BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fischer M. Census and evaluation of p53 target genes. Oncogene 2017;36:3943-56. [PMID: 28288132 DOI: 10.1038/onc.2016.502] [Cited by in Crossref: 371] [Cited by in F6Publishing: 329] [Article Influence: 74.2] [Reference Citation Analysis]
Number Citing Articles
1 Di J, Zhao G, Wang H, Wu Y, Zhao Z, Zhu B, Zhang Y, Zheng J, Liu Y, Hu Y. A p53/CPEB2 negative feedback loop regulates renal cancer cell proliferation and migration. J Genet Genomics 2021:S1673-8527(21)00176-4. [PMID: 34362680 DOI: 10.1016/j.jgg.2021.05.011] [Reference Citation Analysis]
2 Anerillas C, Herman AB, Rossi M, Munk R, Lehrmann E, Martindale JL, Cui CY, Abdelmohsen K, De S, Gorospe M. Early SRC activation skews cell fate from apoptosis to senescence. Sci Adv 2022;8:eabm0756. [PMID: 35394839 DOI: 10.1126/sciadv.abm0756] [Reference Citation Analysis]
3 Borel V, Boeing S, Van Wietmarschen N, Sridharan S, Hill BR, Ombrato L, Perez-Lloret J, Jackson D, Goldstone R, Boulton SJ, Nussenzweig A, Bellelli R. Disrupted control of origin activation compromises genome integrity upon destabilization of Polε and dysfunction of the TRP53-CDKN1A/P21 axis. Cell Rep 2022;39:110871. [PMID: 35649380 DOI: 10.1016/j.celrep.2022.110871] [Reference Citation Analysis]
4 Moens U, Macdonald A. Effect of the Large and Small T-Antigens of Human Polyomaviruses on Signaling Pathways. Int J Mol Sci 2019;20:E3914. [PMID: 31408949 DOI: 10.3390/ijms20163914] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Guan L, Crasta KC, Maier AB. Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence. Ageing Res Rev 2022;78:101634. [PMID: 35460888 DOI: 10.1016/j.arr.2022.101634] [Reference Citation Analysis]
6 Mitra R, Adams CM, Eischen CM. Systematic lncRNA mapping to genome-wide co-essential modules uncovers cancer dependency on uncharacterized lncRNAs. Elife 2022;11:e77357. [PMID: 35695878 DOI: 10.7554/eLife.77357] [Reference Citation Analysis]
7 Schoch S, Sen V, Brenner W, Hartwig A, Köberle B. In Vitro Nephrotoxicity Studies of Established and Experimental Platinum-Based Compounds. Biomedicines 2021;9:1033. [PMID: 34440237 DOI: 10.3390/biomedicines9081033] [Reference Citation Analysis]
8 Garrido-Jimenez S, Barrera-Lopez JF, Diaz-Chamorro S, Mateos-Quiros CM, Rodriguez-Blanco I, Marquez-Perez FL, Lorenzo MJ, Centeno F, Roman AC, Carvajal-Gonzalez JM. p53 regulation by MDM2 contributes to self-renewal and differentiation of basal stem cells in mouse and human airway epithelium. FASEB J 2021;35:e21816. [PMID: 34396583 DOI: 10.1096/fj.202100638R] [Reference Citation Analysis]
9 [DOI: 10.1101/177667] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Toma-jonik A, Vydra N, Janus P, Widłak W. Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction. Cell Oncol 2019;42:579-89. [DOI: 10.1007/s13402-019-00452-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
11 Soond SM, Savvateeva LV, Makarov VA, Gorokhovets NV, Townsend PA, Zamyatnin AA Jr. Making Connections: p53 and the Cathepsin Proteases as Co-Regulators of Cancer and Apoptosis. Cancers (Basel) 2020;12:E3476. [PMID: 33266503 DOI: 10.3390/cancers12113476] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Fekry B, Jeffries KA, Esmaeilniakooshkghazi A, Szulc ZM, Knagge KJ, Kirchner DR, Horita DA, Krupenko SA, Krupenko NI. C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat Commun 2018;9:4149. [PMID: 30297838 DOI: 10.1038/s41467-018-06650-y] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 9.8] [Reference Citation Analysis]
13 Qiu SQ, Huang GY, Fang GZ, Li XP, Lei DQ, Shi WJ, Xie L, Ying GG. Chemical characteristics and toxicological effects of leachates from plastics under simulated seawater and fish digest. Water Res 2021;209:117892. [PMID: 34861434 DOI: 10.1016/j.watres.2021.117892] [Reference Citation Analysis]
14 Latif AL, Newcombe A, Li S, Gilroy K, Robertson NA, Lei X, Stewart HJS, Cole J, Terradas MT, Rishi L, McGarry L, McKeeve C, Reid C, Clark W, Campos J, Kirschner K, Davis A, Lopez J, Sakamaki JI, Morton JP, Ryan KM, Tait SWG, Abraham SA, Holyoake T, Higgins B, Huang X, Blyth K, Copland M, Chevassut TJT, Keeshan K, Adams PD. BRD4-mediated repression of p53 is a target for combination therapy in AML. Nat Commun 2021;12:241. [PMID: 33431824 DOI: 10.1038/s41467-020-20378-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
15 Shah SS, Aghi MK. The Role of Single-Nucleotide Polymorphisms in Pituitary Adenomas Tumorigenesis. Cancers (Basel) 2019;11:E1977. [PMID: 31818039 DOI: 10.3390/cancers11121977] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
16 Miller JJ, Gaiddon C, Storr T. A balancing act: using small molecules for therapeutic intervention of the p53 pathway in cancer. Chem Soc Rev 2020;49:6995-7014. [DOI: 10.1039/d0cs00163e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
17 Xiao Q, Werner J, Venkatachalam N, Boonekamp KE, Ebert MP, Zhan T. Cross-Talk between p53 and Wnt Signaling in Cancer. Biomolecules 2022;12:453. [DOI: 10.3390/biom12030453] [Reference Citation Analysis]
18 Chen S, Wu J, Zhong S, Li Y, Zhang P, Ma J, Ren J, Tan Y, Wang Y, Au KF, Siebold C, Bond GL, Chen Z, Lu M, Jones EY, Lu X. iASPP mediates p53 selectivity through a modular mechanism fine-tuning DNA recognition. Proc Natl Acad Sci U S A 2019;116:17470-9. [PMID: 31395738 DOI: 10.1073/pnas.1909393116] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
19 Kachamakova-Trojanowska N, Podkalicka P, Bogacz T, Barwacz S, Józkowicz A, Dulak J, Łoboda A. HIF-1 stabilization exerts anticancer effects in breast cancer cells in vitro and in vivo. Biochem Pharmacol 2020;175:113922. [PMID: 32205093 DOI: 10.1016/j.bcp.2020.113922] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
20 Shang J, Welch D, Buonanno M, Ponnaiya B, Garty G, Olsen T, Amundson SA, Lin Q. An Integrated Preprocessing Approach for Exploring Single-Cell Gene Expression in Rare Cells. Sci Rep 2019;9:19758. [PMID: 31875032 DOI: 10.1038/s41598-019-55831-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Andrysik Z, Galbraith MD, Guarnieri AL, Zaccara S, Sullivan KD, Pandey A, MacBeth M, Inga A, Espinosa JM. Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity. Genome Res 2017;27:1645-57. [PMID: 28904012 DOI: 10.1101/gr.220533.117] [Cited by in Crossref: 68] [Cited by in F6Publishing: 53] [Article Influence: 13.6] [Reference Citation Analysis]
22 Zhao K, Wang D, Zhao X, Wang C, Gao Y, Liu K, Wang F, Wu X, Wang X, Sun L, Zang J, Mei Y. WDR63 inhibits Arp2/3-dependent actin polymerization and mediates the function of p53 in suppressing metastasis. EMBO Rep 2020;21:e49269. [PMID: 32128961 DOI: 10.15252/embr.201949269] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Giustiniano M, Daniele S, Pelliccia S, La Pietra V, Pietrobono D, Brancaccio D, Cosconati S, Messere A, Giuntini S, Cerofolini L, Fragai M, Luchinat C, Taliani S, La Regina G, Da Settimo F, Silvestri R, Martini C, Novellino E, Marinelli L. Computer-Aided Identification and Lead Optimization of Dual Murine Double Minute 2 and 4 Binders: Structure-Activity Relationship Studies and Pharmacological Activity. J Med Chem 2017;60:8115-30. [PMID: 28921985 DOI: 10.1021/acs.jmedchem.7b00912] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
24 Müller AK, Markert N, Leser K, Kämpfer D, Schiwy S, Riegraf C, Buchinger S, Gan L, Abdallah AT, Denecke B, Segner H, Brinkmann M, Crawford SE, Hollert H. Bioavailability and impacts of estrogenic compounds from suspended sediment on rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 2021;231:105719. [PMID: 33360234 DOI: 10.1016/j.aquatox.2020.105719] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Fleury H, Malaquin N, Tu V, Gilbert S, Martinez A, Olivier MA, Sauriol A, Communal L, Leclerc-Desaulniers K, Carmona E, Provencher D, Mes-Masson AM, Rodier F. Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat Commun 2019;10:2556. [PMID: 31186408 DOI: 10.1038/s41467-019-10460-1] [Reference Citation Analysis]
26 Pavlakis E, Stiewe T. p53's Extended Reach: The Mutant p53 Secretome. Biomolecules 2020;10:E307. [PMID: 32075247 DOI: 10.3390/biom10020307] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
27 Saghaleyni R, Sheikh Muhammad A, Bangalore P, Nielsen J, Robinson JL. Machine learning-based investigation of the cancer protein secretory pathway. PLoS Comput Biol 2021;17:e1008898. [PMID: 33819271 DOI: 10.1371/journal.pcbi.1008898] [Reference Citation Analysis]
28 Yao J, Lei PJ, Li QL, Chen J, Tang SB, Xiao Q, Lin X, Wang X, Li LY, Wu M. GLIS2 promotes colorectal cancer through repressing enhancer activation. Oncogenesis 2020;9:57. [PMID: 32483180 DOI: 10.1038/s41389-020-0240-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Keil JM, Doyle DZ, Qalieh A, Lam MM, Funk OH, Qalieh Y, Shi L, Mohan N, Sorel A, Kwan KY. Symmetric neural progenitor divisions require chromatin-mediated homologous recombination DNA repair by Ino80. Nat Commun 2020;11:3839. [PMID: 32737294 DOI: 10.1038/s41467-020-17551-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Venit T, Semesta K, Farrukh S, Endara-Coll M, Havalda R, Hozak P, Percipalle P. Nuclear myosin 1 activates p21 gene transcription in response to DNA damage through a chromatin-based mechanism. Commun Biol 2020;3:115. [PMID: 32161327 DOI: 10.1038/s42003-020-0836-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
31 Walne AJ, Vulliamy T, Bewicke-Copley F, Wang J, Alnajar J, Bridger MG, Ma B, Tummala H, Dokal I. Genome-wide whole-blood transcriptome profiling across inherited bone marrow failure subtypes. Blood Adv 2021;5:5360-71. [PMID: 34625797 DOI: 10.1182/bloodadvances.2021005360] [Reference Citation Analysis]
32 Catizone AN, Uzunbas GK, Celadova P, Kuang S, Bose D, Sammons MA. Locally acting transcription factors regulate p53-dependent cis-regulatory element activity. Nucleic Acids Res 2020;48:4195-213. [PMID: 32133495 DOI: 10.1093/nar/gkaa147] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
33 Lin RW, Ho CJ, Chen HW, Pao YH, Chen LE, Yang MC, Huang SB, Wang S, Chen CH, Wang C. P53 enhances apoptosis induced by doxorubicin only under conditions of severe DNA damage. Cell Cycle 2018;17:2175-86. [PMID: 30198376 DOI: 10.1080/15384101.2018.1520565] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
34 Fan J, Tong C, Dang W, Qin Y, Liu X, Liu B, Wang W. An rGONS-based biosensor for simultaneous imaging of p53 and p21 mRNA in living cells. Talanta 2019;204:20-8. [DOI: 10.1016/j.talanta.2019.05.087] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
35 Zhang Z, Chen H, Lu Y, Feng T, Sun W. LncRNA BC032020 suppresses the survival of human pancreatic ductal adenocarcinoma cells by targeting ZNF451. Int J Oncol 2018;52:1224-34. [PMID: 29532883 DOI: 10.3892/ijo.2018.4289] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
36 Kumari R, Hummerich H, Shen X, Fischer M, Litovchick L, Mittnacht S, DeCaprio JA, Jat PS. Simultaneous expression of MMB-FOXM1 complex components enables efficient bypass of senescence. Sci Rep 2021;11:21506. [PMID: 34728711 DOI: 10.1038/s41598-021-01012-z] [Reference Citation Analysis]
37 Wendel SO, Wallace NA. Loss of Genome Fidelity: Beta HPVs and the DNA Damage Response. Front Microbiol 2017;8:2250. [PMID: 29187845 DOI: 10.3389/fmicb.2017.02250] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
38 Senitzki A, Safieh J, Sharma V, Golovenko D, Danin-Poleg Y, Inga A, Haran TE. The complex architecture of p53 binding sites. Nucleic Acids Res 2021;49:1364-82. [PMID: 33444431 DOI: 10.1093/nar/gkaa1283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Rizzotto D, Englmaier L, Villunger A. At a Crossroads to Cancer: How p53-Induced Cell Fate Decisions Secure Genome Integrity. Int J Mol Sci 2021;22:10883. [PMID: 34639222 DOI: 10.3390/ijms221910883] [Reference Citation Analysis]
40 Wu C, Koay T, Esfandiari A, Ho Y, Lovat P, Lunec J. ATM Dependent DUSP6 Modulation of p53 Involved in Synergistic Targeting of MAPK and p53 Pathways with Trametinib and MDM2 Inhibitors in Cutaneous Melanoma. Cancers 2019;11:3. [DOI: 10.3390/cancers11010003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
41 Wang B, Varela-Eirin M, Brandenburg SM, Hernandez-Segura A, van Vliet T, Jongbloed EM, Wilting SM, Ohtani N, Jager A, Demaria M. Pharmacological CDK4/6 inhibition reveals a p53-dependent senescent state with restricted toxicity. EMBO J 2022;:e108946. [PMID: 34985783 DOI: 10.15252/embj.2021108946] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
42 Fleury H, Malaquin N, Tu V, Gilbert S, Martinez A, Olivier MA, Sauriol A, Communal L, Leclerc-Desaulniers K, Carmona E, Provencher D, Mes-Masson AM, Rodier F. Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat Commun 2019;10:2556. [PMID: 31186408 DOI: 10.1038/s41467-019-10460-1] [Cited by in Crossref: 53] [Cited by in F6Publishing: 48] [Article Influence: 17.7] [Reference Citation Analysis]
43 Sandoval-Basilio J, González-González R, Bologna-Molina R, Isiordia-Espinoza M, Leija-Montoya G, Alcaraz-Estrada SL, Serafín-Higuera I, González-Ramírez J, Serafín-Higuera N. Epigenetic mechanisms in odontogenic tumors: A literature review. Arch Oral Biol 2018;87:211-7. [PMID: 29310033 DOI: 10.1016/j.archoralbio.2017.12.029] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
44 Samarakkody AS, Shin NY, Cantor AB. Role of RUNX Family Transcription Factors in DNA Damage Response. Mol Cells 2020;43:99-106. [PMID: 32024352 DOI: 10.14348/molcells.2019.0304] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
45 Marx C, Schaarschmidt MU, Kirkpatrick J, Marx-Blümel L, Halilovic M, Westermann M, Hoelzer D, Meyer FB, Geng Y, Buder K, Schadwinkel HM, Siniuk K, Becker S, Thierbach R, Beck JF, Sonnemann J, Wang ZQ. Cooperative treatment effectiveness of ATR and HSP90 inhibition in Ewing's sarcoma cells. Cell Biosci 2021;11:57. [PMID: 33743824 DOI: 10.1186/s13578-021-00571-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Rasheduzzaman M, Jeong JK, Park SY. Resveratrol sensitizes lung cancer cell to TRAIL by p53 independent and suppression of Akt/NF-κB signaling. Life Sci 2018;208:208-20. [PMID: 30031063 DOI: 10.1016/j.lfs.2018.07.035] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
47 Ball CB, Parida M, Santana JF, Spector BM, Suarez GA, Price DH. Nuclear export restricts Gdown1 to a mitotic function. Nucleic Acids Res 2022:gkac015. [PMID: 35048979 DOI: 10.1093/nar/gkac015] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Zhang Z, Lin J, Nisar M, Chen T, Xu T, Zheng G, Wang C, Jin H, Chen J, Gao W, Tian N, Wang X, Zhang X. The Sirt1/P53 Axis in Diabetic Intervertebral Disc Degeneration Pathogenesis and Therapeutics. Oxid Med Cell Longev 2019;2019:7959573. [PMID: 31583043 DOI: 10.1155/2019/7959573] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
49 Schiroli G, Conti A, Ferrari S, Della Volpe L, Jacob A, Albano L, Beretta S, Calabria A, Vavassori V, Gasparini P, Salataj E, Ndiaye-Lobry D, Brombin C, Chaumeil J, Montini E, Merelli I, Genovese P, Naldini L, Di Micco R. Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response. Cell Stem Cell 2019; 24: 551-565. e8. [PMID: 30905619 DOI: 10.1016/j.stem.2019.02.019] [Cited by in Crossref: 97] [Cited by in F6Publishing: 81] [Article Influence: 32.3] [Reference Citation Analysis]
