BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 2018;19:235-49. [PMID: 29515192 DOI: 10.1038/nrn.2018.19] [Cited by in Crossref: 289] [Cited by in F6Publishing: 373] [Article Influence: 72.3] [Reference Citation Analysis]
Number Citing Articles
1 Yu L, Jin J, Xu Y, Zhu X. Aberrant energy metabolism in Alzheimer’s disease. Journal of Translational Internal Medicine 2022;0. [DOI: 10.2478/jtim-2022-0024] [Reference Citation Analysis]
2 Wang L, Yang Z, He X, Pu S, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. Mitochondrial protein dysfunction in pathogenesis of neurological diseases. Front Mol Neurosci 2022;15:974480. [DOI: 10.3389/fnmol.2022.974480] [Reference Citation Analysis]
3 Pan S, Zhou Y, Zuo N, Jiao R, Kong L, Pan Y. Fluoxetine increases astrocytic glucose uptake and glycolysis in corticosterone-induced depression through restricting GR-TXNIP-GLUT1 Pathway. Front Pharmacol 2022;13:872375. [DOI: 10.3389/fphar.2022.872375] [Reference Citation Analysis]
4 Yao Y, Bade R, Li G, Zhang A, Zhao H, Fan L, Zhu R, Yuan J. Global-Scale Profiling of Differential Expressed Lysine-Lactylated Proteins in the Cerebral Endothelium of Cerebral Ischemia-Reperfusion Injury Rats. Cell Mol Neurobiol 2022. [PMID: 36030297 DOI: 10.1007/s10571-022-01277-6] [Reference Citation Analysis]
5 Liu X, Zhang Y, Li W, Zhou X. Lactylation, an emerging hallmark of metabolic reprogramming: Current progress and open challenges. Front Cell Dev Biol 2022;10:972020. [DOI: 10.3389/fcell.2022.972020] [Reference Citation Analysis]
6 Ding P, Zhu Q, Sheng B, Yang H, Xu H, Tao T, Peng Z, Chen X, Li X, Zhou Y, Zhang H, Gao Y, Zhuang Z, Hang C, Li W, Gu C. Alpha-Ketoglutarate Alleviates Neuronal Apoptosis Induced by Central Insulin Resistance through Inhibiting S6K1 Phosphorylation after Subarachnoid Hemorrhage. Oxidative Medicine and Cellular Longevity 2022;2022:1-24. [DOI: 10.1155/2022/9148257] [Reference Citation Analysis]
7 He QQ, Yang M, Huang J, Wu W, Tang K, Zhang Y, Zhou J, Ou W, Xie M, Liang Y, Lu P, Zuo Y, Yu H, Li T. Hypoxia-triggered O-GlcNAcylation in the brain drives the glutamate-glutamine cycle and reduces sensitivity to sevoflurane in mice. Br J Anaesth 2022:S0007-0912(22)00385-3. [PMID: 36031420 DOI: 10.1016/j.bja.2022.06.041] [Reference Citation Analysis]
8 Medel V, Crossley N, Gajardo I, Muller E, Barros LF, Shine JM, Sierralta J. Whole-brain neuronal MCT2 lactate transporter expression links metabolism to human brain structure and function. Proc Natl Acad Sci U S A 2022;119:e2204619119. [PMID: 35939682 DOI: 10.1073/pnas.2204619119] [Reference Citation Analysis]
9 Kishk A, Pacheco MP, Heurtaux T, Sinkkonen L, Pang J, Fritah S, Niclou SP, Sauter T. Review of Current Human Genome-Scale Metabolic Models for Brain Cancer and Neurodegenerative Diseases. Cells 2022;11:2486. [DOI: 10.3390/cells11162486] [Reference Citation Analysis]
10 Demers-Marcil S, Coles JP. Cerebral metabolic derangements following traumatic brain injury. Curr Opin Anaesthesiol 2022. [PMID: 35943124 DOI: 10.1097/ACO.0000000000001183] [Reference Citation Analysis]
11 Scariot PPM, Manchado-Gobatto FB, Beck WR, Papoti M, Van Ginkel PR, Gobatto CA. Monocarboxylate transporters (MCTs) in skeletal muscle and hypothalamus of less or more physically active mice exposed to aerobic training. Life Sci 2022;307:120872. [PMID: 35948119 DOI: 10.1016/j.lfs.2022.120872] [Reference Citation Analysis]
12 Cruz E, Bessières B, Magistretti P, Alberini CM. Differential role of neuronal glucose and PFKFB3 in memory formation during development. Glia 2022. [PMID: 35916383 DOI: 10.1002/glia.24248] [Reference Citation Analysis]
13 Bayliak MM, Sorochynska OM, Kuzniak OV, Drohomyretska IZ, Klonovskyi AY, Hrushchenko AO, Vatashchuk MV, Mosiichuk NM, Storey KB, Garaschuk O, Lushchak VI. High stability of blood parameters during mouse lifespan: sex-specific effects of every-other-day fasting. Biogerontology 2022. [PMID: 35915171 DOI: 10.1007/s10522-022-09982-x] [Reference Citation Analysis]
14 Sušjan-leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022;13:940969. [DOI: 10.3389/fimmu.2022.940969] [Reference Citation Analysis]
15 Xue X, Liu B, Hu J, Bian X, Lou S. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule. Nutr Metab (Lond) 2022;19:52. [PMID: 35907984 DOI: 10.1186/s12986-022-00687-z] [Reference Citation Analysis]
16 Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022;:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Reference Citation Analysis]
17 Xue D, Wei C, Zhou Y, Wang K, Zhou Y, Chen C, Li Y, Sheng L, Lu B, Zhu Z, Cai W, Ning X, Li S, Qi T, Pi J, Lin S, Yan G, Huang Y, Yin W. TRIOL Inhibits Rapid Intracellular Acidification and Cerebral Ischemic Injury: The Role of Glutamate in Neuronal Metabolic Reprogramming. ACS Chem Neurosci 2022. [PMID: 35770894 DOI: 10.1021/acschemneuro.2c00119] [Reference Citation Analysis]
18 Zhao L, Jiang H, Xie J, Shen D, Yi Q, Yan J, Li C, Zheng H, Gao H. Effects of Fibroblast Growth Factor 21 on Lactate Uptake and Usage in Mice with Diabetes-Associated Cognitive Decline. Mol Neurobiol 2022. [PMID: 35761156 DOI: 10.1007/s12035-022-02926-z] [Reference Citation Analysis]
