BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fu H, Song P, Wu Q, Zhao C, Pan P, Li X, Li-Jessen NYK, Liu X. A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays. Microsyst Nanoeng 2019;5:50. [PMID: 31636936 DOI: 10.1038/s41378-019-0091-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Meng H, Chen C, Zhu Y, Li Z, Ye F, Ho JWK, Chen H. Automatic flow delay through passive wax valves for paper-based analytical devices. Lab Chip 2021;21:4166-76. [PMID: 34541589 DOI: 10.1039/d1lc00638j] [Reference Citation Analysis]
2 Liu Y, Shang S, Mo S, Wang P, Yin B, Wei J. Soft actuators built from cellulose paper: A review on actuation, material, fabrication, and applications. Journal of Science: Advanced Materials and Devices 2021;6:321-37. [DOI: 10.1016/j.jsamd.2021.06.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
3 Patil Y, Dotseth K, Shapiro T, Pushparajan D, Binderup S, Horn JR, Korampally V. Modular design of paper based switches for autonomous lab-on paper micro devices. Biomed Microdevices 2020;23:1. [PMID: 33247780 DOI: 10.1007/s10544-020-00537-w] [Reference Citation Analysis]
4 González del Campo MM, Vaquer A, de la Rica R. Polymer Components for Paper‐Based Analytical Devices. Adv Materials Technologies. [DOI: 10.1002/admt.202200140] [Reference Citation Analysis]
5 The Loan Trinh K, Ri Chae W, Yoon Lee N. Recent advances in the fabrication strategies of paper-based microfluidic devices for rapid detection of bacteria and viruses. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107548] [Reference Citation Analysis]
6 Soda Y, Robinson KJ, Cherubini TJ, Bakker E. Colorimetric absorbance mapping and quantitation on paper-based analytical devices. Lab Chip 2020;20:1441-8. [DOI: 10.1039/d0lc00028k] [Cited by in Crossref: 17] [Cited by in F6Publishing: 1] [Article Influence: 8.5] [Reference Citation Analysis]
7 Song P, Fu H, Wang Y, Chen C, Ou P, Rashid RT, Duan S, Song J, Mi Z, Liu X. A microfluidic field-effect transistor biosensor with rolled-up indium nitride microtubes. Biosens Bioelectron 2021;190:113264. [PMID: 34225055 DOI: 10.1016/j.bios.2021.113264] [Reference Citation Analysis]
8 Alba-Patiño A, Vaquer A, Barón E, Russell SM, Borges M, de la Rica R. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Mikrochim Acta 2022;189:74. [PMID: 35080669 DOI: 10.1007/s00604-022-05171-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Yin D, Bai Q, Wu X, Li H, Shao J, Sun M, Jiang H, Zhang J. Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein. PLoS Negl Trop Dis 2021;15:e0009695. [PMID: 34403421 DOI: 10.1371/journal.pntd.0009695] [Reference Citation Analysis]
10 Hu J, Chen L, Zhang P, Hsieh K, Li H, Yang S, Wang TH. A vacuum-assisted, highly parallelized microfluidic array for performing multi-step digital assays. Lab Chip 2021;21:4716-24. [PMID: 34779472 DOI: 10.1039/d1lc00636c] [Reference Citation Analysis]
11 Alafeef M, Moitra P, Dighe K, Pan D. Hyperspectral Mapping for the Detection of SARS-CoV-2 Using Nanomolecular Probes with Yoctomole Sensitivity. ACS Nano 2021. [PMID: 34279093 DOI: 10.1021/acsnano.1c05226] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
12 Wang C, Wu R, Ling H, Zhao Z, Han W, Shi X, Payne GF, Wang X. Toward scalable fabrication of electrochemical paper sensor without surface functionalization. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00143-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Yang L, Zhang Z, Wang X. A Microfluidic PET-Based Electrochemical Glucose Sensor. Micromachines 2022;13:552. [DOI: 10.3390/mi13040552] [Reference Citation Analysis]
14 Komatsu T, Sato Y, Maeki M, Ishida A, Tani H, Tokeshi M. Rapid, sensitive universal paper-based device enhances competitive immunoassays of small molecules. Anal Chim Acta 2021;1144:85-95. [PMID: 33453801 DOI: 10.1016/j.aca.2020.12.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Dai B, Yin C, Wu J, Li W, Zheng L, Lin F, Han X, Fu Y, Zhang D, Zhuang S. A flux-adaptable pump-free microfluidics-based self-contained platform for multiplex cancer biomarker detection. Lab Chip 2021;21:143-53. [PMID: 33185235 DOI: 10.1039/d0lc00944j] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
16 Tran BT, Rijiravanich P, Puttaraksa N, Surareungchai W. Wax gates in laminated microfluidic paper-based immunosensors. Microchemical Journal 2022;178:107343. [DOI: 10.1016/j.microc.2022.107343] [Reference Citation Analysis]
17 Zhou C, Fang Z, Zhao C, Mai X, Emami S, Taha AY, Sun G, Pan T. Sample-to-Answer Robotic ELISA. Anal Chem 2021;93:11424-32. [PMID: 34378906 DOI: 10.1021/acs.analchem.1c01231] [Reference Citation Analysis]
18 Tan W, Zhang L, Jarujamrus P, C G Doery J, Shen W. Improvement Strategies on Colorimetric Performance and Practical Applications of Paper-based Analytical Devices. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107562] [Reference Citation Analysis]
19 Vaquer A, Barón E, de la Rica R. Dissolvable Polymer Valves for Sweat Chrono-Sampling in Wearable Paper-Based Analytical Devices. ACS Sens 2022;7:488-94. [PMID: 35172102 DOI: 10.1021/acssensors.1c02244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Abbasi Kajani A, Haghjooy Javanmard S, Asadnia M, Razmjou A. Recent Advances in Nanomaterials Development for Nanomedicine and Cancer. ACS Appl Bio Mater 2021;4:5908-25. [PMID: 35006909 DOI: 10.1021/acsabm.1c00591] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
21 Noviana E, Ozer T, Carrell CS, Link JS, Mcmahon C, Jang I, Henry CS. Microfluidic Paper-Based Analytical Devices: From Design to Applications. Chem Rev 2021;121:11835-85. [DOI: 10.1021/acs.chemrev.0c01335] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
22 Komatsu T, Maeda R, Maeki M, Ishida A, Tani H, Tokeshi M. Dip-Type Paper-Based Analytical Device for Straightforward Quantitative Detection without Precise Sample Introduction. ACS Sens 2021;6:1094-102. [PMID: 33660502 DOI: 10.1021/acssensors.0c02367] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Toda H, Iwasaki W, Morita N, Motomura T, Takemura K, Nagano M, Nakanishi Y, Nakashima Y. Reversible Thermo-Responsive Valve for Microfluidic Paper-Based Analytical Devices. Micromachines 2022;13:690. [DOI: 10.3390/mi13050690] [Reference Citation Analysis]
24 Ying B, Park S, Chen L, Dong X, Young EWK, Liu X. NanoPADs and nanoFACEs: an optically transparent nanopaper-based device for biomedical applications. Lab Chip 2020;20:3322-33. [PMID: 32766659 DOI: 10.1039/d0lc00226g] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
25 Tong X, Ga L, Zhao R, Ai J. Research progress on the applications of paper chips. RSC Adv 2021;11:8793-820. [PMID: 35423393 DOI: 10.1039/d0ra10470a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]