50 Li D, Ge Y, Zhao Z, Zhu R, Wang X, Bi X. Distinct and Coordinated Regulation of Small Non-coding RNAs by E2f1 and p53 During Drosophila Development and in Response to DNA Damage. Front Cell Dev Biol 2021;9:695311. [PMID: 34368144 DOI: 10.3389/fcell.2021.695311] [Reference Citation Analysis]
51 Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, Neri A, Bomben R, Gentile M, Gattei V, Ferrarini M, Morabito F, Fronza G. Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front Oncol 2020;10:593383. [PMID: 33194757 DOI: 10.3389/fonc.2020.593383] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
52 Liu Y, He Q, Sun W. Association analysis using somatic mutations. PLoS Genet 2018;14:e1007746. [PMID: 30388102 DOI: 10.1371/journal.pgen.1007746] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
53 Proto MC, Fiore D, Forte G, Cuozzo P, Ramunno A, Fattorusso C, Gazzerro P, Pascale M, Franceschelli S. Tetra-substituted pyrrole derivatives act as potent activators of p53 in melanoma cells. Invest New Drugs 2020;38:634-49. [PMID: 31240514 DOI: 10.1007/s10637-019-00813-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
54 Litzler LC, Zahn A, Meli AP, Hébert S, Patenaude AM, Methot SP, Sprumont A, Bois T, Kitamura D, Costantino S, King IL, Kleinman CL, Richard S, Di Noia JM. PRMT5 is essential for B cell development and germinal center dynamics. Nat Commun 2019;10:22. [PMID: 30604754 DOI: 10.1038/s41467-018-07884-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
55 Russo LC, Ferruzo PYM, Forti FL. Nucleophosmin Protein Dephosphorylation by DUSP3 Is a Fine-Tuning Regulator of p53 Signaling to Maintain Genomic Stability. Front Cell Dev Biol 2021;9:624933. [PMID: 33777934 DOI: 10.3389/fcell.2021.624933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Lieschke E, Wang Z, Kelly GL, Strasser A. Discussion of some 'knowns' and some 'unknowns' about the tumour suppressor p53. J Mol Cell Biol 2019;11:212-23. [PMID: 30496435 DOI: 10.1093/jmcb/mjy077] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
57 Carlsen L, El-Deiry WS. Differential p53-Mediated Cellular Responses to DNA-Damaging Therapeutic Agents. Int J Mol Sci 2021;22:11828. [PMID: 34769259 DOI: 10.3390/ijms222111828] [Reference Citation Analysis]
58 Kim I, Choi S, Yoo S, Lee M, Park J. AURKB, in concert with REST, acts as an oxygen-sensitive epigenetic regulator of the hypoxic induction of MDM2. BMB Rep 2022;55:287-92. [DOI: 10.5483/bmbrep.2022.55.6.017] [Reference Citation Analysis]
59 Martinez JD, Mo Q, Xu Y, Qin L, Li Y, Xu J. Common Genomic Aberrations in Mouse and Human Breast Cancers with Concurrent P53 Deficiency and Activated PTEN-PI3K-AKT Pathway. Int J Biol Sci 2022;18:229-41. [PMID: 34975329 DOI: 10.7150/ijbs.65763] [Reference Citation Analysis]
60 Ramos H, Soares MIL, Silva J, Raimundo L, Calheiros J, Gomes C, Reis F, Monteiro FA, Nunes C, Reis S, Bosco B, Piazza S, Domingues L, Chlapek P, Vlcek P, Fabian P, Rajado AT, Carvalho ATP, Veselska R, Inga A, Pinho E Melo TMVD, Saraiva L. A selective p53 activator and anticancer agent to improve colorectal cancer therapy. Cell Rep 2021;35:108982. [PMID: 33852837 DOI: 10.1016/j.celrep.2021.108982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Lee SY, Ju MK, Jeon HM, Lee YJ, Kim CH, Park HG, Han SI, Kang HS. Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype. Oxid Med Cell Longev. 2018;2018:1027453. [PMID: 30671168 DOI: 10.1155/2018/1027453] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
62 Rodkin S, Khaitin A, Pitinova M, Dzreyan V, Guzenko V, Rudkovskii M, Sharifulina S, Uzdensky A. The Localization of p53 in the Crayfish Mechanoreceptor Neurons and Its Role in Axotomy-Induced Death of Satellite Glial Cells Remote from the Axon Transection Site. J Mol Neurosci 2020;70:532-41. [PMID: 31823284 DOI: 10.1007/s12031-019-01453-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
63 Engeland K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018;25:114-132. [PMID: 29125603 DOI: 10.1038/cdd.2017.172] [Cited by in Crossref: 209] [Cited by in F6Publishing: 207] [Article Influence: 41.8] [Reference Citation Analysis]
64 Bravo-Navas S, Yáñez L, Romón Í, Pipaón C. Elevated FANCA expression determines a worse prognosis in chronic lymphocytic leukemia and interferes with p53 function. FASEB J 2019;33:10477-89. [PMID: 31251079 DOI: 10.1096/fj.201802439RR] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
65 Roberts O, Paraoan L. PERP-ing into diverse mechanisms of cancer pathogenesis: Regulation and role of the p53/p63 effector PERP. Biochim Biophys Acta Rev Cancer 2020;1874:188393. [PMID: 32679166 DOI: 10.1016/j.bbcan.2020.188393] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Norden E, Heiss EH. Urolithin A gains in antiproliferative capacity by reducing the glycolytic potential via the p53/TIGAR axis in colon cancer cells. Carcinogenesis. 2019;40:93-101. [PMID: 30418550 DOI: 10.1093/carcin/bgy158] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
67 Ning Y, Wang C, Liu X, Du Y, Liu S, Liu K, Zhou J, Zhou C. CK2-mediated CCDC106 phosphorylation is required for p53 degradation in cancer progression. J Exp Clin Cancer Res 2019;38:131. [PMID: 30885251 DOI: 10.1186/s13046-019-1137-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
68 Zhao Y, Piekos S, Hoang TH, Shin DG. A framework using topological pathways for deeper analysis of transcriptome data. BMC Genomics 2020;21:834. [PMID: 32138666 DOI: 10.1186/s12864-019-6155-6] [Reference Citation Analysis]
69 Ardeljan D, Steranka JP, Liu C, Li Z, Taylor MS, Payer LM, Gorbounov M, Sarnecki JS, Deshpande V, Hruban RH, Boeke JD, Fenyö D, Wu PH, Smogorzewska A, Holland AJ, Burns KH. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat Struct Mol Biol 2020;27:168-78. [PMID: 32042151 DOI: 10.1038/s41594-020-0372-1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
70 Tan DJ, Mitra M, Chiu AM, Coller HA. Intron retention is a robust marker of intertumoral heterogeneity in pancreatic ductal adenocarcinoma. NPJ Genom Med 2020;5:55. [PMID: 33311498 DOI: 10.1038/s41525-020-00159-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
71 Li Y, Guo W, Li X, Zhang J, Sun M, Tang Z, Ran W, Yang K, Huang G, Li L. Expert consensus on the clinical application of recombinant adenovirus human p53 for head and neck cancers. Int J Oral Sci 2021;13:38. [PMID: 34785635 DOI: 10.1038/s41368-021-00145-1] [Reference Citation Analysis]
72 Uddin MB, Roy KR, Hill RA, Roy SC, Gu X, Li L, Zhang QJ, You Z, Liu YY. p53 missense mutant G242A subverts natural killer cells in sheltering mouse breast cancer cells against immune rejection. Exp Cell Res 2022;:113210. [PMID: 35597298 DOI: 10.1016/j.yexcr.2022.113210] [Reference Citation Analysis]
73 Hu M, Liu L, Yao W. Activation of p53 by costunolide blocks glutaminolysis and inhibits proliferation in human colorectal cancer cells. Gene 2018;678:261-9. [PMID: 30103008 DOI: 10.1016/j.gene.2018.08.048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
74 Gonzalez-Rivera JC, Sherman MW, Wang DS, Chuvalo-Abraham JCL, Hildebrandt Ruiz L, Contreras LM. RNA oxidation in chromatin modification and DNA-damage response following exposure to formaldehyde. Sci Rep 2020;10:16545. [PMID: 33024153 DOI: 10.1038/s41598-020-73376-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
75 Pandey N, Vinod PK. Model scenarios for cell cycle re-entry in Alzheimer's disease. iScience 2022;25:104543. [PMID: 35747391 DOI: 10.1016/j.isci.2022.104543] [Reference Citation Analysis]
76 Bollu LR, Shepherd J, Zhao D, Ma Y, Tahaney W, Speers C, Mazumdar A, Mills GB, Brown PH. Mutant P53 induces MELK expression by release of wild-type P53-dependent suppression of FOXM1. NPJ Breast Cancer 2020;6:2. [PMID: 31909186 DOI: 10.1038/s41523-019-0143-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
77 Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Mumberg D, Henderson D, Győrffy B, Regenbrecht CRA, Keilholz U, Schäfer R, Lange M. RNA sequencing of long-term label-retaining colon cancer stem cells identifies novel regulators of quiescence. iScience 2021;24:102618. [PMID: 34142064 DOI: 10.1016/j.isci.2021.102618] [Reference Citation Analysis]
78 Segeren HA, van Liere EA, Riemers FM, de Bruin A, Westendorp B. Oncogenic RAS sensitizes cells to drug-induced replication stress via transcriptional silencing of P53. Oncogene 2022. [PMID: 35393546 DOI: 10.1038/s41388-022-02291-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Gajewski S, Hartwig A. PARP1 Is Required for ATM-Mediated p53 Activation and p53-Mediated Gene Expression after Ionizing Radiation. Chem Res Toxicol 2020;33:1933-40. [PMID: 32551582 DOI: 10.1021/acs.chemrestox.0c00130] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
80 Liang W, Shi J, Xia H, Wei X. A Novel Ruthenium-Fluvastatin Complex Downregulates SNCG Expression to Modulate Breast Carcinoma Cell Proliferation and Apoptosis via Activating the PI3K/Akt/mTOR/VEGF/MMP9 Pathway. Oxid Med Cell Longev 2021;2021:5537737. [PMID: 34221232 DOI: 10.1155/2021/5537737] [Reference Citation Analysis]
81 Riege K, Kretzmer H, Sahm A, McDade SS, Hoffmann S, Fischer M. Dissecting the DNA binding landscape and gene regulatory network of p63 and p53. Elife 2020;9:e63266. [PMID: 33263276 DOI: 10.7554/eLife.63266] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
82 Beheshti A, Cekanaviciute E, Smith DJ, Costes SV. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study. Sci Rep 2018;8:4191. [PMID: 29520055 DOI: 10.1038/s41598-018-22613-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
83 Brachtendorf S, Wanger RA, Birod K, Thomas D, Trautmann S, Wegner MS, Fuhrmann DC, Brüne B, Geisslinger G, Grösch S. Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2018;1863:1214-27. [PMID: 30059758 DOI: 10.1016/j.bbalip.2018.07.011] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
84 Na D, Chae J, Cho SY, Kang W, Lee A, Min S, Kang J, Kim MJ, Choi J, Lee W, Shin D, Min A, Kim YJ, Lee KH, Kim TY, Suh YS, Kong SH, Lee HJ, Kim WH, Park H, Im SA, Yang HK, Lee C, Kim JI. Predictive biomarkers for 5-fluorouracil and oxaliplatin-based chemotherapy in gastric cancers via profiling of patient-derived xenografts. Nat Commun 2021;12:4840. [PMID: 34376661 DOI: 10.1038/s41467-021-25122-4] [Reference Citation Analysis]
85 Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021;:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
86 Kadioglu O, Saeed M, Mahmoud N, Azawi S, Mrasek K, Liehr T, Efferth T. Identification of potential novel drug resistance mechanisms by genomic and transcriptomic profiling of colon cancer cells with p53 deletion. Arch Toxicol 2021;95:959-74. [PMID: 33515271 DOI: 10.1007/s00204-021-02979-4] [Reference Citation Analysis]
87 Zheng X, Wang J, Wei L, Peng Q, Gao Y, Fu Y, Lu Y, Qin Z, Zhang X, Lu J, Ou C, Li Z, Zhang X, Liu P, Xiong W, Li G, Yan Q, Ma J. Epstein-Barr Virus MicroRNA miR-BART5-3p Inhibits p53 Expression. J Virol 2018;92:e01022-18. [PMID: 30209170 DOI: 10.1128/JVI.01022-18] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
88 Liu Y, Leslie PL, Zhang Y. Life and Death Decision-Making by p53 and Implications for Cancer Immunotherapy. Trends Cancer 2021;7:226-39. [PMID: 33199193 DOI: 10.1016/j.trecan.2020.10.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
89 Kaneko S, Li X. X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Sci Adv 2018;4:eaar5598. [PMID: 29928692 DOI: 10.1126/sciadv.aar5598] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 8.8] [Reference Citation Analysis]
90 Chen S, Wu JL, Liang Y, Tang YG, Song HX, Wu LL, Xing YF, Yan N, Li YT, Wang ZY, Xiao SJ, Lu X, Chen SJ, Lu M. Arsenic Trioxide Rescues Structural p53 Mutations through a Cryptic Allosteric Site. Cancer Cell 2021;39:225-239.e8. [PMID: 33357454 DOI: 10.1016/j.ccell.2020.11.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
91 Brawerman G, Pipella J, Thompson PJ. DNA damage to β cells in culture recapitulates features of senescent β cells that accumulate in Type 1 Diabetes. Mol Metab 2022;:101524. [PMID: 35660116 DOI: 10.1016/j.molmet.2022.101524] [Reference Citation Analysis]
92 Reinisch I, Klymiuk I, Michenthaler H, Moyschewitz E, Galhuber M, Krstic J, Domingo M, Zhang F, Karbiener M, Vujić N, Kratky D, Schreiber R, Schupp M, Lenihan-geels G, Schulz TJ, Malli R, Madl T, Prokesch A. p53 Regulates a miRNA-Fructose Transporter Axis in Brown Adipose Tissue Under Fasting. Front Genet 2022;13:913030. [DOI: 10.3389/fgene.2022.913030] [Reference Citation Analysis]
93 Alkawar AMM, Castellanos AJ, Carpenter MA, Hutcherson RJ, Madkhali MAO, Johnson RM, Bottomley M, Kemp MG. Insulin-like Growth Factor-1 Impacts p53 Target Gene Induction in UVB-irradiated Keratinocytes and Human Skin. Photochem Photobiol 2020;96:1332-41. [PMID: 32416609 DOI: 10.1111/php.13279] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
94 Wang C, Teo CR, Sabapathy K. p53-Related Transcription Targets of TAp73 in Cancer Cells-Bona Fide or Distorted Reality? Int J Mol Sci 2020;21:E1346. [PMID: 32079264 DOI: 10.3390/ijms21041346] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
95 Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, Li X, Babur O, Hsu TK, Lichtarge O, Weinstein JN, Akbani R, Wheeler DA. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep 2019;28:1370-1384.e5. [PMID: 31365877 DOI: 10.1016/j.celrep.2019.07.001] [Cited by in Crossref: 111] [Cited by in F6Publishing: 89] [Article Influence: 55.5] [Reference Citation Analysis]
96 Yang Y, Karsli-Uzunbas G, Poillet-Perez L, Sawant A, Hu ZS, Zhao Y, Moore D, Hu W, White E. Autophagy promotes mammalian survival by suppressing oxidative stress and p53. Genes Dev 2020;34:688-700. [PMID: 32193353 DOI: 10.1101/gad.335570.119] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
97 Sun M, Feng X, Liu Z, Han W, Liang YX, She Q. An Orc1/Cdc6 ortholog functions as a key regulator in the DNA damage response in Archaea. Nucleic Acids Res 2018;46:6697-711. [PMID: 29878182 DOI: 10.1093/nar/gky487] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
98 Schoch S, Gajewski S, Rothfuß J, Hartwig A, Köberle B. Comparative Study of the Mode of Action of Clinically Approved Platinum-Based Chemotherapeutics. Int J Mol Sci 2020;21:E6928. [PMID: 32967255 DOI: 10.3390/ijms21186928] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
99 Mao F, Liu K, Wong NK, Zhang X, Yi W, Xiang Z, Xiao S, Yu Z, Zhang Y. Virulence of Vibrio alginolyticus Accentuates Apoptosis and Immune Rigor in the Oyster Crassostrea hongkongensis. Front Immunol 2021;12:746017. [PMID: 34621277 DOI: 10.3389/fimmu.2021.746017] [Reference Citation Analysis]
100 Wu J, Liang Y, Tan Y, Tang Y, Song H, Wang Z, Li Y, Lu M. CDK9 inhibitors reactivate p53 by downregulating iASPP. Cell Signal 2020;67:109508. [PMID: 31866490 DOI: 10.1016/j.cellsig.2019.109508] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