19 Monti G, Gomes Moreira D, Richner M, Mutsaers HAM, Ferreira N, Jan A. GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022;11:2023. [DOI: 10.3390/cells11132023] [Reference Citation Analysis]
20 Dong X, Zhang Q, Yu X, Wang D, Ma J, Ma J, Shi SH. Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex. Nat Neurosci 2022. [PMID: 35726058 DOI: 10.1038/s41593-022-01093-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Taylor MK, Sullivan DK, Keller JE, Burns JM, Swerdlow RH. Potential for Ketotherapies as Amyloid-Regulating Treatment in Individuals at Risk for Alzheimer’s Disease. Front Neurosci 2022;16:899612. [DOI: 10.3389/fnins.2022.899612] [Reference Citation Analysis]
22 Kong E, Li Y, Deng M, Hua T, Yang M, Li J, Feng X, Yuan H. Glycometabolism Reprogramming of Glial Cells in Central Nervous System: Novel Target for Neuropathic Pain. Front Immunol 2022;13:861290. [PMID: 35669777 DOI: 10.3389/fimmu.2022.861290] [Reference Citation Analysis]
23 Yao C, Qin Y, Fan W, Yan L, Chen M, Liu Y, Huang W. A three-dimensional electrochemical biosensor integrated with hydrogel for cells culture and lactate release monitoring. Journal of Electroanalytical Chemistry 2022;915:116338. [DOI: 10.1016/j.jelechem.2022.116338] [Reference Citation Analysis]
24 Ma X, Liu K, Han Y, Bai Y, Shen F, Wang M, Wei W, Qin J, Hao E, Hou X, Hou Y, Bai G. Cinnamaldehyde Regulates the Generation of γ-aminobutyric Acid to Exert Sedation via Irreversible Inhibition of ENO1 in the Cerebellar Granular Layer. Mol Nutr Food Res 2022;66:e2100963. [PMID: 35332659 DOI: 10.1002/mnfr.202100963] [Reference Citation Analysis]
25 Xiong XY, Tang Y, Yang QW. Metabolic changes favor the activity and heterogeneity of reactive astrocytes. Trends Endocrinol Metab 2022;33:390-400. [PMID: 35396164 DOI: 10.1016/j.tem.2022.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Rich LR, Ransom BR, Brown AM. Energy Metabolism in Mouse Sciatic Nerve A Fibres during Increased Energy Demand. Metabolites 2022;12:505. [DOI: 10.3390/metabo12060505] [Reference Citation Analysis]
27 Domínguez-Zorita S, Romero-Carramiñana I, Cuezva JM, Esparza-Moltó PB. The ATPase Inhibitory Factor 1 is a Tissue-Specific Physiological Regulator of the Structure and Function of Mitochondrial ATP Synthase: A Closer Look Into Neuronal Function. Front Physiol 2022;13:868820. [PMID: 35620611 DOI: 10.3389/fphys.2022.868820] [Reference Citation Analysis]
28 Buscemi L, Price M, Castillo-gonzález J, Chatton J, Hirt L. Lactate Neuroprotection against Transient Ischemic Brain Injury in Mice Appears Independent of HCAR1 Activation. Metabolites 2022;12:465. [DOI: 10.3390/metabo12050465] [Reference Citation Analysis]
29 Zhang M, Wang Y, Bai Y, Dai L, Guo H. Monocarboxylate Transporter 1 May Benefit Cerebral Ischemia via Facilitating Lactate Transport From Glial Cells to Neurons. Front Neurol 2022;13:781063. [PMID: 35547368 DOI: 10.3389/fneur.2022.781063] [Reference Citation Analysis]
30 Lattke M, Guillemot F. Understanding astrocyte differentiation: Clinical relevance, technical challenges, and new opportunities in the omics era. WIREs Mech Dis 2022;:e1557. [PMID: 35546493 DOI: 10.1002/wsbm.1557] [Reference Citation Analysis]
31 Zhang Y, Yang X, Zhuang J, Zhang H, Gao C. β-Amyloid activates reactive astrocytes by enhancing glycolysis of astrocytes. Mol Biol Rep 2022. [PMID: 35534584 DOI: 10.1007/s11033-022-07319-y] [Reference Citation Analysis]
32 Pascal M, Kazakov A, Chevalier G, Dubrule L, Deyrat J, Dupin A, Saha S, Jagot F, Sailor K, Dulauroy S, Moigneu C, Belkaid Y, Lepousez G, Lledo PM, Wilhelm C, Eberl G. The neuropeptide VIP potentiates intestinal innate type 2 and type 3 immunity in response to feeding. Mucosal Immunol 2022. [PMID: 35501356 DOI: 10.1038/s41385-022-00516-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
33 Cai M, Wang H, Song H, Yang R, Wang L, Xue X, Sun W, Hu J. Lactate Is Answerable for Brain Function and Treating Brain Diseases: Energy Substrates and Signal Molecule. Front Nutr 2022;9:800901. [DOI: 10.3389/fnut.2022.800901] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Fernandes-Costa F, de Lima Flôr AF, Falcão MSF, de Moura Balarini C, de Brito Alves JL, de Andrade Braga V, de Campos Cruz J. Central interaction between nitric oxide, lactate and glial cells to modulate water and sodium intake in rats. Brain Res Bull 2022:S0361-9230(22)00102-2. [PMID: 35487385 DOI: 10.1016/j.brainresbull.2022.04.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 González A, Calfío C, Churruca M, Maccioni RB. Glucose metabolism and AD: evidence for a potential diabetes type 3. Alzheimers Res Ther 2022;14:56. [PMID: 35443732 DOI: 10.1186/s13195-022-00996-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Tianle C, Yunhan F, Delong L, Haitao X, Lanting M, Xueqing S, Liuxu Y, Yu H, Guizhi W. Transcriptomic analysis to elucidate the response of Apis mellifera ligustica brain tissue to fluvalinate exposure. Anim Biotechnol 2022;:1-12. [PMID: 35436166 DOI: 10.1080/10495398.2022.2061506] [Reference Citation Analysis]
37 Wang Q, Duan L, Li X, Wang Y, Guo W, Guan F, Ma S. Glucose Metabolism, Neural Cell Senescence and Alzheimer’s Disease. IJMS 2022;23:4351. [DOI: 10.3390/ijms23084351] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
