch E, Safrit JT, Verma M, Rice A, Sieling P, Zakin L, Shin A, Morimoto B, Adisetiyo H, Wong R, Bezawada A, Dinkins K, Balint J, Peykov V, Garban H, Liu P, Bacon A, Bone P, Drew J, Sanford DC, Spilman P, Sender L, Rabizadeh S, Niazi K, Soon-Shiong P. Dual-Antigen COVID-19 Vaccine Subcutaneous Prime Delivery With Oral Boosts Protects NHP Against SARS-CoV-2 Challenge. Front Immunol 2021;12:729837. [PMID: 34603305 DOI: 10.3389/fimmu.2021.729837] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
77 Vu DL, Martinez-Murillo P, Pigny F, Vono M, Meyer B, Eberhardt CS, Lemeille S, Von Dach E, Blanchard-Rohner G, Eckerle I, Huttner A, Siegrist CA, Kaiser L, Didierlaurent AM. Longitudinal Analysis of Inflammatory Response to SARS-CoV-2 in the Upper Respiratory Tract Reveals an Association with Viral Load, Independent of Symptoms. J Clin Immunol 2021;41:1723-32. [PMID: 34581925 DOI: 10.1007/s10875-021-01134-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
78 Chan RW, Chan KC, Lui GC, Tsun JG, Chan KY, Yip JS, Liu S, Yu MW, Ng RW, Chong KK, Wang MH, Chan PK, Li AM, Lam HS. Mucosal antibody response to SARS-CoV-2 in paediatric and adult patients: a longitudinal study.. [DOI: 10.1101/2021.09.27.21264219] [Reference Citation Analysis]
79 Jeican II, Gheban D, Barbu-Tudoran L, Inișca P, Albu C, Ilieș M, Albu S, Vică ML, Matei HV, Tripon S, Lazăr M, Aluaș M, Siserman CV, Muntean M, Trombitas V, Iuga CA, Opincariu I, Junie LM. Respiratory Nasal Mucosa in Chronic Rhinosinusitis with Nasal Polyps versus COVID-19: Histopathology, Electron Microscopy Analysis and Assessing of Tissue Interleukin-33. J Clin Med 2021;10:4110. [PMID: 34575221 DOI: 10.3390/jcm10184110] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
80 Mozota M, Castro I, Gómez-Torres N, Arroyo R, Lailla Y, Somada M, Alba C, Rodríguez JM. Administration of Ligilactobacillus salivarius MP101 in an Elderly Nursing Home during the COVID-19 Pandemic: Immunological and Nutritional Impact. Foods 2021;10:2149. [PMID: 34574259 DOI: 10.3390/foods10092149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
81 Koca C, Civas M, Sahin SM, Ergonul O, Akan OB. Molecular Communication Theoretical Modeling and Analysis of SARS-CoV2 Transmission in Human Respiratory System. IEEE Trans Mol Biol Multiscale Commun 2021;7:153-64. [PMID: 35782716 DOI: 10.1109/TMBMC.2021.3071748] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
82 Daisley H Jr, Rampersad A, Daisley M, Ramdin A, Acco O, Narinesingh F, Humphrey O, James E. The vasa vasorum of the large pulmonary vessels are involved in COVID-19. Autops Case Rep 2021;11:e2021304. [PMID: 34458172 DOI: 10.4322/acr.2021.304] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Rhoades NS, Pinski AN, Monsibais AN, Jankeel A, Doratt BM, Cinco IR, Ibraim I, Messaoudi I. Acute SARS-CoV-2 infection is associated with an increased abundance of bacterial pathogens, including Pseudomonas aeruginosa in the nose. Cell Rep 2021;36:109637. [PMID: 34433082 DOI: 10.1016/j.celrep.2021.109637] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
84 Triposkiadis F, Xanthopoulos A, Giamouzis G, Boudoulas KD, Starling RC, Skoularigis J, Boudoulas H, Iliodromitis E. ACE2, the Counter-Regulatory Renin-Angiotensin System Axis and COVID-19 Severity. J Clin Med 2021;10:3885. [PMID: 34501332 DOI: 10.3390/jcm10173885] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
85 Jeican II, Aluaș M, Lazăr M, Barbu-Tudoran L, Gheban D, Inișca P, Albu C, Tripon S, Albu S, Siserman C, Vica ML, Muntean M, Opincariu I, Junie LM. Evidence of SARS-CoV-2 Virus in the Middle Ear of Deceased COVID-19 Patients. Diagnostics (Basel) 2021;11:1535. [PMID: 34573877 DOI: 10.3390/diagnostics11091535] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
86 Portilho AI, Silva VO, Ahagon CM, Matsuda EM, de Oliveira EL, da Silveira EPR, de Souza Lima AK, Lindoso JAL, de Campos IB, Hong MA, De Gaspari E, de Macedo Brígido LF. Humoral response to spike S1 and S2 and nucleocapsid proteins on microarray after SARS-CoV-2 infection. J Med Virol 2022;94:178-85. [PMID: 34428312 DOI: 10.1002/jmv.27290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
87 Bridges JP, Vladar EK, Huang H, Mason RJ. Respiratory epithelial cell responses to SARS-CoV-2 in COVID-19. Thorax 2021:thoraxjnl-2021-217561. [PMID: 34404754 DOI: 10.1136/thoraxjnl-2021-217561] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