101 Uddin MB, Roy KR, Hosain SB, Khiste SK, Hill RA, Jois SD, Zhao Y, Tackett AJ, Liu YY. An N6-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem Pharmacol 2019;160:134-45. [PMID: 30578766 DOI: 10.1016/j.bcp.2018.12.014] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 7.5] [Reference Citation Analysis]
102 Guo F, Tang Q, Chen G, Sun J, Zhu J, Jia Y, Zhang W. Aberrant Expression and Subcellular Localization of PER2 Promote the Progression of Oral Squamous Cell Carcinoma. Biomed Res Int 2020;2020:8587458. [PMID: 32185221 DOI: 10.1155/2020/8587458] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Ursu O, Neal JT, Shea E, Thakore PI, Jerby-arnon L, Nguyen L, Dionne D, Diaz C, Bauman J, Mosaad MM, Fagre C, Lo A, Mcsharry M, Giacomelli AO, Ly SH, Rozenblatt-rosen O, Hahn WC, Aguirre AJ, Berger AH, Regev A, Boehm JS. Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat Biotechnol. [DOI: 10.1038/s41587-021-01160-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
104 Yamaguchi S, Takahashi S, Mogushi K, Izumi Y, Nozaki Y, Nomizu T, Kakugawa Y, Ishida T, Ohuchi N, Ishioka C, Kato S. Molecular and clinical features of the TP53 signature gene expression profile in early-stage breast cancer. Oncotarget 2018;9:14193-206. [PMID: 29581837 DOI: 10.18632/oncotarget.24447] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
105 Yang W, Chiang L, Tan S, Chen P. Environmentally relevant concentrations of di(2-ethylhexyl)phthalate exposure alter larval growth and locomotion in medaka fish via multiple pathways. Science of The Total Environment 2018;640-641:512-22. [DOI: 10.1016/j.scitotenv.2018.05.312] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
106 Zhang M, Liu J, Zhang R, Liang Z, Ding S, Yu H, Shan Y. Nobiletin, a hexamethoxyflavonoid from citrus pomace, attenuates G1 cell cycle arrest and apoptosis in hypoxia-induced human trophoblast cells of JEG-3 and BeWo via regulating the p53 signaling pathway. Food Nutr Res 2021;65. [PMID: 34650395 DOI: 10.29219/fnr.v65.5649] [Reference Citation Analysis]
107 Bowen ME, McClendon J, Long HK, Sorayya A, Van Nostrand JL, Wysocka J, Attardi LD. The Spatiotemporal Pattern and Intensity of p53 Activation Dictates Phenotypic Diversity in p53-Driven Developmental Syndromes. Dev Cell 2019;50:212-228.e6. [PMID: 31178404 DOI: 10.1016/j.devcel.2019.05.015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
108 Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release. 2018;269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
109 Dash S, Yoder S, Mesa T, Smith A, Cen L, Eschrich S, Armaiz-Pena GN, Monteiro ANA. Effects of long-term norepinephrine treatment on normal immortalized ovarian and fallopian tube cells. Sci Rep 2021;11:14334. [PMID: 34253763 DOI: 10.1038/s41598-021-93506-z] [Reference Citation Analysis]
110 Tang Y, Song H, Wang Z, Xiao S, Xiang X, Zhan H, Wu L, Wu J, Xing Y, Tan Y, Liang Y, Yan N, Li Y, Li J, Wu J, Zheng D, Jia Y, Chen Z, Li Y, Zhang Q, Zhang J, Zeng H, Tao W, Liu F, Wu Y, Lu M. Repurposing antiparasitic antimonials to noncovalently rescue temperature-sensitive p53 mutations. Cell Rep 2022;39:110622. [PMID: 35417717 DOI: 10.1016/j.celrep.2022.110622] [Reference Citation Analysis]
111 Teslow EA, Bao B, Dyson G, Legendre C, Mitrea C, Sakr W, Carpten JD, Powell I, Bollig-Fischer A. Exogenous IL-6 induces mRNA splice variant MBD2_v2 to promote stemness in TP53 wild-type, African American PCa cells. Mol Oncol 2018;12:1138-52. [PMID: 29741809 DOI: 10.1002/1878-0261.12316] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
112 Mousavian Z, Khodabandeh M, Sharifi-Zarchi A, Nadafian A, Mahmoudi A. StrongestPath: a Cytoscape application for protein-protein interaction analysis. BMC Bioinformatics 2021;22:352. [PMID: 34187355 DOI: 10.1186/s12859-021-04230-4] [Reference Citation Analysis]
113 Nguyen TT, Grimm SA, Bushel PR, Li J, Li Y, Bennett BD, Lavender CA, Ward JM, Fargo DC, Anderson CW, Li L, Resnick MA, Menendez D. Revealing a human p53 universe. Nucleic Acids Res 2018;46:8153-67. [PMID: 30107566 DOI: 10.1093/nar/gky720] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 14.7] [Reference Citation Analysis]
114 Cai BH, Chao CF, Huang HC, Lee HY, Kannagi R, Chen JY. Roles of p53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Int J Mol Sci 2019;20:E3681. [PMID: 31357595 DOI: 10.3390/ijms20153681] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
115 Higgins CE, Tang J, Mian BM, Higgins SP, Gifford CC, Conti DJ, Meldrum KK, Samarakoon R, Higgins PJ. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications. FASEB J 2019;33:10596-606. [PMID: 31284746 DOI: 10.1096/fj.201900943R] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
116 Gentric N, Genschik P, Noir S. Connections between the Cell Cycle and the DNA Damage Response in Plants. Int J Mol Sci 2021;22:9558. [PMID: 34502465 DOI: 10.3390/ijms22179558] [Reference Citation Analysis]
117 Zhang XF, Huang FH, Zhang GL, Bai DP, Massimo DF, Huang YF, Gurunathan S. Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3). Int J Nanomedicine 2017;12:7551-75. [PMID: 29075115 DOI: 10.2147/IJN.S144161] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 6.2] [Reference Citation Analysis]
118 Almozyan S, Coulton J, Babaei-Jadidi R, Nateri AS. FLYWCH1, a Multi-Functional Zinc Finger Protein Contributes to the DNA Repair Pathway. Cells 2021;10:889. [PMID: 33924684 DOI: 10.3390/cells10040889] [Reference Citation Analysis]
119 Liu R, Qian M, Zhou T, Cui P. TP53 mediated miR-3647-5p prevents progression of cervical carcinoma by targeting AGR2. Cancer Med 2019;8:6095-105. [PMID: 31436390 DOI: 10.1002/cam4.2507] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
120 Kang JG, Lago CU, Lee JE, Park JH, Donnelly MP, Starost MF, Liu C, Kwon J, Noguchi AC, Ge K, Wang PY, Hwang PM. A Mouse Homolog of a Human TP53 Germline Mutation Reveals a Lipolytic Activity of p53. Cell Rep 2020;30:783-792.e5. [PMID: 31968253 DOI: 10.1016/j.celrep.2019.12.074] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
121 Kim U, Kim KS, Park JK, Um HD. Involvement of the p53/p21 complex in p53-dependent gene expression. Biochem Biophys Res Commun 2022;621:151-6. [PMID: 35834924 DOI: 10.1016/j.bbrc.2022.07.022] [Reference Citation Analysis]
122 Nechiporuk T, Kurtz SE, Nikolova O, Liu T, Jones CL, D'Alessandro A, Culp-Hill R, d'Almeida A, Joshi SK, Rosenberg M, Tognon CE, Danilov AV, Druker BJ, Chang BH, McWeeney SK, Tyner JW. The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells. Cancer Discov 2019;9:910-25. [PMID: 31048320 DOI: 10.1158/2159-8290.CD-19-0125] [Cited by in Crossref: 68] [Cited by in F6Publishing: 44] [Article Influence: 22.7] [Reference Citation Analysis]
123 Fan Y, Hu Y, Yan C, Goldman R, Pan Y, Mazumder R, Dingerdissen HM. Loss and gain of N-linked glycosylation sequons due to single-nucleotide variation in cancer. Sci Rep 2018;8:4322. [PMID: 29531238 DOI: 10.1038/s41598-018-22345-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
124 Zhang T, Yang Z, Gao H. Advancements in the study of miRNA regulation during the cell cycle in human pituitary adenomas. J Neurooncol 2017;134:253-8. [PMID: 28577032 DOI: 10.1007/s11060-017-2518-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
125 Suzuki N, Idogawa M, Tange S, Ohashi T, Sasaki Y, Nakase H, Tokino T. p53-induced ARVCF modulates the splicing landscape and supports the tumor suppressive function of p53. Oncogene 2020;39:2202-11. [DOI: 10.1038/s41388-019-1133-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
126 Bugai A, Quaresma AJC, Friedel CC, Lenasi T, Düster R, Sibley CR, Fujinaga K, Kukanja P, Hennig T, Blasius M, Geyer M, Ule J, Dölken L, Barborič M. P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress. Mol Cell 2019;74:254-267.e10. [PMID: 30824372 DOI: 10.1016/j.molcel.2019.01.033] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 11.0] [Reference Citation Analysis]
127 Kabir MF, Mohd Ali J, Haji Hashim O. Microarray gene expression profiling in colorectal (HCT116) and hepatocellular (HepG2) carcinoma cell lines treated with Melicope ptelefolia leaf extract reveals transcriptome profiles exhibiting anticancer activity. PeerJ 2018;6:e5203. [PMID: 30042885 DOI: 10.7717/peerj.5203] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
128 Devor EJ, Schickling BM, Lapierre JR, Bender DP, Gonzalez-Bosquet J, Leslie KK. The Synthetic Curcumin Analog HO-3867 Rescues Suppression of PLAC1 Expression in Ovarian Cancer Cells. Pharmaceuticals (Basel) 2021;14:942. [PMID: 34577642 DOI: 10.3390/ph14090942] [Reference Citation Analysis]
129 Wang Z, Yang K, Zheng Q, Zhang C, Tang H, Babicheva A, Jiang Q, Li M, Chen Y, Carr SG, Wu K, Zhang Q, Balistrieri A, Wang C, Song S, Ayon RJ, Desai AA, Black SM, Garcia JGN, Makino A, Yuan JX, Lu W, Wang J. Divergent changes of p53 in pulmonary arterial endothelial and smooth muscle cells involved in the development of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2019;316:L216-28. [PMID: 30358436 DOI: 10.1152/ajplung.00538.2017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
130 Kim E, Kim JY, Lee JY. Mathematical Modeling of p53 Pathways. Int J Mol Sci 2019;20:E5179. [PMID: 31635420 DOI: 10.3390/ijms20205179] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
131 Zhang W, Liu C, Li J, Liu R, Zhuang J, Feng F, Yao Y, Sun C. Target Analysis and Mechanism of Podophyllotoxin in the Treatment of Triple-Negative Breast Cancer. Front Pharmacol 2020;11:1211. [PMID: 32848800 DOI: 10.3389/fphar.2020.01211] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
132 Cho E, Rowan-Carroll A, Williams A, Corton JC, Li HH, Fornace AJ Jr, Hobbs CA, Yauk CL. Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Arch Toxicol 2021;95:1631-45. [PMID: 33770205 DOI: 10.1007/s00204-021-03014-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
133 Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018;23:E1479. [PMID: 29921764 DOI: 10.3390/molecules23061479] [Cited by in Crossref: 110] [Cited by in F6Publishing: 89] [Article Influence: 27.5] [Reference Citation Analysis]
134 Liu T, Wang X, Hu W, Fang Z, Jin Y, Fang X, Miao QR. Epigenetically Down-Regulated Acetyltransferase PCAF Increases the Resistance of Colorectal Cancer to 5-Fluorouracil. Neoplasia 2019;21:557-70. [PMID: 31042625 DOI: 10.1016/j.neo.2019.03.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
135 Fischietti M, Fratini E, Verzella D, Vecchiotti D, Capece D, Di Francesco B, Esposito G, Balata M, Ioannuci L, Sykes P, Satta L, Zazzeroni F, Tessitore A, Tabocchini MA, Alesse E. Low Radiation Environment Switches the Overgrowth-Induced Cell Apoptosis Toward Autophagy. Front Public Health 2020;8:594789. [PMID: 33520915 DOI: 10.3389/fpubh.2020.594789] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Tang Z, He Z. TIGAR promotes growth, survival and metastasis through oxidation resistance and AKT activation in glioblastoma. Oncol Lett 2019;18:2509-17. [PMID: 31402948 DOI: 10.3892/ol.2019.10574] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
137 Sill H, Zebisch A, Haase D. Acute Myeloid Leukemia and Myelodysplastic Syndromes with TP53 Aberrations - A Distinct Stem Cell Disorder. Clin Cancer Res 2020;26:5304-9. [PMID: 32816950 DOI: 10.1158/1078-0432.CCR-20-2272] [Reference Citation Analysis]
138 Brook L, Palade P, Maatough A, Whitfield GK, Emeterio LS, Hsieh D, Hsieh JC. Hairless regulates p53 target genes to exert tumor suppressive functions in glioblastoma. J Cell Biochem 2019;120:533-43. [PMID: 30191601 DOI: 10.1002/jcb.27408] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
139 da Silva J, da Costa CC, de Farias Ramos I, Laus AC, Sussuchi L, Reis RM, Khayat AS, Cavalli LR, Pereira SR. Upregulated miRNAs on the TP53 and RB1 Binding Seedless Regions in High-Risk HPV-Associated Penile Cancer. Front Genet 2022;13:875939. [DOI: 10.3389/fgene.2022.875939] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
140 Xia Y, Wang L, Ma X, Li X. Investigation on the Genomic Characterization of Uterine Sarcoma for rAd-p53 Combined with Chemotherapy Treatment. Hum Gene Ther 2020;31:881-90. [PMID: 32013587 DOI: 10.1089/hum.2019.305] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
141 Karsli Uzunbas G, Ahmed F, Sammons MA. Control of p53-dependent transcription and enhancer activity by the p53 family member p63. J Biol Chem 2019;294:10720-36. [PMID: 31113863 DOI: 10.1074/jbc.RA119.007965] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
142 Satta N, Weppe R, Pagano S, Frias M, Juillard C, Vuilleumier N. Auto-antibodies against apolipoprotein A-1 block cancer cells proliferation and induce apoptosis. Oncotarget 2020;11:4266-80. [PMID: 33245719 DOI: 10.18632/oncotarget.27814] [Reference Citation Analysis]
143 Fujiyama H, Tsuji T, Hironaka K, Yoshida K, Sugimoto N, Fujita M. GRWD1 directly interacts with p53 and negatively regulates p53 transcriptional activity. J Biochem 2020;167:15-24. [PMID: 31545368 DOI: 10.1093/jb/mvz075] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
144 Gurung SK, Dana S, Mandal K, Mukhopadhyay P, Mondal N. Downregulation of c-Myc and p21 expression and induction of S phase arrest by naphthalene diimide derivative in gastric adenocarcinoma cells. Chem Biol Interact 2019;304:106-23. [PMID: 30840857 DOI: 10.1016/j.cbi.2019.02.010] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
145 Contreras EG, Sierralta J, Glavic A. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development. PLoS One 2018;13:e0194344. [PMID: 29621246 DOI: 10.1371/journal.pone.0194344] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
146 Shi X, Reimers JR. Understanding non-linear effects from Hill-type dynamics with application to decoding of p53 signaling. Sci Rep 2018;8:2147. [PMID: 29391550 DOI: 10.1038/s41598-018-20466-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
147 O'Cathail SM, Pokrovska TD, Maughan TS, Fisher KD, Seymour LW, Hawkins MA. Combining Oncolytic Adenovirus with Radiation-A Paradigm for the Future of Radiosensitization. Front Oncol 2017;7:153. [PMID: 28791251 DOI: 10.3389/fonc.2017.00153] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
148 Ohshima Y, Kono N, Yokota Y, Watanabe S, Sasaki I, Ishioka NS, Sakashita T, Arakawa K. Anti-tumor effects and potential therapeutic response biomarkers in α-emitting meta-211At-astato-benzylguanidine therapy for malignant pheochromocytoma explored by RNA-sequencing. Theranostics 2019;9:1538-49. [PMID: 31037122 DOI: 10.7150/thno.30353] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
149 Rahimi Foroudi M, Yaghobi R, Afshari A, Roozbeh J, Miresmaeili SM, Javid A. The effect of BK polyomavirus large T antigen on CD4 and CD8 T cells in kidney transplant recipients. Transpl Immunol 2022;74:101655. [PMID: 35777612 DOI: 10.1016/j.trim.2022.101655] [Reference Citation Analysis]
150 Torki Z, Ghavi D, Hashemi S, Rahmati Y, Rahmanpour D, Pornour M, Alivand MR. The related miRNAs involved in doxorubicin resistance or sensitivity of various cancers: an update. Cancer Chemother Pharmacol 2021;88:771-93. [PMID: 34510251 DOI: 10.1007/s00280-021-04337-8] [Reference Citation Analysis]