38 Jo S, Yang H, Lee SR, Heo JH, Lee H, Hong E. Curcumae Radix Decreases Neurodegenerative Markers through Glycolysis Decrease and TCA Cycle Activation. Nutrients 2022;14:1587. [DOI: 10.3390/nu14081587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Costa FF, de Lima Flôr AF, de Andrade Braga V, de Campos Cruz J. Astrocytic lactate inhibited sodium intake in dehydrated rats. Appetite 2022. [DOI: 10.1016/j.appet.2022.106046] [Reference Citation Analysis]
40 Li Q, Qin X, Kou X, Li J, Li Z, Chen C. Anagliptin promotes apoptosis in mouse colon carcinoma cells via MCT-4/lactate-mediated intracellular acidosis. Exp Ther Med 2022;23:282. [PMID: 35317435 DOI: 10.3892/etm.2022.11211] [Reference Citation Analysis]
41 Kambe Y. Recent behavioral findings of pathophysiological involvement of lactate in the central nervous system. Biochimica et Biophysica Acta (BBA) - General Subjects 2022. [DOI: 10.1016/j.bbagen.2022.130137] [Reference Citation Analysis]
42 Fang Y, Chen C, Zhong Q, Wang L, Gui Z, Zhu J, Manyande A, Xu F, Wang J, Zhang Z. Influence of Cerebral Glucose Metabolism by Chronic Pain-Mediated Cognitive Impairment in Adolescent Rats. Mol Neurobiol 2022. [PMID: 35355195 DOI: 10.1007/s12035-022-02816-4] [Reference Citation Analysis]
43 Rho JM, Boison D. The metabolic basis of epilepsy. Nat Rev Neurol 2022. [PMID: 35361967 DOI: 10.1038/s41582-022-00651-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022;13:824411. [PMID: 35211120 DOI: 10.3389/fimmu.2022.824411] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Zha XM, Xiong ZG, Simon RP. pH and proton-sensitive receptors in brain ischemia. J Cereb Blood Flow Metab 2022;:271678X221089074. [PMID: 35301897 DOI: 10.1177/0271678X221089074] [Reference Citation Analysis]
46 Dolanc D, Zorec TM, Smole Z, Maver A, Horvat A, Trkov Bobnar S, Vardjan N, Kreft M, Chowdhury HH, Zorec R. The Activation of GPR27 Increases Cytosolic L-Lactate in 3T3 Embryonic Cells and Astrocytes. Cells 2022;11:1009. [DOI: 10.3390/cells11061009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
47 Hösli L, Binini N, Ferrari KD, Thieren L, Looser ZJ, Zuend M, Zanker HS, Berry S, Holub M, Möbius W, Ruhwedel T, Nave KA, Giaume C, Weber B, Saab AS. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep 2022;38:110484. [PMID: 35263595 DOI: 10.1016/j.celrep.2022.110484] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
48 Godoy G, Travassos PB, Antunes MM, Iwanaga CC, Sá-Nakanishi AB, Curi R, Comar JF, Bazotte RB. Strenuous swimming raises blood non-enzymatic antioxidant capacity in rats. Braz J Med Biol Res 2022;55:e11891. [PMID: 35239782 DOI: 10.1590/1414-431X2022e11891] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Briquet M, Rocher AB, Alessandri M, Rosenberg N, de Castro Abrantes H, Wellbourne-Wood J, Schmuziger C, Ginet V, Puyal J, Pralong E, Daniel RT, Offermanns S, Chatton JY. Activation of lactate receptor HCAR1 down-modulates neuronal activity in rodent and human brain tissue. J Cereb Blood Flow Metab 2022;:271678X221080324. [PMID: 35240875 DOI: 10.1177/0271678X221080324] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
50 Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022;75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
51 Radford-Smith DE, Probert F, Burnet PWJ, Anthony DC. Modifying the maternal microbiota alters the gut-brain metabolome and prevents emotional dysfunction in the adult offspring of obese dams. Proc Natl Acad Sci U S A 2022;119:e2108581119. [PMID: 35197280 DOI: 10.1073/pnas.2108581119] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Kalecký K, German DC, Montillo AA, Bottiglieri T. Targeted Metabolomic Analysis in Alzheimer’s Disease Plasma and Brain Tissue in Non-Hispanic Whites. JAD 2022. [DOI: 10.3233/jad-215448] [Reference Citation Analysis]
53 Garrett LR, Niccoli T. Frontotemporal Dementia and Glucose Metabolism. Front Neurosci 2022;16:812222. [DOI: 10.3389/fnins.2022.812222] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Bernini A, Miroz JP, Abed-Maillard S, Favre E, Iaquaniello C, Ben-Hamouda N, Oddo M. Hypertonic lactate for the treatment of intracranial hypertension in patients with acute brain injury. Sci Rep 2022;12:3035. [PMID: 35194150 DOI: 10.1038/s41598-022-07129-z] [Reference Citation Analysis]
55 Jacob N, So I, Sharma B, Marzolini S, Tartaglia MC, Green R. Effects of high-intensity interval training on blood lactate levels and cognition in healthy adults: protocol for systematic review and network meta-analyses. Syst Rev 2022;11. [DOI: 10.1186/s13643-021-01874-4] [Reference Citation Analysis]
56 San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022:S0891-5849(22)00065-X. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
57 Lee HG, Wheeler MA, Quintana FJ. Function and therapeutic value of astrocytes in neurological diseases. Nat Rev Drug Discov 2022. [PMID: 35173313 DOI: 10.1038/s41573-022-00390-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
58 Gunes ZI, Kan VWY, Jiang S, Logunov E, Ye X, Liebscher S. Cortical Hyperexcitability in the Driver’s Seat in ALS. CTN 2022;6:5. [DOI: 10.3390/ctn6010005] [Reference Citation Analysis]