88 Velikova T, Snegarova V, Kukov A, Batselova H, Mihova A, Nakov R. Gastrointestinal mucosal immunity and COVID-19. World J Gastroenterol 2021; 27(30): 5047-5059 [PMID: 34497434 DOI: 10.3748/wjg.v27.i30.5047] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
89 Nair AG, Adulkar NG, D'Cunha L, Rao PR, Bradoo RA, Bapaye MM, Kothari A, Dave TV, Shinde CA. Rhino-orbital mucormycosis following COVID-19 in previously non-diabetic, immunocompetent patients. Orbit 2021;:1-6. [PMID: 34338124 DOI: 10.1080/01676830.2021.1960382] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
90 Di Battista A, Nicolaides C, Georgiou O. Modelling disease transmission from touchscreen user interfaces. R Soc Open Sci 2021;8:210625. [PMID: 34350020 DOI: 10.1098/rsos.210625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Purja S, Shin H, Lee JY, Kim E. Is loss of smell an early predictor of COVID-19 severity: a systematic review and meta-analysis. Arch Pharm Res 2021;44:725-40. [PMID: 34302637 DOI: 10.1007/s12272-021-01344-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
92 Mun DG, Vanderboom PM, Madugundu AK, Garapati K, Chavan S, Peterson JA, Saraswat M, Pandey A. DIA-Based Proteome Profiling of Nasopharyngeal Swabs from COVID-19 Patients. J Proteome Res 2021;20:4165-75. [PMID: 34292740 DOI: 10.1021/acs.jproteome.1c00506] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
93 Woodall MNJ, Masonou T, Case KM, Smith CM. Human models for COVID-19 research. J Physiol 2021. [PMID: 34287894 DOI: 10.1113/JP281499] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Fais F, Juskeviciene R, Francardo V, Mateos S, Constant S, Borelli M, Hohenfeld IP, Meyer T. Drug-free nasal spray as a barrier against SARS-CoV-2 infection: safety and efficacy in human nasal airway epithelia.. [DOI: 10.1101/2021.07.12.452021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
95 Saraiva KLA, Vasconcelos LRS, Bezerra MF, Arcoverde RML, Brandão-filho SP, Ayres CFJ, de Figueiredo RCBQ, Pereira-neves A. Ultrastructural analysis of nasopharyngeal epithelial cells from patients with SARS-CoV-2 infection.. [DOI: 10.1101/2021.07.08.451607] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
96 Cortellessa G, Stabile L, Arpino F, Faleiros DE, van den Bos W, Morawska L, Buonanno G. Close proximity risk assessment for SARS-CoV-2 infection. Sci Total Environ 2021;794:148749. [PMID: 34225157 DOI: 10.1016/j.scitotenv.2021.148749] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 16.5] [Reference Citation Analysis]
97 Nau J, Luthra P, Lanzer K, Szaba F, Cookenham T, Carlson E. Varenicline Prevents SARS-CoV-2 Infection In Vitro and in Rhesus Macaques.. [DOI: 10.1101/2021.06.29.450426] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
98 Shirbhate E, Pandey J, Patel VK, Kamal M, Jawaid T, Gorain B, Kesharwani P, Rajak H. Understanding the role of ACE-2 receptor in pathogenesis of COVID-19 disease: a potential approach for therapeutic intervention. Pharmacol Rep 2021. [PMID: 34176080 DOI: 10.1007/s43440-021-00303-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
99 Bennet SMP, Kaufmann M, Takami K, Sjaarda C, Douchant K, Moslinger E, Wong H, Reed DE, Ellis AK, Vanner S, Colautti RI, Sheth PM. Small-molecule metabolome identifies potential therapeutic targets against COVID-19.. [DOI: 10.1101/2021.06.18.21259150] [Reference Citation Analysis]
100 Locatello LG, Trotta B, Bruno C, Trotta M, Maggiore G, Rasero L, Caini S, Gallo O. Systemic steroids may enhance recovery from loss of smell and taste in hospitalized coronavirus disease 2019 (COVID-19) patients: an observational study. Int Forum Allergy Rhinol 2021. [PMID: 34132052 DOI: 10.1002/alr.22848] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
101 Morton B, Barnes KG, Anscombe C, Jere K, Matambo P, Mandolo J, Kamng'ona R, Brown C, Nyirenda J, Phiri T, Banda NP, Van Der Veer C, Mndolo KS, Mponda K, Rylance J, Phiri C, Mallewa J, Nyirenda M, Katha G, Kambiya P, Jafali J, Mwandumba HC, Gordon SB, Cornick J, Jambo KC; Blantyre COVID-19 Consortium. Distinct clinical and immunological profiles of patients with evidence of SARS-CoV-2 infection in sub-Saharan Africa. Nat Commun 2021;12:3554. [PMID: 34117221 DOI: 10.1038/s41467-021-23267-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