151 Naismith E, Pangrazzi L, Grasse M, Keller M, Miggitsch C, Weinberger B, Trieb K, Grubeck-Loebenstein B. Peripheral antibody concentrations are associated with highly differentiated T cells and inflammatory processes in the human bone marrow. Immun Ageing 2019;16:21. [PMID: 31462901 DOI: 10.1186/s12979-019-0161-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
152 Huang J, Long Z, Lin W, Liao X, Xie Y, Liu L, Ma W. Integrative omics analysis of p53-dependent regulation of metabolism. FEBS Lett 2018;592:380-93. [PMID: 29323703 DOI: 10.1002/1873-3468.12968] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
153 Brattås MK, Reikvam H, Tvedt THA, Bruserud Ø. Precision medicine for TP53-mutated acute myeloid leukemia. Expert Review of Precision Medicine and Drug Development 2019;4:263-74. [DOI: 10.1080/23808993.2019.1644164] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
154 Guo C, Hou Y, Yu X, Zhang F, Wu X, Wu X, Wang L. The ERK-MNK-eIF4F signaling pathway mediates TPDHT-induced A549 cell death in vitro and in vivo. Food and Chemical Toxicology 2020;137:111158. [DOI: 10.1016/j.fct.2020.111158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
155 Bourbousse C, Vegesna N, Law JA. SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci U S A 2018;115:E12453-62. [PMID: 30541889 DOI: 10.1073/pnas.1810582115] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 11.3] [Reference Citation Analysis]
156 Jaiswal SK, Raj S, DePamphilis ML. Developmental Acquisition of p53 Functions. Genes (Basel) 2021;12:1675. [PMID: 34828285 DOI: 10.3390/genes12111675] [Reference Citation Analysis]
157 Tung LT, Wang H, Belle JI, Petrov JC, Langlais D, Nijnik A. p53-dependent induction of P2X7 on hematopoietic stem and progenitor cells regulates hematopoietic response to genotoxic stress. Cell Death Dis 2021;12:923. [PMID: 34625535 DOI: 10.1038/s41419-021-04202-9] [Reference Citation Analysis]
158 Zhou L, Tian Y, Guo F, Yu B, Li J, Xu H, Su Z. LincRNA-p21 knockdown reversed tumor-associated macrophages function by promoting MDM2 to antagonize* p53 activation and alleviate breast cancer development. Cancer Immunol Immunother. 2020;69:835-846. [PMID: 32062693 DOI: 10.1007/s00262-020-02511-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
159 Kamata S, Yamamoto J, Ohtani H, Tosaka Y, Yoshikawa S, Akahoshi N, Ishii I. 2D DIGE proteomic analysis reveals fasting-induced protein remodeling through organ-specific transcription factor(s) in mice. FEBS Open Bio 2018;8:1524-43. [PMID: 30186752 DOI: 10.1002/2211-5463.12497] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
160 Catizone AN, Good CR, Alexander KA, Berger SL, Sammons MA. Comparison of genotoxic versus nongenotoxic stabilization of p53 provides insight into parallel stress-responsive transcriptional networks. Cell Cycle 2019;18:809-23. [PMID: 30966857 DOI: 10.1080/15384101.2019.1593643] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
161 Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules 2020;10:E420. [PMID: 32182711 DOI: 10.3390/biom10030420] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 27.5] [Reference Citation Analysis]
162 Hisaoka M, Schott J, Bortecen T, Lindner D, Krijgsveld J, Stoecklin G. Preferential translation of p53 target genes. RNA Biol 2022;19:437-52. [PMID: 35388737 DOI: 10.1080/15476286.2022.2048562] [Reference Citation Analysis]
163 Lee SJ, Kwon OS. O-GlcNAc Transferase Inhibitor Synergistically Enhances Doxorubicin-Induced Apoptosis in HepG2 Cells. Cancers (Basel) 2020;12:E3154. [PMID: 33121131 DOI: 10.3390/cancers12113154] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
164 Assefa AT, De Paepe K, Everaert C, Mestdagh P, Thas O, Vandesompele J. Differential gene expression analysis tools exhibit substandard performance for long non-coding RNA-sequencing data. Genome Biol 2018;19:96. [PMID: 30041657 DOI: 10.1186/s13059-018-1466-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
165 Cheng CW, Tse E. PIN1 in Cell Cycle Control and Cancer. Front Pharmacol 2018;9:1367. [PMID: 30534074 DOI: 10.3389/fphar.2018.01367] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
166 Fry EA, Inoue K. Aberrant expression of ETS1 and ETS2 proteins in cancer. Cancer Rep Rev 2018;2. [PMID: 29974077 DOI: 10.15761/CRR.1000151] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
167 Birts CN, Banerjee A, Darley M, Dunlop CR, Nelson S, Nijjar SK, Parker R, West J, Tavassoli A, Rose-Zerilli MJJ, Blaydes JP. p53 is regulated by aerobic glycolysis in cancer cells by the CtBP family of NADH-dependent transcriptional regulators. Sci Signal 2020;13:eaau9529. [PMID: 32371497 DOI: 10.1126/scisignal.aau9529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
168 Wu CE, Koay TS, Ho YH, Lovat P, Lunec J. TP53 mutant cell lines selected for resistance to MDM2 inhibitors retain growth inhibition by MAPK pathway inhibitors but a reduced apoptotic response. Cancer Cell Int 2019;19:53. [PMID: 30899200 DOI: 10.1186/s12935-019-0768-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
169 Kumar J, Kaur G, Ren R, Lu Y, Lin K, Li J, Huang Y, Patel A, Barton MC, Macfarlan T, Zhang X, Cheng X. KRAB domain of ZFP568 disrupts TRIM28-mediated abnormal interactions in cancer cells. NAR Cancer 2020;2:zcaa007. [PMID: 32743551 DOI: 10.1093/narcan/zcaa007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
170 Da Silva MLR, De Albuquerque BHDR, Allyrio TAMF, De Almeida VD, Cobucci RNO, Bezerra FL, Andrade VS, Lanza DCF, De Azevedo JCV, De Araújo JMG, Fernandes JV. The role of HPV-induced epigenetic changes in cervical carcinogenesis (Review). Biomed Rep 2021;15:60. [PMID: 34094536 DOI: 10.3892/br.2021.1436] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
171 Fischer M, Hoffmann S. Synthesizing genome regulation data with vote-counting. Trends Genet 2022:S0168-9525(22)00167-6. [PMID: 35817619 DOI: 10.1016/j.tig.2022.06.012] [Reference Citation Analysis]
172 Pilley S, Rodriguez TA, Vousden KH. Mutant p53 in cell-cell interactions. Genes Dev 2021;35:433-48. [PMID: 33861719 DOI: 10.1101/gad.347542.120] [Reference Citation Analysis]
173 Hayman L, Chaudhry WR, Revin VV, Zhelev N, Bourdon J. What is the potential of p53 isoforms as a predictive biomarker in the treatment of cancer? Expert Review of Molecular Diagnostics 2019;19:149-59. [DOI: 10.1080/14737159.2019.1563484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
174 Sammons MA, Nguyen TT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020;48:8848-69. [PMID: 32797160 DOI: 10.1093/nar/gkaa666] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
175 Ha J, Prela O, Carpizo DR, Loh SN. p53 and Zinc: A Malleable Relationship. Front Mol Biosci 2022;9:895887. [DOI: 10.3389/fmolb.2022.895887] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Krstic J, Galhuber M, Schulz TJ, Schupp M, Prokesch A. p53 as a Dichotomous Regulator of Liver Disease: The Dose Makes the Medicine. Int J Mol Sci 2018;19:E921. [PMID: 29558460 DOI: 10.3390/ijms19030921] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
177 Wang YC, Wang LT, Hung TI, Hong YR, Chen CH, Ho CJ, Wang C. Severe cellular stress drives apoptosis through a dual control mechanism independently of p53. Cell Death Discov 2022;8:282. [PMID: 35680784 DOI: 10.1038/s41420-022-01078-2] [Reference Citation Analysis]
178 Diggins KE, Serti E, Muir V, Rosasco M, Lu T, Balmas E, Nepom G, Long SA, Linsley PS. Exhausted-like CD8+ T cell phenotypes linked to C-peptide preservation in alefacept-treated T1D subjects. JCI Insight 2021;6:142680. [PMID: 33351781 DOI: 10.1172/jci.insight.142680] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
179 Han H, Wang Y, Curto J, Gurrapu S, Laudato S, Rumandla A, Chakraborty G, Wang X, Chen H, Jiang Y, Kumar D, Caggiano EG, Capogiri M, Zhang B, Ji Y, Maity SN, Hu M, Bai S, Aparicio AM, Efstathiou E, Logothetis CJ, Navin N, Navone NM, Chen Y, Giancotti FG. Mesenchymal and stem-like prostate cancer linked to therapy-induced lineage plasticity and metastasis. Cell Rep 2022;39:110595. [PMID: 35385726 DOI: 10.1016/j.celrep.2022.110595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
180 Carlsen L, Schorl C, Huntington K, Hernandez-Borrero L, Jhaveri A, Zhang S, Zhou L, El-Deiry WS. Pan-drug and drug-specific mechanisms of 5-FU, irinotecan (CPT-11), oxaliplatin, and cisplatin identified by comparison of transcriptomic and cytokine responses of colorectal cancer cells. Oncotarget 2021;12:2006-21. [PMID: 34611476 DOI: 10.18632/oncotarget.28075] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
181 Fontana MC, Nanni J, Ghelli Luserna di Rorà A, Petracci E, Padella A, Ghetti M, Ferrari A, Marconi G, Soverini S, Iacobucci I, Papayannidis C, Curti A, Audisio E, Giannini MB, Rondoni M, Lanza F, Cavo M, Martinelli G, Simonetti G. Pharmacological Inhibition of WIP1 Sensitizes Acute Myeloid Leukemia Cells to the MDM2 Inhibitor Nutlin-3a. Biomedicines 2021;9:388. [PMID: 33917342 DOI: 10.3390/biomedicines9040388] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
182 Cai T, Cinkornpumin JK, Yu Z, Villarreal OD, Pastor WA, Richard S. Deletion of RBMX RGG/RG motif in Shashi-XLID syndrome leads to aberrant p53 activation and neuronal differentiation defects. Cell Rep 2021;36:109337. [PMID: 34260915 DOI: 10.1016/j.celrep.2021.109337] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
183 Marker DF, Agnihotri S, Amankulor N, Murdoch GH, Pearce TM. The dominant TP53 hotspot mutation in IDH -mutant astrocytoma, R273C, has distinctive pathologic features and sex-specific prognostic implications. Neurooncol Adv 2022;4:vdab182. [PMID: 35047821 DOI: 10.1093/noajnl/vdab182] [Reference Citation Analysis]
184 Bowen ME, Mulligan AS, Sorayya A, Attardi LD. Puma- and Caspase9-mediated apoptosis is dispensable for p53-driven neural crest-based developmental defects. Cell Death Differ 2021;28:2083-94. [PMID: 33574585 DOI: 10.1038/s41418-021-00738-7] [Reference Citation Analysis]
185 Monti P, Ciribilli Y, Foggetti G, Menichini P, Bisio A, Cappato S, Inga A, Divizia MT, Lerone M, Bocciardi R, Fronza G. P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development. Biosci Rep 2019;39:BSR20192114. [PMID: 31789342 DOI: 10.1042/BSR20192114] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
186 Jentsch M, Snyder P, Sheng C, Cristiano E, Loewer A. p53 dynamics in single cells are temperature-sensitive. Sci Rep 2020;10:1481. [PMID: 32001771 DOI: 10.1038/s41598-020-58267-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
187 Golovenko D, Bräuning B, Vyas P, Haran TE, Rozenberg H, Shakked Z. New Insights into the Role of DNA Shape on Its Recognition by p53 Proteins. Structure 2018;26:1237-1250.e6. [PMID: 30057026 DOI: 10.1016/j.str.2018.06.006] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
188 Hassan Z, Schneeweis C, Wirth M, Müller S, Geismann C, Neuß T, Steiger K, Krämer OH, Schmid RM, Rad R, Arlt A, Reichert M, Saur D, Schneider G. Important role of Nfkb2 in the KrasG12D-driven carcinogenesis in the pancreas. Pancreatology 2021;21:912-9. [PMID: 33824054 DOI: 10.1016/j.pan.2021.03.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
189 Haider N, Dutt P, van de Kooij B, Ho J, Palomero L, Pujana MA, Yaffe M, Stambolic V. NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity. Oncogene 2020;39:5252-66. [DOI: 10.1038/s41388-020-1361-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
190 Rossmann MP, Hoi K, Chan V, Abraham BJ, Yang S, Mullahoo J, Papanastasiou M, Wang Y, Elia I, Perlin JR, Hagedorn EJ, Hetzel S, Weigert R, Vyas S, Nag PP, Sullivan LB, Warren CR, Dorjsuren B, Greig EC, Adatto I, Cowan CA, Schreiber SL, Young RA, Meissner A, Haigis MC, Hekimi S, Carr SA, Zon LI. Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science 2021;372:716-21. [PMID: 33986176 DOI: 10.1126/science.aaz2740] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
191 Shi L, Qalieh A, Lam MM, Keil JM, Kwan KY. Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion. Nat Commun 2019;10:2588. [PMID: 31197172 DOI: 10.1038/s41467-019-10411-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
192 Haupt S, Haupt Y. P53 at the start of the 21st century: lessons from elephants. F1000Res 2017;6:2041. [PMID: 29250320 DOI: 10.12688/f1000research.12682.1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
193 Ito T, Matoba R, Maekawa H, Sakurada M, Kushida T, Orita H, Wada R, Sato K. Detection of gene mutations in gastric cancer tissues using a commercial sequencing panel. Mol Clin Oncol 2019;11:455-60. [PMID: 31620276 DOI: 10.3892/mco.2019.1926] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
194 Zanjirband M, Rahgozar S. Targeting p53-MDM2 Interaction Using Small Molecule Inhibitors and the Challenges Needed to be Addressed. Curr Drug Targets 2019;20:1091-111. [PMID: 30947669 DOI: 10.2174/1389450120666190402120701] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
195 Cheng H, Yang X, Si H, Saleh AD, Xiao W, Coupar J, Gollin SM, Ferris RL, Issaeva N, Yarbrough WG, Prince ME, Carey TE, Van Waes C, Chen Z. Genomic and Transcriptomic Characterization Links Cell Lines with Aggressive Head and Neck Cancers. Cell Rep 2018;25:1332-1345.e5. [PMID: 30380422 DOI: 10.1016/j.celrep.2018.10.007] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 10.7] [Reference Citation Analysis]
196 Polinski JM, Zimin AV, Clark KF, Kohn AB, Sadowski N, Timp W, Ptitsyn A, Khanna P, Romanova DY, Williams P, Greenwood SJ, Moroz LL, Walt DR, Bodnar AG. The American lobster genome reveals insights on longevity, neural, and immune adaptations. Sci Adv 2021;7:eabe8290. [PMID: 34162536 DOI: 10.1126/sciadv.abe8290] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
197 Jaskova Z, Pavlova S, Malcikova J, Brychtova Y, Trbusek M. PRIMA-1MET cytotoxic effect correlates with p53 protein reduction in TP53-mutated chronic lymphocytic leukemia cells. Leuk Res 2020;89:106288. [PMID: 31924585 DOI: 10.1016/j.leukres.2019.106288] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
198 Krześniak M, Zajkowicz A, Gdowicz-Kłosok A, Głowala-Kosińska M, Łasut-Szyszka B, Rusin M. Synergistic activation of p53 by actinomycin D and nutlin-3a is associated with the upregulation of crucial regulators and effectors of innate immunity. Cell Signal 2020;69:109552. [PMID: 32032660 DOI: 10.1016/j.cellsig.2020.109552] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
199 Ishizawa J, Nakamaru K, Seki T, Tazaki K, Kojima K, Chachad D, Zhao R, Heese L, Ma W, Ma MCJ, DiNardo C, Pierce S, Patel KP, Tse A, Davis RE, Rao A, Andreeff M. Predictive Gene Signatures Determine Tumor Sensitivity to MDM2 Inhibition. Cancer Res 2018;78:2721-31. [PMID: 29490944 DOI: 10.1158/0008-5472.CAN-17-0949] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
200 Bauer MR, Jones RN, Tareque RK, Springett B, Dingler FA, Verduci L, Patel KJ, Fersht AR, Joerger AC, Spencer J. A structure-guided molecular chaperone approach for restoring the transcriptional activity of the p53 cancer mutant Y220C. Future Med Chem 2019;11:2491-504. [PMID: 31633398 DOI: 10.4155/fmc-2019-0181] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
201 Zelenova MA, Yurov YB, Vorsanova SG, Iourov IY. Laundering CNV data for candidate process prioritization in brain disorders. Mol Cytogenet 2019;12:54. [PMID: 31890034 DOI: 10.1186/s13039-019-0468-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