59 Das M, Ajit K, Mate N, Roy R, Haldar C, Gupta L, Banerjee A. Lactate-Dependent Cross-Talk Between Astrocyte and GnRH-I Neurons in Hypothalamus of Aged Brain: Decreased GnRH-I Transcription. Reprod Sci 2022. [PMID: 35138586 DOI: 10.1007/s43032-021-00814-w] [Reference Citation Analysis]
60 Petrelli F, Knobloch M, Amati F. Brain lipid metabolism: the emerging role of lipid droplets in glial cells. Curr Opin Lipidol 2022;33:86-7. [PMID: 34939952 DOI: 10.1097/MOL.0000000000000812] [Reference Citation Analysis]
61 Mishra A, Wang Y, Yin F, Vitali F, Rodgers KE, Soto M, Mosconi L, Wang T, Brinton RD. A tale of two systems: Lessons learned from female mid-life aging with implications for Alzheimer's prevention & treatment. Ageing Res Rev 2022;74:101542. [PMID: 34929348 DOI: 10.1016/j.arr.2021.101542] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
62 Becker-krail DD, Ketchesin KD, Burns JN, Zong W, Hildebrand MA, Depoy LM, Vadnie CA, Tseng GC, Logan RW, Huang YH, Mcclung CA. Astrocyte Molecular Clock Function in the Nucleus Accumbens is Important for Reward-Related Behavior. Biological Psychiatry 2022. [DOI: 10.1016/j.biopsych.2022.02.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Guerrero-Molina MP, Morales-Conejo M, Delmiro A, Morán M, Domínguez-González C, Arranz-Canales E, Ramos-González A, Arenas J, Martín MA, González de la Aleja J. Elevated glutamate and decreased glutamine levels in the cerebrospinal fluid of patients with MELAS syndrome. J Neurol 2022. [PMID: 35088140 DOI: 10.1007/s00415-021-10942-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Barros LF. How expensive is the astrocyte? J Cereb Blood Flow Metab 2022;:271678X221077343. [PMID: 35080185 DOI: 10.1177/0271678X221077343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Int J Mol Sci 2022;23:1388. [PMID: 35163313 DOI: 10.3390/ijms23031388] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 15.0] [Reference Citation Analysis]
66 Béland-Millar A, Messier C. Voluntary Behavior and Training Conditions Modulate in vivo Extracellular Glucose and Lactate in the Mouse Primary Motor Cortex. Front Neurosci 2021;15:732242. [PMID: 35058739 DOI: 10.3389/fnins.2021.732242] [Reference Citation Analysis]
67 Lehmann N, Villringer A, Taubert M. Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity. Sci Rep 2022;12:1107. [PMID: 35064175 DOI: 10.1038/s41598-022-05145-7] [Reference Citation Analysis]
68 Fan Z, Wen H, Zhang X, Li J, Zang J. Cyanidin 3-O-β-Galactoside Alleviated Cognitive Impairment in Mice by Regulating Brain Energy Metabolism During Aging. J Agric Food Chem 2022. [PMID: 35040318 DOI: 10.1021/acs.jafc.1c06240] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Yamagata K. Lactate Supply from Astrocytes to Neurons and its Role in Ischemic Stroke-induced Neurodegeneration. Neuroscience 2022;481:219-31. [PMID: 34843897 DOI: 10.1016/j.neuroscience.2021.11.035] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
70 Fernandes E, Ledo A, Barbosa RM. Design and Evaluation of a Lactate Microbiosensor: Toward Multianalyte Monitoring of Neurometabolic Markers In Vivo in the Brain. Molecules 2022;27:514. [PMID: 35056837 DOI: 10.3390/molecules27020514] [Reference Citation Analysis]
71 Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022;12:825816. [DOI: 10.3389/fphys.2021.825816] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
72 Annunziato M, Eeza MNH, Bashirova N, Lawson A, Matysik J, Benetti D, Grosell M, Stieglitz JD, Alia A, Berry JP. An integrated systems-level model of the toxicity of brevetoxin based on high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) metabolic profiling of zebrafish embryos. Sci Total Environ 2022;803:149858. [PMID: 34482148 DOI: 10.1016/j.scitotenv.2021.149858] [Reference Citation Analysis]
73 Monsorno K, Buckinx A, Paolicelli RC. Microglial metabolic flexibility: emerging roles for lactate. Trends Endocrinol Metab 2022;33:186-95. [PMID: 34996673 DOI: 10.1016/j.tem.2021.12.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
74 Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Guijarro LG, Lahera G, Monserrat J, Valls P, Mora F, Rodríguez-Jiménez R, Quintero J, Álvarez-Mon M. Gut Microbiota Metabolites in Major Depressive Disorder-Deep Insights into Their Pathophysiological Role and Potential Translational Applications. Metabolites 2022;12:50. [PMID: 35050172 DOI: 10.3390/metabo12010050] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 11.0] [Reference Citation Analysis]
75 Vicencio-jimenez S, Villalobos M, Maldonado PE, Vergara RC. The Energy Homeostasis Principle: A Naturalistic Approach to Explain the Emergence of Behavior. Front Syst Neurosci 2022;15:782781. [DOI: 10.3389/fnsys.2021.782781] [Reference Citation Analysis]
76 He Q, Ma Y, Liu J, Zhang D, Ren J, Zhao R, Chang J, Guo ZN, Yang Y. Biological Functions and Regulatory Mechanisms of Hypoxia-Inducible Factor-1α in Ischemic Stroke. Front Immunol 2021;12:801985. [PMID: 34966392 DOI: 10.3389/fimmu.2021.801985] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
77 Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutrition Reviews 2021. [DOI: 10.1093/nutrit/nuab118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