102 Rhoades NS, Pinski A, Monsibais AN, Jankeel A, Doratt BM, Cinco IR, Ibraim I, Messaoudi I. Acute SARS-CoV-2 infection is associated with an expansion of bacteria pathogens in the nose including Pseudomonas Aeruginosa. bioRxiv 2021:2021. [PMID: 34031657 DOI: 10.1101/2021.05.20.445008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
103 Park JH, Lee HK. Delivery Routes for COVID-19 Vaccines. Vaccines (Basel) 2021;9:524. [PMID: 34069359 DOI: 10.3390/vaccines9050524] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
104 Poydenot F, Abdourahamane I, Caplain E, Der S, Haiech J, Jallon A, Khoutami I, Loucif A, Marinov E, Andreotti B. Risk assessment for long and short range airborne transmission of SARS-CoV-2, indoors and outdoors, using carbon dioxide measurements.. [DOI: 10.1101/2021.05.04.21256352] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
105 Capriotti V, Mattioli F, Guida F, Marcuzzo AV, Lo Manto A, Martone A, Molinari G, Fabbris C, Menegaldo A, Calvanese L, Latini G, Cingolani C, Gradoni P, Boscolo Nata F, De Sisti C, Selle V, Leone G, Indelicato P, Pilolli F, Mevio N, Roncoroni L, Papi S, Meschiari M, Tominz R, D'Ascanio L, Dragonetti A, Torelli L, Trenti L, Spinato G, Boscolo-Rizzo P, Bussi M, Cossarizza A, Presutti L, Tirelli G. COVID-19 in the tonsillectomised population. Acta Otorhinolaryngol Ital 2021;41:197-205. [PMID: 33970896 DOI: 10.14639/0392-100X-N1436] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
106 Shrivastava R, Vijay M, Maneby N, Shrivastava R. Clinical Efficacy of an Osmotic, Antiviral and Anti-Inflammatory Polymeric Nasal Film to Treat Covid-19 Early-Phase Respiratory Symptoms. OAJCT 2021;Volume 13:11-20. [DOI: 10.2147/oajct.s307144] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
107 Posch W, Vosper J, Zaderer V, Noureen A, Constant S, Bellmann-Weiler R, Lass-Flörl C, Wilflingseder D. ColdZyme Maintains Integrity in SARS-CoV-2-Infected Airway Epithelia. mBio 2021;12:e00904-21. [PMID: 33906927 DOI: 10.1128/mBio.00904-21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
108 Edelstein S, Tannous S, Jacobs MT, Ben-Amram H, Zarka S. BNT 13b2 Pfizer vaccine protects against SARS-CoV-2 respiratory mucosal colonization even after prolonged exposure to positive family members. J Hosp Infect 2021;113:192-4. [PMID: 33811961 DOI: 10.1016/j.jhin.2021.03.023] [Reference Citation Analysis]
109 Ryu G, Shin HW. SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Netw 2021;21:e3. [PMID: 33728096 DOI: 10.4110/in.2021.21.e3] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
110 Morton B, Barnes KG, Anscombe C, Jere K, Kamng'ona R, Brown C, Nyirenda J, Phiri T, Banda N, Van Der Veer C, Mndolo KS, Mponda K, Rylance J, Phiri C, Mallewa J, Nyirenda M, Katha G, Kambiya P, Jafali J, Mwandumba HC, Gordon SB, Cornick J, Jambo KC. In depth analysis of patients with severe SARS-CoV-2 in sub-Saharan Africa demonstrates distinct clinical and immunological profiles. medRxiv 2021:2021. [PMID: 33619502 DOI: 10.1101/2021.02.15.21251753] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
111 Wu X, Cheng L, Fu M, Huang B, Zhu L, Xu S, Shi H, Zhang D, Yuan H, Nawaz W, Yang P, Hu Q, Liu Y, Wu Z. A potent bispecific nanobody protects hACE2 mice against SARS-CoV-2 infection via intranasal administration.. [DOI: 10.1101/2021.02.08.429275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
112 Tucker S, Goodall S, Julander J, Mendenhall M, Friedland P, Molloy P. In vitro inactivation of SARS-CoV-2 with 0.5% povidone iodine nasal spray (Nasodine) at clinically relevant concentrations and timeframes using tissue culture and PCR based assays.. [DOI: 10.1101/2021.01.31.426979] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
113 Peters EMJ, Schedlowski M, Watzl C, Gimsa U. To stress or not to stress: Brain-behavior-immune interaction may weaken or promote the immune response to SARS-CoV-2. Neurobiol Stress 2021;14:100296. [PMID: 33527083 DOI: 10.1016/j.ynstr.2021.100296] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
114 Kot L, Karpets L, Sviridova K, Chernikh M, Prishlyak R. Certain biochemical aspects of coronavirus infection COVID-19. BTSNUKSB 2021;86:17-22. [DOI: 10.17721/1728_2748.2021.86.17-22] [Reference Citation Analysis]
115 [DOI: 10.1101/2020.12.08.416297] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Reference Citation Analysis]