202 Sargolzaei J, Etemadi T, Alyasin A. The P53/microRNA network: A potential tumor suppressor with a role in anticancer therapy. Pharmacol Res 2020;160:105179. [PMID: 32890739 DOI: 10.1016/j.phrs.2020.105179] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
203 Yu Q, Xue Y, Liu J, Xi Z, Li Z, Liu Y. Fibronectin Promotes the Malignancy of Glioma Stem-Like Cells Via Modulation of Cell Adhesion, Differentiation, Proliferation and Chemoresistance. Front Mol Neurosci 2018;11:130. [PMID: 29706869 DOI: 10.3389/fnmol.2018.00130] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 6.8] [Reference Citation Analysis]
204 Anbarasan T, Bourdon JC. The Emerging Landscape of p53 Isoforms in Physiology, Cancer and Degenerative Diseases. Int J Mol Sci 2019;20:E6257. [PMID: 31835844 DOI: 10.3390/ijms20246257] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
205 Kazantseva M, Mehta S, Eiholzer RA, Hung N, Wiles A, Slatter TL, Braithwaite AW. A mouse model of the Δ133p53 isoform: roles in cancer progression and inflammation. Mamm Genome 2018;29:831-42. [PMID: 29992419 DOI: 10.1007/s00335-018-9758-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
206 Labuschagne CF, Zani F, Vousden KH. Control of metabolism by p53 - Cancer and beyond. Biochim Biophys Acta Rev Cancer 2018;1870:32-42. [PMID: 29883595 DOI: 10.1016/j.bbcan.2018.06.001] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 16.8] [Reference Citation Analysis]
207 Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017;52:638-62. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Cited by in Crossref: 87] [Cited by in F6Publishing: 83] [Article Influence: 17.4] [Reference Citation Analysis]
208 Putri HE, Nutho B, Rungrotmongkol T, Sritularak B, Vinayanuwattikun C, Chanvorachote P. Bibenzyl analogue DS-1 inhibits MDM2-mediated p53 degradation and sensitizes apoptosis in lung cancer cells. Phytomedicine 2021;85:153534. [PMID: 33773191 DOI: 10.1016/j.phymed.2021.153534] [Reference Citation Analysis]
209 Wang R, Sun L, Xia S, Wu H, Ma Y, Zhan S, Zhang G, Zhang X, Shi T, Chen W. B7-H3 suppresses doxorubicin-induced senescence-like growth arrest in colorectal cancer through the AKT/TM4SF1/SIRT1 pathway. Cell Death Dis 2021;12:453. [PMID: 33958586 DOI: 10.1038/s41419-021-03736-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
210 Wang J, Wang L, Zhang S, Fan J, Yang H, Li Q, Guo C. Novel eIF4E/eIF4G protein-protein interaction inhibitors DDH-1 exhibits anti-cancer activity in vivo and in vitro. International Journal of Biological Macromolecules 2020;160:496-505. [DOI: 10.1016/j.ijbiomac.2020.05.233] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
211 de Almeida M, Hinterndorfer M, Brunner H, Grishkovskaya I, Singh K, Schleiffer A, Jude J, Deswal S, Kalis R, Vunjak M, Lendl T, Imre R, Roitinger E, Neumann T, Kandolf S, Schutzbier M, Mechtler K, Versteeg GA, Haselbach D, Zuber J. AKIRIN2 controls the nuclear import of proteasomes in vertebrates. Nature 2021;599:491-6. [PMID: 34711951 DOI: 10.1038/s41586-021-04035-8] [Reference Citation Analysis]
212 Köberle B, Schoch S. Platinum Complexes in Colorectal Cancer and Other Solid Tumors. Cancers (Basel) 2021;13:2073. [PMID: 33922989 DOI: 10.3390/cancers13092073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
213 Friedel L, Loewer A. The guardian's choice: how p53 enables context-specific decision-making in individual cells. FEBS J 2021. [PMID: 33590949 DOI: 10.1111/febs.15767] [Reference Citation Analysis]
214 Marruecos L, Manils J, Moreta C, Gómez D, Filgaira I, Serafin A, Cañas X, Espinosa L, Soler C. Single loss of a Trp53 allele triggers an increased oxidative, DNA damage and cytokine inflammatory responses through deregulation of IκBα expression. Cell Death Dis 2021;12:359. [PMID: 33824284 DOI: 10.1038/s41419-021-03638-3] [Reference Citation Analysis]
215 Yang Y, He J, Chen J, Lin L, Liu Y, Zhou C, Su Y, Wei H. Dihydroartemisinin Sensitizes Mutant p53 (R248Q)-Expressing Hepatocellular Carcinoma Cells to Doxorubicin by Inhibiting P-gp Expression. Biomed Res Int 2019;2019:8207056. [PMID: 31976328 DOI: 10.1155/2019/8207056] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
216 Ingaramo MC, Sánchez JA, Dekanty A. Regulation and function of p53: A perspective from Drosophila studies. Mech Dev 2018;154:82-90. [PMID: 29800619 DOI: 10.1016/j.mod.2018.05.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
217 Montes M, Lubas M, Arendrup FS, Mentz B, Rohatgi N, Tumas S, Harder LM, Skanderup AJ, Andersen JS, Lund AH. The long non-coding RNA MIR31HG regulates the senescence associated secretory phenotype. Nat Commun 2021;12:2459. [PMID: 33911076 DOI: 10.1038/s41467-021-22746-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
218 Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, Fan H, Shen H, Way GP, Greene CS, Liu Y, Akbani R, Feng B, Donehower LA, Miller C, Shen Y, Karimi M, Chen H, Kim P, Jia P, Shinbrot E, Zhang S, Liu J, Hu H, Bailey MH, Yau C, Wolf D, Zhao Z, Weinstein JN, Li L, Ding L, Mills GB, Laird PW, Wheeler DA, Shmulevich I, Monnat RJ Jr, Xiao Y, Wang C; Cancer Genome Atlas Research Network. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep 2018;23:239-254.e6. [PMID: 29617664 DOI: 10.1016/j.celrep.2018.03.076] [Cited by in Crossref: 302] [Cited by in F6Publishing: 268] [Article Influence: 100.7] [Reference Citation Analysis]
219 Furlan SN, Singh K, Lopez C, Tkachev V, Hunt DJ, Hibbard J, Betz KM, Blazar BR, Trapnell C, Kean LS. IL-2 enhances ex vivo-expanded regulatory T-cell persistence after adoptive transfer. Blood Adv 2020;4:1594-605. [PMID: 32311015 DOI: 10.1182/bloodadvances.2019001248] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
220 Napolitano R, De Matteis S, Carloni S, Bruno S, Abbati G, Capelli L, Ghetti M, Bochicchio MT, Liverani C, Mercatali L, Calistri D, Cuneo A, Menon K, Musuraca G, Martinelli G, Simonetti G. Kevetrin induces apoptosis in TP53 wild‑type and mutant acute myeloid leukemia cells. Oncol Rep 2020;44:1561-73. [PMID: 32945487 DOI: 10.3892/or.2020.7730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
221 Shen CC, Cheng WY, Lee CH, Dai XJ, Chiao MT, Liang YJ, Hsieh WY, Mao TF, Lin GS, Chen SR, Liu BS, Chen JP. Both p53 codon 72 Arg/Arg and pro/Arg genotypes in glioblastoma multiforme are associated with a better prognosis in bevacizumab treatment. BMC Cancer 2020;20:709. [PMID: 32727419 DOI: 10.1186/s12885-020-07210-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
222 Haupt S, Haupt Y. Cancer and Tumour Suppressor p53 Encounters at the Juncture of Sex Disparity. Front Genet 2021;12:632719. [PMID: 33664771 DOI: 10.3389/fgene.2021.632719] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
223 Vanaja A, Mallick SP, Kulandaivelu U, Kumar A, Yella VR. Symphony of the DNA flexibility and sequence environment orchestrates p53 binding to its responsive elements. Gene 2021;803:145892. [PMID: 34375633 DOI: 10.1016/j.gene.2021.145892] [Reference Citation Analysis]
224 Takasugi M, Firsanov D, Tombline G, Ning H, Ablaeva J, Seluanov A, Gorbunova V. Naked mole-rat very-high-molecular-mass hyaluronan exhibits superior cytoprotective properties. Nat Commun 2020;11:2376. [PMID: 32398747 DOI: 10.1038/s41467-020-16050-w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 10.0] [Reference Citation Analysis]
225 Hafner A, Kublo L, Tsabar M, Lahav G, Stewart-Ornstein J. Identification of universal and cell-type specific p53 DNA binding. BMC Mol Cell Biol 2020;21:5. [PMID: 32070277 DOI: 10.1186/s12860-020-00251-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
226 Krstic J, Reinisch I, Schindlmaier K, Galhuber M, Riahi Z, Berger N, Kupper N, Moyschewitz E, Auer M, Michenthaler H, Nössing C, Depaoli MR, Ramadani-muja J, Usluer S, Stryeck S, Pichler M, Rinner B, Deutsch AJA, Reinisch A, Madl T, Chiozzi RZ, Heck AJR, Huch M, Malli R, Prokesch A. Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. Sci Adv 2022;8:eabh2635. [DOI: 10.1126/sciadv.abh2635] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
227 Krstic J, Reinisch I, Schupp M, Schulz TJ, Prokesch A. p53 Functions in Adipose Tissue Metabolism and Homeostasis. Int J Mol Sci 2018;19:E2622. [PMID: 30181511 DOI: 10.3390/ijms19092622] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
228 Smith HL, Southgate H, Tweddle DA, Curtin NJ. DNA damage checkpoint kinases in cancer. Expert Rev Mol Med 2020;22:e2. [PMID: 32508294 DOI: 10.1017/erm.2020.3] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
229 Xu X, Liu Q, Zhang C, Ren S, Xu L, Zhao Z, Dou H, Li P, Zhang X, Gong Y, Shao C. Inhibition of DYRK1A-EGFR axis by p53-MDM2 cascade mediates the induction of cellular senescence. Cell Death Dis 2019;10:282. [PMID: 30910997 DOI: 10.1038/s41419-019-1521-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
230 Vo NTK, Shahid M, Seymour CB, Mothersill CE. Effects of Dose Rate on the Reproductive Cell Death and Early Mitochondrial Membrane Potential in Different Human Epithelium-Derived Cells Exposed to Gamma Rays. Dose Response 2019;17:1559325819852508. [PMID: 31210757 DOI: 10.1177/1559325819852508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
231 Li F, Miao L, Xue T, Qin H, Mondal S, Thompson PR, Coonrod SA, Liu X, Zhang X. Inhibiting PAD2 enhances the anti-tumor effect of docetaxel in tamoxifen-resistant breast cancer cells. J Exp Clin Cancer Res 2019;38:414. [PMID: 31601253 DOI: 10.1186/s13046-019-1404-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
232 García-de-Teresa B, Rodríguez A, Frias S. Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences. Genes (Basel) 2020;11:E1528. [PMID: 33371494 DOI: 10.3390/genes11121528] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
233 He G, Xie X, Siddik ZH. Protein expression profiling identifies differential modulation of homologous recombination by platinum-based antitumor agents. Cancer Chemother Pharmacol 2020;85:1129-40. [PMID: 32468080 DOI: 10.1007/s00280-020-04085-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
234 Shah HD, Saranath D, Murthy V. A molecular dynamics and docking study to screen anti-cancer compounds targeting mutated p53. J Biomol Struct Dyn 2020;:1-10. [PMID: 33111621 DOI: 10.1080/07391102.2020.1839559] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
235 Su D, Li N, Liu Y, Wang M, Su X. Ratiometric fluorescence strategy for p53 gene assay by using nitrogen doped graphene quantum dots and berberine as fluorescence reporters. Analytica Chimica Acta 2019;1084:78-84. [DOI: 10.1016/j.aca.2019.07.048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
236 Attri A, Thakur D, Kaur T, Sensale S, Peng Z, Kumar D, Singh RP. Nanoparticles Incorporating a Fluorescence Turn-on Reporter for Real-Time Drug Release Monitoring, a Chemoenhancer and a Stealth Agent: Poseidon's Trident against Cancer? Mol Pharm 2021;18:124-47. [PMID: 33346663 DOI: 10.1021/acs.molpharmaceut.0c00730] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
237 Ma X, Zheng Q, Zhao G, Yuan W, Liu W. Regulation of cellular senescence by microRNAs. Mech Ageing Dev 2020;189:111264. [PMID: 32450085 DOI: 10.1016/j.mad.2020.111264] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
238 Howard TP, Arnoff TE, Song MR, Giacomelli AO, Wang X, Hong AL, Dharia NV, Wang S, Vazquez F, Pham MT, Morgan AM, Wachter F, Bird GH, Kugener G, Oberlick EM, Rees MG, Tiv HL, Hwang JH, Walsh KH, Cook A, Krill-Burger JM, Tsherniak A, Gokhale PC, Park PJ, Stegmaier K, Walensky LD, Hahn WC, Roberts CWM. MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. Cancer Res 2019;79:2404-14. [PMID: 30755442 DOI: 10.1158/0008-5472.CAN-18-3066] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 6.7] [Reference Citation Analysis]
239 Hoellerbauer P, Kufeld M, Arora S, Wu HJ, Feldman HM, Paddison PJ. A simple and highly efficient method for multi-allelic CRISPR-Cas9 editing in primary cell cultures. Cancer Rep (Hoboken) 2020;3:e1269. [PMID: 32721120 DOI: 10.1002/cnr2.1269] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
240 Fleury H, Malaquin N, Tu V, Gilbert S, Martinez A, Olivier MA, Sauriol A, Communal L, Leclerc-Desaulniers K, Carmona E, Provencher D, Mes-Masson AM, Rodier F. Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat Commun 2019;10:2556. [PMID: 31186408 DOI: 10.1038/s41467-019-10460-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
241 Li H, Liu L, Chen HY, Yan X, Li RL, Lan J, Xue KY, Li X, Zhuo CL, Lin L, Li LY, Wu Z, Zhang D, Wang XM, Huang WJ, Wang Y, Jiang W, Zhou L. Mogrol suppresses lung cancer cell growth by activating AMPK-dependent autophagic death and inducing p53-dependent cell cycle arrest and apoptosis. Toxicol Appl Pharmacol 2022;:116037. [PMID: 35489526 DOI: 10.1016/j.taap.2022.116037] [Reference Citation Analysis]
242 Luan Y, Tang N, Yang J, Liu S, Cheng C, Wang Y, Chen C, Guo YN, Wang H, Zhao W, Zhao Q, Li W, Xiang M, Ju R, Xie Z. Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells. Nucleic Acids Res 2022:gkac053. [PMID: 35137207 DOI: 10.1093/nar/gkac053] [Reference Citation Analysis]
243 Coronel L, Riege K, Schwab K, Förste S, Häckes D, Semerau L, Bernhart SH, Siebert R, Hoffmann S, Fischer M. Transcription factor RFX7 governs a tumor suppressor network in response to p53 and stress. Nucleic Acids Res 2021;49:7437-56. [PMID: 34197623 DOI: 10.1093/nar/gkab575] [Reference Citation Analysis]
244 Szołtysek K, Janus P, Zając G, Stokowy T, Walaszczyk A, Widłak W, Wojtaś B, Gielniewski B, Cockell S, Perkins ND, Kimmel M, Widlak P. RRAD, IL4I1, CDKN1A, and SERPINE1 genes are potentially co-regulated by NF-κB and p53 transcription factors in cells exposed to high doses of ionizing radiation. BMC Genomics 2018;19:813. [PMID: 30419821 DOI: 10.1186/s12864-018-5211-y] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
245 Fischer M, Schwarz R, Riege K, DeCaprio JA, Hoffmann S. TargetGeneReg 2.0: a comprehensive web-atlas for p53, p63, and cell cycle-dependent gene regulation. NAR Cancer 2022;4:zcac009. [PMID: 35350773 DOI: 10.1093/narcan/zcac009] [Reference Citation Analysis]
246 Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020;21:E3452. [PMID: 32414156 DOI: 10.3390/ijms21103452] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
247 Solmaz M, Lane A, Gonen B, Akmamedova O, Gunes MH, Komurov K. Graphical data mining of cancer mechanisms with SEMA. Bioinformatics 2019;35:4413-8. [PMID: 31070723 DOI: 10.1093/bioinformatics/btz303] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
248 Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ 2022;29:946-60. [PMID: 35361964 DOI: 10.1038/s41418-022-00988-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
249 Ho C, Tsai C, Zhu W, Pao Y, Chen H, Hu C, Lee Y, Huang T, Chen C, Loh J, Hong Y, Wang C. Compound cellular stress maximizes apoptosis independently of p53 in glioblastoma. Cell Cycle. [DOI: 10.1080/15384101.2022.2041954] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