78 Smolič T, Zorec R, Vardjan N. Pathophysiology of Lipid Droplets in Neuroglia. Antioxidants (Basel) 2021;11:22. [PMID: 35052526 DOI: 10.3390/antiox11010022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
79 Kambe Y, Thi TN, Hashiguchi K, Sameshima Y, Yamashita A, Kurihara T, Miyata A. The dorsal hippocampal protein targeting to glycogen maintains ionotropic glutamate receptor subunits expression and contributes to working and short-term memories in mice. J Pharmacol Sci 2022;148:108-15. [PMID: 34924114 DOI: 10.1016/j.jphs.2021.10.008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Regiart M, Ledo A, Fernandes E, Messina GA, Brett CMA, Bertotti M, Barbosa RM. Highly sensitive and selective nanostructured microbiosensors for glucose and lactate simultaneous measurements in blood serum and in vivo in brain tissue. Biosens Bioelectron 2021;199:113874. [PMID: 34920228 DOI: 10.1016/j.bios.2021.113874] [Reference Citation Analysis]
81 Butt AM, Rivera AD. Astrocytes in Bipolar Disorder. Adv Neurobiol 2021;26:95-113. [PMID: 34888832 DOI: 10.1007/978-3-030-77375-5_5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
82 Nasu Y, Murphy-Royal C, Wen Y, Haidey JN, Molina RS, Aggarwal A, Zhang S, Kamijo Y, Paquet ME, Podgorski K, Drobizhev M, Bains JS, Lemieux MJ, Gordon GR, Campbell RE. A genetically encoded fluorescent biosensor for extracellular L-lactate. Nat Commun 2021;12:7058. [PMID: 34873165 DOI: 10.1038/s41467-021-27332-2] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
83 Stuckey SM, Ong LK, Collins-Praino LE, Turner RJ. Neuroinflammation as a Key Driver of Secondary Neurodegeneration Following Stroke? Int J Mol Sci 2021;22:13101. [PMID: 34884906 DOI: 10.3390/ijms222313101] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
84 Lundquist AJ, Llewellyn GN, Kishi SH, Jakowec NA, Cannon PM, Petzinger GM, Jakowec MW. Knockdown of Astrocytic Monocarboxylate Transporter 4 in the Motor Cortex Leads to Loss of Dendritic Spines and a Deficit in Motor Learning. Mol Neurobiol 2021. [PMID: 34822124 DOI: 10.1007/s12035-021-02651-z] [Reference Citation Analysis]
85 Liao Y, Xing Q, Li Q, Zhang J, Pan R, Yuan Z. Astrocytes in depression and Alzheimer's disease. Front Med 2021. [PMID: 34811642 DOI: 10.1007/s11684-021-0875-0] [Reference Citation Analysis]
86 Roumes H, Jollé C, Blanc J, Benkhaled I, Chatain CP, Massot P, Raffard G, Bouchaud V, Biran M, Pythoud C, Déglon N, Zimmer ER, Pellerin L, Bouzier-Sore AK. Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance. Proc Natl Acad Sci U S A 2021;118:e2112466118. [PMID: 34782470 DOI: 10.1073/pnas.2112466118] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
87 Bekdash R, Quejada JR, Ueno S, Kawano F, Morikawa K, Klein AD, Matsumoto K, Lee TC, Nakanishi K, Chalan A, Lee TM, Liu R, Homma S, Lin CS, Yelshanskaya MV, Sobolevsky AI, Goda K, Yazawa M. GEM-IL: A highly responsive fluorescent lactate indicator. Cell Rep Methods 2021;1:100092. [PMID: 35475001 DOI: 10.1016/j.crmeth.2021.100092] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
88 Rituper B, Guček A, Lisjak M, Gorska U, Šakanović A, Bobnar ST, Lasič E, Božić M, Abbineni PS, Jorgačevski J, Kreft M, Verkhratsky A, Platt FM, Anderluh G, Stenovec M, Božič B, Coorssen JR, Zorec R. Vesicle cholesterol controls exocytotic fusion pore. Cell Calcium 2021;101:102503. [PMID: 34844123 DOI: 10.1016/j.ceca.2021.102503] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
89 Takeishi J, Tatewaki Y, Nakase T, Takano Y, Tomita N, Yamamoto S, Mutoh T, Taki Y. Alzheimer's Disease and Type 2 Diabetes Mellitus: The Use of MCT Oil and a Ketogenic Diet. Int J Mol Sci 2021;22:12310. [PMID: 34830192 DOI: 10.3390/ijms222212310] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
90 Bueschke N, Amaral-Silva L, Hu M, Santin JM. Lactate ions induce synaptic plasticity to enhance output from the central respiratory network. J Physiol 2021;599:5485-504. [PMID: 34761806 DOI: 10.1113/JP282062] [Reference Citation Analysis]
91 Karagiannis A, Gallopin T, Lacroix A, Plaisier F, Piquet J, Geoffroy H, Hepp R, Naudé J, Le Gac B, Egger R, Lambolez B, Li D, Rossier J, Staiger JF, Imamura H, Seino S, Roeper J, Cauli B. Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. Elife 2021;10:e71424. [PMID: 34766906 DOI: 10.7554/eLife.71424] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
92 Pogodalla N, Kranenburg H, Rey S, Rodrigues S, Cardona A, Klämbt C. Drosophila ßHeavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nat Commun 2021;12:6357. [PMID: 34737284 DOI: 10.1038/s41467-021-26462-x] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
93 Chen W, Sun X, Zhan L, Zhou W, Bi T. Conditional Knockout of Pdha1 in Mouse Hippocampus Impairs Cognitive Function: The Possible Involvement of Lactate. Front Neurosci 2021;15:767560. [PMID: 34720870 DOI: 10.3389/fnins.2021.767560] [Reference Citation Analysis]
94 Komleva YK, Potapenko IV, Lopatina OL, Gorina YV, Chernykh A, Khilazheva ED, Salmina AB, Shuvaev AN. NLRP3 Inflammasome Blocking as a Potential Treatment of Central Insulin Resistance in Early-Stage Alzheimer's Disease. Int J Mol Sci 2021;22:11588. [PMID: 34769018 DOI: 10.3390/ijms222111588] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