250 Cho HC, Huang Y, Hung JT, Hung TH, Cheng KC, Liu YH, Kuo MW, Wang SH, Yu AL, Yu J. Puf-A promotes cancer progression by interacting with nucleophosmin in nucleolus. Oncogene 2022. [PMID: 34999733 DOI: 10.1038/s41388-021-02138-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
251 Eldridge CB, Allen FJ, Crisp A, Grandy RA, Vallier L, Sale JE. A p53-Dependent Checkpoint Induced upon DNA Damage Alters Cell Fate during hiPSC Differentiation. Stem Cell Reports 2020;15:827-35. [PMID: 32888504 DOI: 10.1016/j.stemcr.2020.08.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
252 Gomes AS, Ramos H, Inga A, Sousa E, Saraiva L. Structural and Drug Targeting Insights on Mutant p53. Cancers (Basel) 2021;13:3344. [PMID: 34283062 DOI: 10.3390/cancers13133344] [Reference Citation Analysis]
253 Tsai YY, Su CH, Tarn WY. p53 Activation in Genetic Disorders: Different Routes to the Same Destination. Int J Mol Sci 2021;22:9307. [PMID: 34502215 DOI: 10.3390/ijms22179307] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
254 Wu WR, Lin JT, Pan CT, Chan TC, Liu CL, Wu WJ, Sheu JJ, Yeh BW, Huang SK, Jhung JY, Hsiao MS, Li CF, Shiue YL. Amplification-driven BCL6-suppressed cytostasis is mediated by transrepression of FOXO3 and post-translational modifications of FOXO3 in urinary bladder urothelial carcinoma. Theranostics 2020;10:707-24. [PMID: 31903146 DOI: 10.7150/thno.39018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
255 Ananthapadmanabhan V, Frost TC, Soroko KM, Knott A, Magliozzi BJ, Gokhale PC, Tirunagaru VG, Doebele RC, DeCaprio JA. Milademetan is a highly potent MDM2 inhibitor in Merkel cell carcinoma. JCI Insight 2022;7:e160513. [PMID: 35801592 DOI: 10.1172/jci.insight.160513] [Reference Citation Analysis]
256 Ding B, Haidurov A, Chawla A, Parmigiani A, van de Kamp G, Dalina A, Yuan F, Lee JH, Chumakov PM, Grossman SR, Budanov AV. p53-inducible SESTRINs might play opposite roles in the regulation of early and late stages of lung carcinogenesis. Oncotarget 2019;10:6997-7009. [PMID: 31857853 DOI: 10.18632/oncotarget.27367] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
257 Kwok M, Agathanggelou A, Davies N, Stankovic T. Targeting the p53 Pathway in CLL: State of the Art and Future Perspectives. Cancers (Basel) 2021;13:4681. [PMID: 34572908 DOI: 10.3390/cancers13184681] [Reference Citation Analysis]
258 Eisenstein M. A visual guide to restoring the guardian of the genome. Nature 2022;603:S2-3. [PMID: 35236980 DOI: 10.1038/d41586-022-00566-w] [Reference Citation Analysis]
259 Jishage M, Ito K, Chu CS, Wang X, Yamaji M, Roeder RG. Transcriptional down-regulation of metabolic genes by Gdown1 ablation induces quiescent cell re-entry into the cell cycle. Genes Dev 2020;34:767-84. [PMID: 32381628 DOI: 10.1101/gad.337683.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
260 Melnik BC. p53: key conductor of all anti-acne therapies. J Transl Med 2017;15:195. [PMID: 28927457 DOI: 10.1186/s12967-017-1297-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
261 Stiewe T, Haran TE. How mutations shape p53 interactions with the genome to promote tumorigenesis and drug resistance. Drug Resist Updat 2018;38:27-43. [PMID: 29857816 DOI: 10.1016/j.drup.2018.05.001] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 11.3] [Reference Citation Analysis]
262 Florian AC, Woodley CM, Wang J, Grieb BC, Slota MJ, Guerrazzi K, Hsu CY, Matlock BK, Flaherty DK, Lorey SL, Fesik SW, Howard GC, Liu Q, Weissmiller AM, Tansey WP. Synergistic action of WDR5 and HDM2 inhibitors in SMARCB1-deficient cancer cells. NAR Cancer 2022;4:zcac007. [PMID: 35252869 DOI: 10.1093/narcan/zcac007] [Reference Citation Analysis]
263 Sullivan KD, Galbraith MD, Andrysik Z, Espinosa JM. Mechanisms of transcriptional regulation by p53. Cell Death Differ 2018;25:133-43. [PMID: 29125602 DOI: 10.1038/cdd.2017.174] [Cited by in Crossref: 172] [Cited by in F6Publishing: 161] [Article Influence: 34.4] [Reference Citation Analysis]
264 Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 2019;20:199-210. [DOI: 10.1038/s41580-019-0110-x] [Cited by in Crossref: 273] [Cited by in F6Publishing: 253] [Article Influence: 91.0] [Reference Citation Analysis]
265 Bulgakova O, Zhabayeva D, Kussainova A, Pulliero A, Izzotti A, Bersimbaev R. miR-19 in blood plasma reflects lung cancer occurrence but is not specifically associated with radon exposure. Oncol Lett 2018;15:8816-24. [PMID: 29805621 DOI: 10.3892/ol.2018.8392] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
266 Rokavec M, Bouznad N, Hermeking H. Paracrine Induction of Epithelial-Mesenchymal Transition Between Colorectal Cancer Cells and its Suppression by a p53/miR-192/215/NID1 Axis. Cell Mol Gastroenterol Hepatol 2019;7:783-802. [PMID: 30831320 DOI: 10.1016/j.jcmgh.2019.02.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
267 Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020;36:101679. [PMID: 32818797 DOI: 10.1016/j.redox.2020.101679] [Cited by in Crossref: 16] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
268 Alam F, Mezhal F, El Hasasna H, Nair VA, Aravind SR, Saber Ayad M, El-Serafi A, Abdel-Rahman WM. The role of p53-microRNA 200-Moesin axis in invasion and drug resistance of breast cancer cells. Tumour Biol. 2017;39:1010428317714634. [PMID: 28933253 DOI: 10.1177/1010428317714634] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
269 Papaleo E. Investigating Conformational Dynamics and in the DNA-Binding Domain Using Molecular Simulations. In: Di Paola L, Giuliani A, editors. Allostery. New York: Springer US; 2021. pp. 221-44. [DOI: 10.1007/978-1-0716-1154-8_13] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
270 Galhuber M, Michenthaler H, Heininger C, Reinisch I, Nössing C, Krstic J, Kupper N, Moyschewitz E, Auer M, Heitzer E, Ulz P, Birner-Gruenberger R, Liesinger L, Lenihan-Geels GN, Oster M, Spreitzer E, Zenezini Chiozzi R, Schulz TJ, Schupp M, Madl T, Heck AJR, Prokesch A. Complementary omics strategies to dissect p53 signaling networks under nutrient stress. Cell Mol Life Sci 2022;79:326. [PMID: 35635656 DOI: 10.1007/s00018-022-04345-8] [Reference Citation Analysis]
271 Liebl MC, Moehlenbrink J, Becker H, Raddatz G, Abdeen SK, Aqeilan RI, Lyko F, Hofmann TG. DAZAP2 acts as specifier of the p53 response to DNA damage. Nucleic Acids Res 2021;49:2759-76. [PMID: 33591310 DOI: 10.1093/nar/gkab084] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
272 Xie SH, Li H, Jiang JJ, Quan Y, Zhang HY. Multi-Omics Interpretation of Anti-Aging Mechanisms for ω-3 Fatty Acids. Genes (Basel) 2021;12:1691. [PMID: 34828297 DOI: 10.3390/genes12111691] [Reference Citation Analysis]
273 Yu J, Xiao Y, Wang Y, Xu S, Zhou L, Li J, Li X. Chronic nitrate exposure cause alteration of blood physiological parameters, redox status and apoptosis of juvenile turbot (Scophthalmus maximus). Environmental Pollution 2021;283:117103. [DOI: 10.1016/j.envpol.2021.117103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
274 Wylie A, Jones AE, Das S, Lu WJ, Abrams JM. Distinct p53 isoforms code for opposing transcriptional outcomes. Dev Cell 2022:S1534-5807(22)00456-7. [PMID: 35820415 DOI: 10.1016/j.devcel.2022.06.015] [Reference Citation Analysis]
275 Feroz W, Sheikh AMA. Exploring the multiple roles of guardian of the genome: P53. Egypt J Med Hum Genet 2020;21. [DOI: 10.1186/s43042-020-00089-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
276 Hu Y, Jin R, Gao M, Xu H, Zou S, Li X, Xing C, Wang Q, Wang H, Feng J, Hu M, Song L. Transcriptional repression of IKKβ by p53 in arsenite-induced GADD45α accumulation and apoptosis. Oncogene 2019;38:731-46. [PMID: 30177839 DOI: 10.1038/s41388-018-0478-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
277 Ren H, Ma C, Peng H, Zhang B, Zhou L, Su Y, Gao X, Huang H. Micronucleus production, activation of DNA damage response and cGAS-STING signaling in syncytia induced by SARS-CoV-2 infection. Biol Direct 2021;16:20. [PMID: 34674770 DOI: 10.1186/s13062-021-00305-7] [Reference Citation Analysis]
278 Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M, Melino G, Raschellà G. Zinc-finger proteins in health and disease. Cell Death Discov 2017;3:17071. [PMID: 29152378 DOI: 10.1038/cddiscovery.2017.71] [Cited by in Crossref: 195] [Cited by in F6Publishing: 170] [Article Influence: 39.0] [Reference Citation Analysis]
279 Gurung SK, Kumari S, Dana S, Mandal K, Sen S, Mukhopadhyay P, Mondal N. DNA damage, cell cycle perturbation and cell death by naphthalene diimide derivative in gastric cancer cells. Chemico-Biological Interactions 2022. [DOI: 10.1016/j.cbi.2022.109881] [Reference Citation Analysis]
280 Wu CE, Huang CY, Chen CP, Pan YR, Chang JW, Chen JS, Yeh CN, Lunec J. WIP1 Inhibition by GSK2830371 Potentiates HDM201 through Enhanced p53 Phosphorylation and Activation in Liver Adenocarcinoma Cells. Cancers (Basel) 2021;13:3876. [PMID: 34359777 DOI: 10.3390/cancers13153876] [Reference Citation Analysis]
281 Zhang S, Carlsen L, Hernandez Borrero L, Seyhan AA, Tian X, El-deiry WS. Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022;12:548. [DOI: 10.3390/biom12040548] [Reference Citation Analysis]
282 Mahdavi M, Nassiri M, Kooshyar MM, Vakili‐azghandi M, Avan A, Sandry R, Pillai S, Lam AK, Gopalan V. Hereditary breast cancer; Genetic penetrance and current status with BRCA. J Cell Physiol 2019;234:5741-50. [DOI: 10.1002/jcp.27464] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
283 Wang Y, Huang Z, Chen CZ, Liu C, Evans CP, Gao AC, Zhou F, Chen HW. Therapeutic Targeting of MDR1 Expression by RORγ Antagonists Resensitizes Cross-Resistant CRPC to Taxane via Coordinated Induction of Cell Death Programs. Mol Cancer Ther 2020;19:364-74. [PMID: 31712394 DOI: 10.1158/1535-7163.MCT-19-0327] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
284 Liang S, Ezerskyte M, Wang J, Pelechano V, Dreij K. Transcriptional mutagenesis dramatically alters genome-wide p53 transactivation landscape. Sci Rep 2020;10:13513. [PMID: 32782319 DOI: 10.1038/s41598-020-70412-4] [Reference Citation Analysis]
285 Sauriol A, Simeone K, Portelance L, Meunier L, Leclerc-Desaulniers K, de Ladurantaye M, Chergui M, Kendall-Dupont J, Rahimi K, Carmona E, Provencher DM, Mes-Masson AM. Modeling the Diversity of Epithelial Ovarian Cancer through Ten Novel Well Characterized Cell Lines Covering Multiple Subtypes of the Disease. Cancers (Basel) 2020;12:E2222. [PMID: 32784519 DOI: 10.3390/cancers12082222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
286 Zhao L, Fu L, Xu Z, Fan R, Xu R, Fu R, Zou S, Wang C, Zhang Y, Wang J, Bao J, Wang Z, Hou X, Zheng Y, Dai E, Wang F. The anticancer effects of cinobufagin on hepatocellular carcinoma Huh‑7 cells are associated with activation of the p73 signaling pathway. Mol Med Rep 2019;19:4119-28. [PMID: 30942456 DOI: 10.3892/mmr.2019.10108] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
287 Michel N, Young HMR, Atkin ND, Arshad U, Al-Humadi R, Singh S, Manukyan A, Gore L, Burbulis IE, Wang YH, McConnell MJ. Transcription-associated DNA DSBs activate p53 during hiPSC-based neurogenesis. Sci Rep 2022;12:12156. [PMID: 35840793 DOI: 10.1038/s41598-022-16516-5] [Reference Citation Analysis]
288 Fischer M, Uxa S, Stanko C, Magin TM, Engeland K. Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci Rep 2017;7:2603. [PMID: 28572607 DOI: 10.1038/s41598-017-02831-9] [Cited by in Crossref: 36] [Cited by in F6Publishing: 32] [Article Influence: 7.2] [Reference Citation Analysis]
289 Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2019. [PMID: 31663259 DOI: 10.1111/brv.12562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
290 Jiang H, Luo J, Lei H. The roles of mouse double minute 2 (MDM2) oncoprotein in ocular diseases: A review. Exp Eye Res 2022;:108910. [PMID: 34998788 DOI: 10.1016/j.exer.2021.108910] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
291 Hage-Sleiman R, Bahmad H, Kobeissy H, Dakdouk Z, Kobeissy F, Dbaibo G. Genomic alterations during p53-dependent apoptosis induced by γ-irradiation of Molt-4 leukemia cells. PLoS One 2017;12:e0190221. [PMID: 29272311 DOI: 10.1371/journal.pone.0190221] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.6] [Reference Citation Analysis]
292 Uxa S, Bernhart SH, Mages CFS, Fischer M, Kohler R, Hoffmann S, Stadler PF, Engeland K, Müller GA. DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Res 2019;47:9087-103. [PMID: 31400114 DOI: 10.1093/nar/gkz635] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
293 Sossey-Alaoui K, Pluskota E, Szpak D, Plow EF. The Kindlin2-p53-SerpinB2 signaling axis is required for cellular senescence in breast cancer. Cell Death Dis 2019;10:539. [PMID: 31308359 DOI: 10.1038/s41419-019-1774-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
294 Macaeva E, Tabury K, Michaux A, Janssen A, Averbeck N, Moreels M, De Vos WH, Baatout S, Quintens R. High-LET Carbon and Iron Ions Elicit a Prolonged and Amplified p53 Signaling and Inflammatory Response Compared to low-LET X-Rays in Human Peripheral Blood Mononuclear Cells. Front Oncol 2021;11:768493. [PMID: 34888245 DOI: 10.3389/fonc.2021.768493] [Reference Citation Analysis]
295 Liebl MC, Hofmann TG. The Role of p53 Signaling in Colorectal Cancer. Cancers (Basel) 2021;13:2125. [PMID: 33924934 DOI: 10.3390/cancers13092125] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
296 Joseph DB, Chandrashekar AS, Abler LL, Chu LF, Thomson JA, Vezina CM. Epithelial DNA methyltransferase-1 regulates cell survival, growth and maturation in developing prostatic buds. Dev Biol 2019;447:157-69. [PMID: 30659795 DOI: 10.1016/j.ydbio.2019.01.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
297 Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021;227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Reference Citation Analysis]
298 Schuller S, Sieker J, Riemenschneider P, Köhler B, Drucker E, Weiler SME, Dauch D, Sticht C, Goeppert B, Roessler S, Ribback S, Breuhahn K, Fend F, Dombrowski F, Singer K, Singer S. HELLS Is Negatively Regulated by Wild-Type P53 in Liver Cancer by a Mechanism Involving P21 and FOXM1. Cancers 2022;14:459. [DOI: 10.3390/cancers14020459] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
299 Cardoso APF, Al-Eryani L, States JC. Arsenic-Induced Carcinogenesis: The Impact of miRNA Dysregulation. Toxicol Sci 2018;165:284-90. [PMID: 29846715 DOI: 10.1093/toxsci/kfy128] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
300 Fischer M. Conservation and divergence of the p53 gene regulatory network between mice and humans. Oncogene 2019;38:4095-109. [PMID: 30710145 DOI: 10.1038/s41388-019-0706-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
301 Li XL, Li GH, Fu J, Fu YW, Zhang L, Chen W, Arakaki C, Zhang JP, Wen W, Zhao M, Chen WV, Botimer GD, Baylink D, Aranda L, Choi H, Bechar R, Talbot P, Sun CK, Cheng T, Zhang XB. Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Res 2018;46:10195-215. [PMID: 30239926 DOI: 10.1093/nar/gky804] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 15.7] [Reference Citation Analysis]
302 Doan A, Arand J, Gong D, Drainas AP, Shue YT, Lee MC, Zhang S, Walter DM, Chaikovsky AC, Feldser DM, Vogel H, Dow LE, Skotheim JM, Sage J. RB depletion is required for the continuous growth of tumors initiated by loss of RB. PLoS Genet 2021;17:e1009941. [PMID: 34879057 DOI: 10.1371/journal.pgen.1009941] [Reference Citation Analysis]
303 Newton K, Gitlin AD. Deubiquitinases in cell death and inflammation. Biochem J 2022;479:1103-19. [PMID: 35608338 DOI: 10.1042/BCJ20210735] [Reference Citation Analysis]
304 Demyanenko S, Dzreyan V, Uzdensky A. Axotomy-Induced Changes of the Protein Profile in the Crayfish Ventral Cord Ganglia. J Mol Neurosci 2019;68:667-78. [PMID: 31066008 DOI: 10.1007/s12031-019-01329-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
305 Godwin I, Anto NP, Bava SV, Babu MS, Jinesh GG. Targeting K-Ras and apoptosis-driven cellular transformation in cancer. Cell Death Discov 2021;7:80. [PMID: 33854056 DOI: 10.1038/s41420-021-00457-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
306 Loke BN, Wong MK, Tawng KD, Kuick CH, Jain S, Lian D, Wagner E, Zou Y, Ganesan V, Sim SW, Lee YT, Chin F, Chan MY, Tan AM, Teh BT, Soh SY, Chang KT, Loh AH. Clinical, pathological and loss of heterozygosity differences in Wilms tumors between Asian and non-Asian children: Interethnic differences in Wilms tumors. Int J Cancer 2019;144:1234-42. [DOI: 10.1002/ijc.31946] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
307 Hoppe-Seyler K, Herrmann AL, Däschle A, Kuhn BJ, Strobel TD, Lohrey C, Bulkescher J, Krijgsveld J, Hoppe-Seyler F. Effects of Metformin on the virus/host cell crosstalk in human papillomavirus-positive cancer cells. Int J Cancer 2021;149:1137-49. [PMID: 33844847 DOI: 10.1002/ijc.33594] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
308 Sharifian R, Okamura DM, Denisenko O, Zager RA, Johnson A, Gharib SA, Bomsztyk K. Distinct patterns of transcriptional and epigenetic alterations characterize acute and chronic kidney injury. Sci Rep 2018;8:17870. [PMID: 30552397 DOI: 10.1038/s41598-018-35943-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
309 Ye L, Song Z, Li C. Landscape and flux quantify the stochastic transition dynamics for p53 cell fate decision. J Chem Phys 2021;154:025101. [PMID: 33445890 DOI: 10.1063/5.0030558] [Reference Citation Analysis]
310 Woodstock DL, Sammons MA, Fischer M. p63 and p53: Collaborative Partners or Dueling Rivals? Front Cell Dev Biol 2021;9:701986. [PMID: 34291055 DOI: 10.3389/fcell.2021.701986] [Reference Citation Analysis]
311 Guthrie OW. Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system. Experimental Cell Research 2017;359:50-61. [DOI: 10.1016/j.yexcr.2017.08.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
312 Baker NE, Kiparaki M, Khan C. A potential link between p53, cell competition and ribosomopathy in mammals and in Drosophila. Dev Biol 2019;446:17-9. [PMID: 30513308 DOI: 10.1016/j.ydbio.2018.11.018] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
313 Wang Y, Zhang G, Meng Q, Huang S, Guo P, Leng Q, Sun L, Liu G, Huang X, Liu J. Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nat Commun 2022;13:1454. [PMID: 35304449 DOI: 10.1038/s41467-022-29120-y] [Reference Citation Analysis]
314 Manic G, Sistigu A, Corradi F, Musella M, De Maria R, Vitale I. Replication stress response in cancer stem cells as a target for chemotherapy. Semin Cancer Biol 2018;53:31-41. [PMID: 30081229 DOI: 10.1016/j.semcancer.2018.08.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
315 Nita A, Muto Y, Katayama Y, Matsumoto A, Nishiyama M, Nakayama KI. The autism-related protein CHD8 contributes to the stemness and differentiation of mouse hematopoietic stem cells. Cell Rep 2021;34:108688. [PMID: 33535054 DOI: 10.1016/j.celrep.2021.108688] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
316 Vandemoortele G, De Sutter D, Moliere A, Pauwels J, Gevaert K, Eyckerman S. A Well-Controlled BioID Design for Endogenous Bait Proteins. J Proteome Res 2019;18:95-106. [PMID: 30525648 DOI: 10.1021/acs.jproteome.8b00367] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
317 Zhang G, Yu T, Zhang Q, Zhang H, Xiao M, Cui S, Zhao Y, Lu X. Malignant transformation of human bronchial epithelial cells induced by benzo [a] pyrene suggests a negative feedback of TP53 to PPP1R13L via binding a possible enhancer element. Chem Biol Interact 2021;349:109683. [PMID: 34610339 DOI: 10.1016/j.cbi.2021.109683] [Reference Citation Analysis]
318 Ozcan M, Altay O, Lam S, Turkez H, Aksoy Y, Nielsen J, Uhlen M, Boren J, Mardinoglu A. Improvement in the Current Therapies for Hepatocellular Carcinoma Using a Systems Medicine Approach. Adv Biosyst 2020;4:e2000030. [PMID: 32529800 DOI: 10.1002/adbi.202000030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
319 Modi A, Singh M, Gutti G, Shanker OR, Singh VK, Singh S, Singh SK, Pradhan S, Narayan G. Benzothiazole derivative bearing amide moiety induces p53-mediated apoptosis in HPV16 positive cervical cancer cells. Invest New Drugs 2020;38:934-45. [PMID: 31432292 DOI: 10.1007/s10637-019-00848-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
320 Brachtendorf S, El-hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Progress in Lipid Research 2019;74:160-85. [DOI: 10.1016/j.plipres.2019.04.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
321 Tamura M, Yonezawa T, Liu X, Asada S, Hayashi Y, Fukuyama T, Tanaka Y, Kitamura T, Goyama S. Opposing effects of acute versus chronic inhibition of p53 on decitabine's efficacy in myeloid neoplasms. Sci Rep 2019;9:8171. [PMID: 31160638 DOI: 10.1038/s41598-019-44496-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
322 Yoon S, Beermann ML, Yu B, Shao D, Bachschmid M, Miller JB. Aberrant Caspase Activation in Laminin-α2-Deficient Human Myogenic Cells is Mediated by p53 and Sirtuin Activity. J Neuromuscul Dis 2018;5:59-73. [PMID: 29278895 DOI: 10.3233/JND-170262] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
323 Kaatsch HL, Becker BV, Schüle S, Ostheim P, Nestler K, Jakobi J, Schäfer B, Hantke T, Brockmann MA, Abend M, Waldeck S, Port M, Scherthan H, Ullmann R. Gene expression changes and DNA damage after ex vivo exposure of peripheral blood cells to various CT photon spectra. Sci Rep 2021;11:12060. [PMID: 34103547 DOI: 10.1038/s41598-021-91023-7] [Reference Citation Analysis]
324 Mircetic J, Dietrich A, Paszkowski-Rogacz M, Krause M, Buchholz F. Development of a genetic sensor that eliminates p53 deficient cells. Nat Commun 2017;8:1463. [PMID: 29133879 DOI: 10.1038/s41467-017-01688-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
325 Guo Y, Rall-Scharpf M, Bourdon JC, Wiesmüller L, Biber S. p53 isoforms differentially impact on the POLι dependent DNA damage tolerance pathway. Cell Death Dis 2021;12:941. [PMID: 34645785 DOI: 10.1038/s41419-021-04224-3] [Reference Citation Analysis]
326 Kung C, Weber JD. It’s Getting Complicated—A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy. Front Cell Dev Biol 2022;10:818744. [DOI: 10.3389/fcell.2022.818744] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
327 Tian X, Ahsan N, Lulla A, Lev A, Abbosh P, Dicker DT, Zhang S, El-Deiry WS. P53-independent partial restoration of the p53 pathway in tumors with mutated p53 through ATF4 transcriptional modulation by ERK1/2 and CDK9. Neoplasia 2021;23:304-25. [PMID: 33582407 DOI: 10.1016/j.neo.2021.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
328 Farkas M, Hashimoto H, Bi Y, Davuluri RV, Resnick-Silverman L, Manfredi JJ, Debler EW, McMahon SB. Distinct mechanisms control genome recognition by p53 at its target genes linked to different cell fates. Nat Commun 2021;12:484. [PMID: 33473123 DOI: 10.1038/s41467-020-20783-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
329 Smeby J, Sveen A, Eilertsen IA, Danielsen SA, Hoff AM, Eide PW, Johannessen B, Hektoen M, Skotheim RI, Guren MG, Nesbakken A, Lothe RA. Transcriptional and functional consequences of TP53 splice mutations in colorectal cancer. Oncogenesis 2019;8:35. [PMID: 31092812 DOI: 10.1038/s41389-019-0141-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
330 Gopanenko AV, Kolobova AV, Meschaninova MI, Venyaminova AG, Tupikin AE, Kabilov MR, Malygin AA, Karpova GG. Knockdown of the Ribosomal Protein eL29 in Mammalian Cells Leads to Significant Changes in Gene Expression at the Transcription Level. Cells 2020;9:E1228. [PMID: 32429214 DOI: 10.3390/cells9051228] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
331 Hernandez Borrero L, Dicker DT, Santiago J, Sanders J, Tian X, Ahsan N, Lev A, Zhou L, El-Deiry WS. A subset of CB002 xanthine analogs bypass p53-signaling to restore a p53 transcriptome and target an S-phase cell cycle checkpoint in tumors with mutated-p53. Elife 2021;10:e70429. [PMID: 34324416 DOI: 10.7554/eLife.70429] [Reference Citation Analysis]
332 Kumar P, Khadirnaikar S, Shukla SK. A novel LncRNA-based prognostic score reveals TP53-dependent subtype of lung adenocarcinoma with poor survival. J Cell Physiol 2019. [PMID: 30740686 DOI: 10.1002/jcp.28260] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
333 Wang Y, Hu L, Wang J, Li X, Sahengbieke S, Wu J, Lai M. HMGA2 promotes intestinal tumorigenesis by facilitating MDM2-mediated ubiquitination and degradation of p53: HMGA2 facilitates MDM2-mediated ubiquitination of p53. J Pathol 2018;246:508-18. [DOI: 10.1002/path.5164] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
334 Elwakeel A. Abrogating the Interaction Between p53 and Mortalin (Grp75/HSPA9/mtHsp70) for Cancer Therapy: The Story so far. Front Cell Dev Biol 2022;10:879632. [DOI: 10.3389/fcell.2022.879632] [Reference Citation Analysis]
335 Yang CM, Kang MK, Jung WJ, Joo JS, Kim YJ, Choi Y, Kim HP. p53 expression confers sensitivity to 5-fluorouracil via distinct chromatin accessibility dynamics in human colorectal cancer. Oncol Lett 2021;21:226. [PMID: 33613715 DOI: 10.3892/ol.2021.12487] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
336 Luwang JW, Nair AR, Natesh R. Stability of p53 oligomers: Tetramerization of p53 impinges on its stability. Biochimie 2021;189:99-107. [PMID: 34197865 DOI: 10.1016/j.biochi.2021.06.012] [Reference Citation Analysis]
337 Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019;:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
338 Turrell FK, Kerr EM, Gao M, Thorpe H, Doherty GJ, Cridge J, Shorthouse D, Speed A, Samarajiwa S, Hall BA, Griffiths M, Martins CP. Lung tumors with distinct p53 mutations respond similarly to p53 targeted therapy but exhibit genotype-specific statin sensitivity. Genes Dev 2017;31:1339-53. [PMID: 28790158 DOI: 10.1101/gad.298463.117] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 7.8] [Reference Citation Analysis]
339 Redman-Rivera LN, Shaver TM, Jin H, Marshall CB, Schafer JM, Sheng Q, Hongo RA, Beckermann KE, Wheeler FC, Lehmann BD, Pietenpol JA. Acquisition of aneuploidy drives mutant p53-associated gain-of-function phenotypes. Nat Commun 2021;12:5184. [PMID: 34465782 DOI: 10.1038/s41467-021-25359-z] [Reference Citation Analysis]
340 Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxidants & Redox Signaling 2020;33:839-59. [DOI: 10.1089/ars.2020.8074] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 18.0] [Reference Citation Analysis]
341 Moritz MN, Rossa C, de Oliveira KT, Uliana MP, Perussi JR. Phototoxicity in a laryngeal cancer cell line enhanced by a targeting amphiphilic chlorin photosensitizer. Photodiagnosis and Photodynamic Therapy 2017;19:355-62. [DOI: 10.1016/j.pdpdt.2017.07.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
342 Kim BY, Lee SY, Chung SK. Differential Transcriptional Regulation of Polymorphic p53 Codon 72 in Metabolic Pathways. Int J Mol Sci 2021;22:10793. [PMID: 34639134 DOI: 10.3390/ijms221910793] [Reference Citation Analysis]
343 Hay J, Gilroy K, Huser C, Kilbey A, Mcdonald A, MacCallum A, Holroyd A, Cameron E, Neil JC. Collaboration of MYC and RUNX2 in lymphoma simulates T-cell receptor signaling and attenuates p53 pathway activity. J Cell Biochem 2019;120:18332-45. [PMID: 31257681 DOI: 10.1002/jcb.29143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
344 Lim B, Yoo D, Chun Y, Go A, Cho KJ, Choi D, Jung ME, Lee HY, Boohaker RJ, Lee JS, Jung D, Choi G. The preclinical efficacy of the novel hypomethylating agent NTX-301 as a monotherapy and in combination with venetoclax in acute myeloid leukemia. Blood Cancer J 2022;12:57. [PMID: 35410412 DOI: 10.1038/s41408-022-00664-y] [Reference Citation Analysis]
345 Rizzotto D, Zaccara S, Rossi A, Galbraith MD, Andrysik Z, Pandey A, Sullivan KD, Quattrone A, Espinosa JM, Dassi E, Inga A. Nutlin-Induced Apoptosis Is Specified by a Translation Program Regulated by PCBP2 and DHX30. Cell Rep 2020;30:4355-4369.e6. [PMID: 32234473 DOI: 10.1016/j.celrep.2020.03.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
346 Steffens Reinhardt L, Zhang X, Wawruszak A, Groen K, De Iuliis GN, Avery-Kiejda KA. Good Cop, Bad Cop: Defining the Roles of Δ40p53 in Cancer and Aging. Cancers (Basel) 2020;12:E1659. [PMID: 32585821 DOI: 10.3390/cancers12061659] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
347 Park SR, Namkoong S, Friesen L, Cho CS, Zhang ZZ, Chen YC, Yoon E, Kim CH, Kwak H, Kang HM, Lee JH. Single-Cell Transcriptome Analysis of Colon Cancer Cell Response to 5-Fluorouracil-Induced DNA Damage. Cell Rep 2020;32:108077. [PMID: 32846134 DOI: 10.1016/j.celrep.2020.108077] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
348 Marx C, Sonnemann J, Beyer M, Maddocks ODK, Lilla S, Hauzenberger I, Piée-Staffa A, Siniuk K, Nunna S, Marx-Blümel L, Westermann M, Wagner T, Meyer FB, Thierbach R, Mullins CS, Kdimati S, Linnebacher M, Neri F, Heinzel T, Wang ZQ, Krämer OH. Mechanistic insights into p53-regulated cytotoxicity of combined entinostat and irinotecan against colorectal cancer cells. Mol Oncol 2021. [PMID: 34258881 DOI: 10.1002/1878-0261.13060] [Reference Citation Analysis]
349 Dang T, Chai J. Molecular Dynamics in Esophageal Adenocarcinoma: Who's in Control? Curr Cancer Drug Targets 2020;20:789-801. [PMID: 32691711 DOI: 10.2174/1568009620666200720011341] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
350 Ho CJ, Lin RW, Zhu WH, Wen TK, Hu CJ, Lee YL, Hung TI, Wang C. Transcription-independent and -dependent p53-mediated apoptosis in response to genotoxic and non-genotoxic stress. Cell Death Discov 2019;5:131. [PMID: 31482012 DOI: 10.1038/s41420-019-0211-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
351 Harati-Sadegh M, Kohan L, Teimoori B, Mehrabani M, Salimi S. Analysis of polymorphisms, promoter methylation, and mRNA expression profile of maternal and placental P53 and P21 genes in preeclamptic and normotensive pregnant women. J Biomed Sci 2019;26:92. [PMID: 31703578 DOI: 10.1186/s12929-019-0586-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
352 Ezerskyte M, Paredes JA, Malvezzi S, Burns JA, Margison GP, Olsson M, Scicchitano DA, Dreij K. O6-methylguanine-induced transcriptional mutagenesis reduces p53 tumor-suppressor function. Proc Natl Acad Sci U S A 2018;115:4731-6. [PMID: 29666243 DOI: 10.1073/pnas.1721764115] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