95 Horvat A, Zorec R, Vardjan N. Lactate as an Astroglial Signal Augmenting Aerobic Glycolysis and Lipid Metabolism. Front Physiol 2021;12:735532. [PMID: 34658920 DOI: 10.3389/fphys.2021.735532] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
96 Ganji SK, An Z, Tiwari V, Chang Y, Patel TR, Maher EA, Choi C. Optimization of spectrally selective 180° radiofrequency pulse timings in J-difference editing (MEGA) of lactate. Magn Reson Med 2021. [PMID: 34657302 DOI: 10.1002/mrm.29051] [Reference Citation Analysis]
97 Song Y, Lally PJ, Yanez Lopez M, Oeltzschner G, Nebel MB, Gagoski B, Kecskemeti S, Hui SCN, Zöllner HJ, Shukla D, Arichi T, De Vita E, Yedavalli V, Thayyil S, Fallin D, Dean DC 3rd, Grant PE, Wisnowski JL, Edden RAE. Edited magnetic resonance spectroscopy in the neonatal brain. Neuroradiology 2021. [PMID: 34654960 DOI: 10.1007/s00234-021-02821-9] [Reference Citation Analysis]
98 Lu L, Wang H, Liu X, Tan L, Qiao X, Ni J, Sun Y, Liang J, Hou Y, Dou H. Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. J Neuroinflammation 2021;18:229. [PMID: 34645459 DOI: 10.1186/s12974-021-02279-9] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
99 Li F, Geng X, Yun HJ, Haddad Y, Chen Y, Ding Y. Neuroplastic Effect of Exercise Through Astrocytes Activation and Cellular Crosstalk. Aging Dis 2021;12:1644-57. [PMID: 34631212 DOI: 10.14336/AD.2021.0325] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
100 Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep 2021;37:109820. [PMID: 34644564 DOI: 10.1016/j.celrep.2021.109820] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
101 Akther S, Hirase H. Assessment of astrocytes as a mediator of memory and learning in rodents. Glia 2021. [PMID: 34582594 DOI: 10.1002/glia.24099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
102 Sun D, Guo H, Womer FY, Yang J, Tang J, Liu J, Zhu Y, Duan J, Peng Z, Wang H, Tan Q, Zhu Q, Wei Y, Xu K, Zhang Y, Tang Y, Zhang X, Xu F, Wang J, Wang F. Frontal-posterior functional imbalance and aberrant function developmental patterns in schizophrenia. Transl Psychiatry 2021;11:495. [PMID: 34580274 DOI: 10.1038/s41398-021-01617-y] [Reference Citation Analysis]
103 Zhou X, Chen H, Wang L, Lenahan C, Lian L, Ou Y, He Y. Mitochondrial Dynamics: A Potential Therapeutic Target for Ischemic Stroke. Front Aging Neurosci 2021;13:721428. [PMID: 34557086 DOI: 10.3389/fnagi.2021.721428] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
104 Tamagno E, Guglielmotto M, Vasciaveo V, Tabaton M. Oxidative Stress and Beta Amyloid in Alzheimer's Disease. Which Comes First: The Chicken or the Egg? Antioxidants (Basel) 2021;10:1479. [PMID: 34573112 DOI: 10.3390/antiox10091479] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
105 Komilova NR, Angelova PR, Berezhnov AV, Stelmashchuk OA, Mirkhodjaev UZ, Houlden H, Gourine AV, Esteras N, Abramov AY. Metabolically induced intracellular pH changes activate mitophagy, autophagy, and cell protection in familial forms of Parkinson's disease. FEBS J 2021. [PMID: 34528385 DOI: 10.1111/febs.16198] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
106 Takado Y, Takuwa H, Sampei K, Urushihata T, Takahashi M, Shimojo M, Uchida S, Nitta N, Shibata S, Nagashima K, Ochi Y, Ono M, Maeda J, Tomita Y, Sahara N, Near J, Aoki I, Shibata K, Higuchi M. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice. J Cereb Blood Flow Metab 2022;42:197-212. [PMID: 34515548 DOI: 10.1177/0271678X211045449] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
107 Bennett CF, Ronayne CT, Puigserver P. Targeting adaptive cellular responses to mitochondrial bioenergetic deficiencies in human disease. FEBS J 2021. [PMID: 34510753 DOI: 10.1111/febs.16195] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
108 Tassinari ID, de Fraga LS. Potential use of lactate for the treatment of neonatal hypoxic-ischemic encephalopathy. Neural Regen Res 2022;17:788-90. [PMID: 34472472 DOI: 10.4103/1673-5374.322459] [Reference Citation Analysis]
109 Berto S, Liu Y, Konopka G. Genomics at cellular resolution: insights into cognitive disorders and their evolution. Hum Mol Genet 2020;29:R1-9. [PMID: 32566943 DOI: 10.1093/hmg/ddaa117] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
110 Vestergaard MB, Ghanizada H, Lindberg U, Arngrim N, Paulson OB, Gjedde A, Ashina M, Larsson HBW. Human Cerebral Perfusion, Oxygen Consumption, and Lactate Production in Response to Hypoxic Exposure. Cereb Cortex 2021:bhab294. [PMID: 34448827 DOI: 10.1093/cercor/bhab294] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
111 Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci 2021;24:1475-87. [PMID: 34413515 DOI: 10.1038/s41593-021-00905-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 48] [Article Influence: 10.0] [Reference Citation Analysis]
112 Veloz Castillo MF, Magistretti PJ, Calì C. l-Lactate: Food for Thoughts, Memory and Behavior. Metabolites 2021;11:548. [PMID: 34436491 DOI: 10.3390/metabo11080548] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
113 Vezzoli E, Calì C, De Roo M, Ponzoni L, Sogne E, Gagnon N, Francolini M, Braida D, Sala M, Muller D, Falqui A, Magistretti PJ. Ultrastructural Evidence for a Role of Astrocytes and Glycogen-Derived Lactate in Learning-Dependent Synaptic Stabilization. Cereb Cortex 2020;30:2114-27. [PMID: 31807747 DOI: 10.1093/cercor/bhz226] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
114 Zisis E, Keller D, Kanari L, Arnaudon A, Gevaert M, Delemontex T, Coste B, Foni A, Abdellah M, Calì C, Hess K, Magistretti PJ, Schürmann F, Markram H. Digital Reconstruction of the Neuro-Glia-Vascular Architecture. Cereb Cortex 2021:bhab254. [PMID: 34387659 DOI: 10.1093/cercor/bhab254] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
115 Murali Mahadevan H, Hashemiaghdam A, Ashrafi G, Harbauer AB. Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson's Disease. Adv Biol (Weinh) 2021;:e2100663. [PMID: 34382382 DOI: 10.1002/adbi.202100663] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
116 Vaccari Cardoso B, Barrera I, Mosienko V, Gourine AV, Kasparov S, Teschemacher AG. Expression of Microbial Enzymes in Mammalian Astrocytes to Modulate Lactate Release. Brain Sci 2021;11:1056. [PMID: 34439675 DOI: 10.3390/brainsci11081056] [Reference Citation Analysis]
117 Bonvento G, Bolaños JP. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab 2021;33:1546-64. [PMID: 34348099 DOI: 10.1016/j.cmet.2021.07.006] [Cited by in F6Publishing: 27] [Reference Citation Analysis]
118 Borroto-Escuela DO, Ambrogini P, Narvaez M, Di Liberto V, Beggiato S, Ferraro L, Fores-Pons R, Alvarez-Contino JE, Lopez-Salas A, Mudò G, Díaz-Cabiale Z, Fuxe K. Serotonin Heteroreceptor Complexes and Their Integration of Signals in Neurons and Astroglia-Relevance for Mental Diseases. Cells 2021;10:1902. [PMID: 34440670 DOI: 10.3390/cells10081902] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
119 Zhou HC, Xin-Yan Yan, Yu WW, Liang XQ, Du XY, Liu ZC, Long JP, Zhao GH, Liu HB. Lactic acid in macrophage polarization: The significant role in inflammation and cancer. Int Rev Immunol 2021;:1-15. [PMID: 34304685 DOI: 10.1080/08830185.2021.1955876] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Lehmann N, Villringer A, Taubert M. Intrinsic Connectivity Changes Mediate the Beneficial Effect of Cardiovascular Exercise on Sustained Visual Attention. Cereb Cortex Commun 2020;1:tgaa075. [PMID: 34296135 DOI: 10.1093/texcom/tgaa075] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Qu C, Keijer J, Adjobo-Hermans MJW, van de Wal M, Schirris T, van Karnebeek C, Pan Y, Koopman WJH. The ketogenic diet as a therapeutic intervention strategy in mitochondrial disease. Int J Biochem Cell Biol 2021;138:106050. [PMID: 34298163 DOI: 10.1016/j.biocel.2021.106050] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
122 Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021;196:108719. [PMID: 34273389 DOI: 10.1016/j.neuropharm.2021.108719] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
123 Cervenka M, Pascual JM, Rho JM, Thiele E, Yellen G, Whittemore V, Hartman AL. Metabolism-based therapies for epilepsy: new directions for future cures. Ann Clin Transl Neurol 2021;8:1730-7. [PMID: 34247456 DOI: 10.1002/acn3.51423] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
124 A O, U M, Lf B, A GC. Energy metabolism in childhood neurodevelopmental disorders. EBioMedicine 2021;69:103474. [PMID: 34256347 DOI: 10.1016/j.ebiom.2021.103474] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
125 Torres-Torrelo H, Ortega-Sáenz P, Gao L, López-Barneo J. Lactate sensing mechanisms in arterial chemoreceptor cells. Nat Commun 2021;12:4166. [PMID: 34230483 DOI: 10.1038/s41467-021-24444-7] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
126 Annoni F, Peluso L, Gouvêa Bogossian E, Creteur J, Zanier ER, Taccone FS. Brain Protection after Anoxic Brain Injury: Is Lactate Supplementation Helpful? Cells 2021;10:1714. [PMID: 34359883 DOI: 10.3390/cells10071714] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
127 Huang Z, Zhang Y, Zhou R, Yang L, Pan H. Lactate as Potential Mediators for Exercise-Induced Positive Effects on Neuroplasticity and Cerebrovascular Plasticity. Front Physiol 2021;12:656455. [PMID: 34290615 DOI: 10.3389/fphys.2021.656455] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
128 Chumachenko MS, Waseem TV, Fedorovich SV. Metabolomics and metabolites in ischemic stroke. Rev Neurosci 2021. [PMID: 34213842 DOI: 10.1515/revneuro-2021-0048] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
129 Le Douce J, Maugard M, Veran J, Matos M, Jégo P, Vigneron PA, Faivre E, Toussay X, Vandenberghe M, Balbastre Y, Piquet J, Guiot E, Tran NT, Taverna M, Marinesco S, Koyanagi A, Furuya S, Gaudin-Guérif M, Goutal S, Ghettas A, Pruvost A, Bemelmans AP, Gaillard MC, Cambon K, Stimmer L, Sazdovitch V, Duyckaerts C, Knott G, Hérard AS, Delzescaux T, Hantraye P, Brouillet E, Cauli B, Oliet SHR, Panatier A, Bonvento G. Impairment of Glycolysis-Derived l-Serine Production in Astrocytes Contributes to Cognitive Deficits in Alzheimer's Disease. Cell Metab 2020;31:503-517.e8. [PMID: 32130882 DOI: 10.1016/j.cmet.2020.02.004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 56] [Article Influence: 35.0] [Reference Citation Analysis]
130 Park EJ, Jin SW, Lim HJ, Kim HY, Kang MS, Yang S. Whole Cigarette Smoke Condensates Induce Accumulation of Amyloid Beta Precursor Protein with Oxidative Stress in Murine Astrocytes. Toxics 2021;9:150. [PMID: 34203397 DOI: 10.3390/toxics9070150] [Reference Citation Analysis]