353 Yimit A, Adebali O, Sancar A, Jiang Y. Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nat Commun 2019;10:309. [PMID: 30659176 DOI: 10.1038/s41467-019-08290-2] [Cited by in Crossref: 50] [Cited by in F6Publishing: 48] [Article Influence: 16.7] [Reference Citation Analysis]
354 Levandowski CB, Jones T, Gruca M, Ramamoorthy S, Dowell RD, Taatjes DJ. The Δ40p53 isoform inhibits p53-dependent eRNA transcription and enables regulation by signal-specific transcription factors during p53 activation. PLoS Biol 2021;19:e3001364. [PMID: 34351910 DOI: 10.1371/journal.pbio.3001364] [Reference Citation Analysis]
355 Melnik BC. Milk disrupts p53 and DNMT1, the guardians of the genome: implications for acne vulgaris and prostate cancer. Nutr Metab (Lond) 2017;14:55. [PMID: 28814964 DOI: 10.1186/s12986-017-0212-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
356 Galbraith MD, Andrysik Z, Sullivan KD, Espinosa JM. Global Analyses to Identify Direct Transcriptional Targets of p53. Methods Mol Biol 2021;2267:19-56. [PMID: 33786783 DOI: 10.1007/978-1-0716-1217-0_3] [Reference Citation Analysis]
357 Podtelezhnikov AA, Monroe JJ, Aslamkhan AG, Pearson K, Qin C, Tamburino AM, Loboda AP, Glaab WE, Sistare FD, Tanis KQ. Quantitative Transcriptional Biomarkers of Xenobiotic Receptor Activation in Rat Liver for the Early Assessment of Drug Safety Liabilities. Toxicol Sci 2020;175:98-112. [PMID: 32119089 DOI: 10.1093/toxsci/kfaa026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
358 Piipponen M, Nissinen L, Riihilä P, Farshchian M, Kallajoki M, Peltonen J, Peltonen S, Kähäri VM. p53-Regulated Long Noncoding RNA PRECSIT Promotes Progression of Cutaneous Squamous Cell Carcinoma via STAT3 Signaling. Am J Pathol 2020;190:503-17. [PMID: 31837949 DOI: 10.1016/j.ajpath.2019.10.019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
359 Martinho MS, Nancarrow DJ, Lawrence TS, Beer DG, Ray D. Chaperones and Ubiquitin Ligases Balance Mutant p53 Protein Stability in Esophageal and Other Digestive Cancers. Cell Mol Gastroenterol Hepatol 2021;11:449-64. [PMID: 33130332 DOI: 10.1016/j.jcmgh.2020.10.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
360 Chiche A, Di-Cicco A, Sesma-Sanz L, Bresson L, de la Grange P, Glukhova MA, Faraldo MM, Deugnier MA. p53 controls the plasticity of mammary luminal progenitor cells downstream of Met signaling. Breast Cancer Res 2019;21:13. [PMID: 30683141 DOI: 10.1186/s13058-019-1101-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
361 Jeffries KA, Krupenko NI. Ceramide Signaling and p53 Pathways. Adv Cancer Res 2018;140:191-215. [PMID: 30060809 DOI: 10.1016/bs.acr.2018.04.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
362 Lees A, Sessler T, McDade S. Dying to Survive-The p53 Paradox. Cancers (Basel) 2021;13:3257. [PMID: 34209840 DOI: 10.3390/cancers13133257] [Reference Citation Analysis]
363 Gupta A, Shah K, Oza MJ, Behl T. Reactivation of p53 gene by MDM2 inhibitors: A novel therapy for cancer treatment. Biomedicine & Pharmacotherapy 2019;109:484-92. [DOI: 10.1016/j.biopha.2018.10.155] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 14.0] [Reference Citation Analysis]
364 Friedrich D, Friedel L, Finzel A, Herrmann A, Preibisch S, Loewer A. Stochastic transcription in the p53-mediated response to DNA damage is modulated by burst frequency. Mol Syst Biol 2019;15:e9068. [PMID: 31885199 DOI: 10.15252/msb.20199068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
365 Zhang M, Zhang R, Liu J, Wang H, Wang Z, Liu J, Shan Y, Yu H. The Effects of 5,6,7,8,3',4'-Hexamethoxyflavone on Apoptosis of Cultured Human Choriocarcinoma Trophoblast Cells. Molecules 2020;25:E946. [PMID: 32093273 DOI: 10.3390/molecules25040946] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
366 Kimmerling RJ, Prakadan SM, Gupta AJ, Calistri NL, Stevens MM, Olcum S, Cermak N, Drake RS, Pelton K, De Smet F, Ligon KL, Shalek AK, Manalis SR. Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol 2018;19:207. [PMID: 30482222 DOI: 10.1186/s13059-018-1576-0] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
367 Higgins CE, Tang J, Higgins SP, Gifford CC, Mian BM, Jones DM, Zhang W, Costello A, Conti DJ, Samarakoon R, Higgins PJ. The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney. Front Cell Dev Biol 2021;9:678524. [PMID: 34277620 DOI: 10.3389/fcell.2021.678524] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
368 Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The Cross Talk Between p53 and mTOR Pathways in Response to Physiological and Genotoxic Stresses. Front Cell Dev Biol 2021;9:775507. [PMID: 34869377 DOI: 10.3389/fcell.2021.775507] [Reference Citation Analysis]
369 O'Connor SA, Feldman HM, Arora S, Hoellerbauer P, Toledo CM, Corrin P, Carter L, Kufeld M, Bolouri H, Basom R, Delrow J, McFaline-Figueroa JL, Trapnell C, Pollard SM, Patel A, Paddison PJ, Plaisier CL. Neural G0: a quiescent-like state found in neuroepithelial-derived cells and glioma. Mol Syst Biol 2021;17:e9522. [PMID: 34101353 DOI: 10.15252/msb.20209522] [Reference Citation Analysis]
370 Voss K, Lake C, Luthers CR, Lott NM, Dorjbal B, Arjunaraja S, Bauman BM, Soltis AR, Sukumar G, Dalgard CL, Snow AL. FOXP3 protects conventional human T cells from premature restimulation-induced cell death. Cell Mol Immunol 2021;18:194-205. [PMID: 31659245 DOI: 10.1038/s41423-019-0316-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
371 Thiem A, Hesbacher S, Kneitz H, di Primio T, Heppt MV, Hermanns HM, Goebeler M, Meierjohann S, Houben R, Schrama D. IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J Exp Clin Cancer Res 2019;38:397. [PMID: 31506076 DOI: 10.1186/s13046-019-1403-9] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
372 Baud MGJ, Bauer MR, Verduci L, Dingler FA, Patel KJ, Horil Roy D, Joerger AC, Fersht AR. Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant Y220C and show anticancer activity in p53-Y220C cell lines. Eur J Med Chem 2018;152:101-14. [PMID: 29702446 DOI: 10.1016/j.ejmech.2018.04.035] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
373 Wang Y, Li Q, Wang J, Tong M, Xing H, Xue Y, Pan H, Huang C, Li D. Small cell carcinoma of the bladder: the characteristics of molecular alterations, treatment, and follow-up. Med Oncol 2019;36:98. [PMID: 31664527 DOI: 10.1007/s12032-019-1321-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
374 Kimura T, Shiizaki K, Akimoto T, Shinzato T, Shimizu T, Kurosawa A, Kubo T, Nanmoku K, Kuro-O M, Yagisawa T. The impact of preserved Klotho gene expression on antioxidative stress activity in healthy kidney. Am J Physiol Renal Physiol 2018;315:F345-52. [PMID: 29693450 DOI: 10.1152/ajprenal.00486.2017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
375 Ihle M, Biber S, Schroeder IS, Blattner C, Deniz M, Damia G, Gottifredi V, Wiesmüller L. Impact of the interplay between stemness features, p53 and pol iota on replication pathway choices. Nucleic Acids Res 2021;49:7457-75. [PMID: 34165573 DOI: 10.1093/nar/gkab526] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
376 Aydin G, Paksoy MN, Orhan MD, Avsar T, Yurtsever M, Durdagi S. Proposing novel MDM2 inhibitors: Combined physics-driven high-throughput virtual screening and in vitro studies. Chem Biol Drug Des 2020;96:684-700. [PMID: 32691963 DOI: 10.1111/cbdd.13694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
377 Cluzet V, Devillers MM, Petit F, Chauvin S, François CM, Giton F, Genestie C, di Clemente N, Cohen-tannoudji J, Guigon CJ. Aberrant granulosa cell-fate related to inactivated p53/Rb signaling contributes to granulosa cell tumors and to FOXL2 downregulation in the mouse ovary. Oncogene 2020;39:1875-90. [DOI: 10.1038/s41388-019-1109-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
378 Barnes RP, de Rosa M, Thosar SA, Detwiler AC, Roginskaya V, Van Houten B, Bruchez MP, Stewart-Ornstein J, Opresko PL. Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening. Nat Struct Mol Biol 2022. [PMID: 35773409 DOI: 10.1038/s41594-022-00790-y] [Reference Citation Analysis]
379 Schwartz M, Portugez AS, Attia BZ, Tannenbaum M, Cohen L, Loza O, Chase E, Turman Y, Kaplan T, Salah Z, Hakim O. Genomic retargeting of p53 and CTCF is associated with transcriptional changes during oncogenic HRas-induced transformation. Commun Biol 2020;3:696. [PMID: 33239721 DOI: 10.1038/s42003-020-01398-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
380 Lim YJ, Lee J, Choi JA, Cho SN, Son SH, Kwon SJ, Son JW, Song CH. M1 macrophage dependent-p53 regulates the intracellular survival of mycobacteria. Apoptosis 2020;25:42-55. [PMID: 31691131 DOI: 10.1007/s10495-019-01578-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
381 Zinovieva OL, Grineva EN, Krasnov GS, Karpov DS, Zheltukhin AO, Snezhkina AV, Kudryavtseva AV, Mashkova TD, Lisitsyn NA. Treatment of cancer cells with chemotherapeutic drugs results in profound changes in expression of genes encoding aldehyde-metabolizing enzymes. J Cancer 2019;10:4256-63. [PMID: 31413744 DOI: 10.7150/jca.32608] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
382 Tahseen D, Rady PL, Tyring SK. Effects of β-HPV on DNA damage response pathways to drive carcinogenesis: a review. Virus Genes 2021;57:23-30. [PMID: 33392984 DOI: 10.1007/s11262-020-01813-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
383 Chitneni SK, Zhou Z, Watts BE, Zalutsky MR. Feasibility of Developing Radiotracers for MDM2: Synthesis and Preliminary Evaluation of an 18F-Labeled Analogue of the MDM2 Inhibitor SP-141. Pharmaceuticals (Basel) 2021;14:358. [PMID: 33924734 DOI: 10.3390/ph14040358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
384 Han D, Schomacher L, Schüle KM, Mallick M, Musheev MU, Karaulanov E, Krebs L, von Seggern A, Niehrs C. NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress. Elife 2019;8:e49044. [PMID: 31566562 DOI: 10.7554/eLife.49044] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
385 Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell. 2017;170:1062-1078. [PMID: 28886379 DOI: 10.1016/j.cell.2017.08.028] [Cited by in Crossref: 662] [Cited by in F6Publishing: 615] [Article Influence: 132.4] [Reference Citation Analysis]
386 Tran TM, Guha R, Portugal S, Skinner J, Ongoiba A, Bhardwaj J, Jones M, Moebius J, Venepally P, Doumbo S, DeRiso EA, Li S, Vijayan K, Anzick SL, Hart GT, O'Connell EM, Doumbo OK, Kaushansky A, Alter G, Felgner PL, Lorenzi H, Kayentao K, Traore B, Kirkness EF, Crompton PD. A Molecular Signature in Blood Reveals a Role for p53 in Regulating Malaria-Induced Inflammation. Immunity 2019;51:750-765.e10. [PMID: 31492649 DOI: 10.1016/j.immuni.2019.08.009] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 8.3] [Reference Citation Analysis]
387 Xu W, Watanabe K, Mizukami Y, Yamamoto Y, Suzuki T. Hydrogen sulfide suppresses the proliferation of intestinal epithelial cells through cell cycle arrest. Arch Biochem Biophys 2021;712:109044. [PMID: 34597656 DOI: 10.1016/j.abb.2021.109044] [Reference Citation Analysis]
388 Peuget S, Selivanova G. p53-Dependent Repression: DREAM or Reality? Cancers (Basel) 2021;13:4850. [PMID: 34638334 DOI: 10.3390/cancers13194850] [Reference Citation Analysis]
389 Blázquez-Prieto J, Huidobro C, López-Alonso I, Amado-Rodriguez L, Martín-Vicente P, López-Martínez C, Crespo I, Pantoja C, Fernandez-Marcos PJ, Serrano M, Sznajder JI, Albaiceta GM. Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation. Transl Res 2021;233:104-16. [PMID: 33515780 DOI: 10.1016/j.trsl.2021.01.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
390 Falduto GH, Pfeiffer A, Zhang Q, Yin Y, Metcalfe DD, Olivera A. A Critical Function for the Transcription Factors GLI1 and GLI2 in the Proliferation and Survival of Human Mast Cells. Front Immunol 2022;13:841045. [PMID: 35251038 DOI: 10.3389/fimmu.2022.841045] [Reference Citation Analysis]
391 Baker SC, Mason AS, Slip RG, Skinner KT, Macdonald A, Masood O, Harris RS, Fenton TR, Periyasamy M, Ali S, Southgate J. Induction of APOBEC3-mediated genomic damage in urothelium implicates BK polyomavirus (BKPyV) as a hit-and-run driver for bladder cancer. Oncogene 2022. [PMID: 35194151 DOI: 10.1038/s41388-022-02235-8] [Reference Citation Analysis]
392 Tofani S. Magnetic fields and apoptosis: a possible mechanism. Electromagn Biol Med 2022;:1-11. [PMID: 35543158 DOI: 10.1080/15368378.2022.2073547] [Reference Citation Analysis]
393 Gažová I, Lefevre L, Bush SJ, Clohisey S, Arner E, de Hoon M, Severin J, van Duin L, Andersson R, Lengeling A, Hume DA, Summers KM. The Transcriptional Network That Controls Growth Arrest and Macrophage Differentiation in the Human Myeloid Leukemia Cell Line THP-1. Front Cell Dev Biol 2020;8:498. [PMID: 32719792 DOI: 10.3389/fcell.2020.00498] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
394 Li Y, Liu H, Li T, Feng J, He Y, Chen L, Li C, Qiu X. Choroid Plexus Carcinomas With TP53 Germline Mutations: Management and Outcome. Front Oncol 2021;11:751784. [PMID: 34660315 DOI: 10.3389/fonc.2021.751784] [Reference Citation Analysis]
395 Galíndez MF, Carrica A, Zarate AM, Secchi D, Don J, Barra JL, Brunotto M. DNA repair, NFKβ, and TP53 polymorphisms associated with potentially malignant disorders and oral squamous cell carcinoma in Argentine patients. Oral Surg Oral Med Oral Pathol Oral Radiol 2021;131:339-46. [PMID: 33309268 DOI: 10.1016/j.oooo.2020.11.004] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
396 Gao Y, Hong J, Guo Y, Chen M, Chang AK, Xie L, Ying X. Assessment spermatogenic cell apoptosis and the transcript levels of metallothionein and p53 in Meretrix meretrix induced by cadmium. Ecotoxicol Environ Saf 2021;217:112230. [PMID: 33864984 DOI: 10.1016/j.ecoenv.2021.112230] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
397 Fuentelsaz-Romero S, Barrio-Alonso C, García Campos R, Torres Torresano M, Muller IB, Triguero-Martínez A, Nuño L, Villalba A, García-Vicuña R, Jansen G, Miranda-Carús ME, González-Álvaro I, Puig-Kröger A. The Macrophage Reprogramming Ability of Antifolates Reveals Soluble CD14 as a Potential Biomarker for Methotrexate Response in Rheumatoid Arthritis. Front Immunol 2021;12:776879. [PMID: 34804067 DOI: 10.3389/fimmu.2021.776879] [Reference Citation Analysis]
398 Zou K, Zhou X, Wang W, Shi L, Fu X. The association between polymorphisms in miRNA and the cholinesterase activity of workers in an omethoate-exposed environment. Int J Environ Health Res 2020;:1-10. [PMID: 32962420 DOI: 10.1080/09603123.2020.1820453] [Reference Citation Analysis]
399 Gronke K, Hernández PP, Zimmermann J, Klose CSN, Kofoed-Branzk M, Guendel F, Witkowski M, Tizian C, Amann L, Schumacher F, Glatt H, Triantafyllopoulou A, Diefenbach A. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 2019;566:249-53. [PMID: 30700914 DOI: 10.1038/s41586-019-0899-7] [Cited by in Crossref: 117] [Cited by in F6Publishing: 118] [Article Influence: 39.0] [Reference Citation Analysis]
400 Eriksson SE, Ceder S, Bykov VJN, Wiman KG. p53 as a hub in cellular redox regulation and therapeutic target in cancer. J Mol Cell Biol 2019;11:330-41. [PMID: 30892598 DOI: 10.1093/jmcb/mjz005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 17.5] [Reference Citation Analysis]