131 Sun L, Min L, Li M, Shao F. Juvenile social isolation leads to schizophrenia-like behaviors via excess lactate production by astrocytes. Brain Res Bull 2021;174:240-9. [PMID: 34175384 DOI: 10.1016/j.brainresbull.2021.06.015] [Reference Citation Analysis]
132 Covelo A, Eraso-Pichot A, Fernández-Moncada I, Serrat R, Marsicano G. CB1R-dependent regulation of astrocyte physiology and astrocyte-neuron interactions. Neuropharmacology 2021;195:108678. [PMID: 34157362 DOI: 10.1016/j.neuropharm.2021.108678] [Reference Citation Analysis]
133 Burtscher J, Millet GP, Place N, Kayser B, Zanou N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int J Mol Sci 2021;22:6479. [PMID: 34204228 DOI: 10.3390/ijms22126479] [Cited by in Crossref: 1] [Cited by in F6Publishing: 21] [Article Influence: 1.0] [Reference Citation Analysis]
134 Kumar BS, Khot A, Chakravarthy VS, Pushpavanam S. A Network Architecture for Bidirectional Neurovascular Coupling in Rat Whisker Barrel Cortex. Front Comput Neurosci 2021;15:638700. [PMID: 34211384 DOI: 10.3389/fncom.2021.638700] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
135 Marrotte EJ, Johnson K, Schweller RM, Chapla R, Mace BE, Laskowitz DT, West JL. Induction of Neurogenesis and Angiogenesis in a Rat Hemisection Spinal Cord Injury Model With Combined Neural Stem Cell, Endothelial Progenitor Cell, and Biomimetic Hydrogel Matrix Therapy. Crit Care Explor 2021;3:e0436. [PMID: 34151277 DOI: 10.1097/CCE.0000000000000436] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
136 Kolar D, Kleteckova L, Brozka H, Vales K. Mini-review: Brain energy metabolism and its role in animal models of depression, bipolar disorder, schizophrenia and autism. Neurosci Lett 2021;760:136003. [PMID: 34098028 DOI: 10.1016/j.neulet.2021.136003] [Reference Citation Analysis]
137 Ikeda H, Yamamoto S, Kamei J. Increase in brain l-lactate enhances fear memory in diabetic mice: Involvement of glutamate neurons. Brain Res 2021;1767:147560. [PMID: 34129854 DOI: 10.1016/j.brainres.2021.147560] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
138 Zhu N, Huang S, Zhang Q, Zhao Z, Qu H, Ning M, Leng Y, Liu J. Metabolomic Study of High-Fat Diet-Induced Obese (DIO) and DIO Plus CCl4-Induced NASH Mice and the Effect of Obeticholic Acid. Metabolites 2021;11:374. [PMID: 34200685 DOI: 10.3390/metabo11060374] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
139 Cao J, Dong L, Luo J, Zeng F, Hong Z, Liu Y, Zhao Y, Xia Z, Zuo D, Xu L, Tao T. Supplemental N-3 Polyunsaturated Fatty Acids Limit A1-Specific Astrocyte Polarization via Attenuating Mitochondrial Dysfunction in Ischemic Stroke in Mice. Oxid Med Cell Longev 2021;2021:5524705. [PMID: 34211624 DOI: 10.1155/2021/5524705] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
140 Mather M. Noradrenaline in the aging brain: Promoting cognitive reserve or accelerating Alzheimer's disease? Semin Cell Dev Biol 2021;116:108-24. [PMID: 34099360 DOI: 10.1016/j.semcdb.2021.05.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Montana V, Flint D, Waagepetersen HS, Schousboe A, Parpura V. Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochem Res 2021. [PMID: 34057673 DOI: 10.1007/s11064-021-03340-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
142 Bonomi CG, De Lucia V, Mascolo AP, Assogna M, Motta C, Scaricamazza E, Sallustio F, Mercuri NB, Koch G, Martorana A. Brain energy metabolism and neurodegeneration: hints from CSF lactate levels in dementias. Neurobiol Aging 2021;105:333-9. [PMID: 34171631 DOI: 10.1016/j.neurobiolaging.2021.05.011] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
143 Viruega H, Gaviria M. Functional Weight of Somatic and Cognitive Networks and Asymmetry of Compensatory Mechanisms: Collaboration or Divergency among Hemispheres after Cerebrovascular Accident? Life (Basel) 2021;11:495. [PMID: 34071611 DOI: 10.3390/life11060495] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
144 Baez SC, García Del Barco D, Hardy-Sosa A, Guillen Nieto G, Bringas-Vega ML, Llibre-Guerra JJ, Valdes-Sosa P. Scalable Bio Marker Combinations for Early Stroke Diagnosis: A Systematic Review. Front Neurol 2021;12:638693. [PMID: 34122297 DOI: 10.3389/fneur.2021.638693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
145 Muraleedharan R, Gawali MV, Tiwari D, Sukumaran A, Oatman N, Anderson J, Nardini D, Bhuiyan MAN, Tkáč I, Ward AL, Kundu M, Waclaw R, Chow LM, Gross C, Rao R, Schirmeier S, Dasgupta B. AMPK-Regulated Astrocytic Lactate Shuttle Plays a Non-Cell-Autonomous Role in Neuronal Survival. Cell Rep 2020;32:108092. [PMID: 32877674 DOI: 10.1016/j.celrep.2020.108092] [Cited by in Crossref: 12] [Cited by in F6Publishing: 23] [Article Influence: 12.0] [Reference Citation Analysis]
146 van Putten MJAM, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021;22:5679. [PMID: 34073593 DOI: 10.3390/ijms22115679] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
147 Scavuzzo CJ, Newman LA, Gold PE, Korol DL. Extracellular levels of glucose in the hippocampus and striatum during maze training for food or water reward in male rats. Behav Brain Res 2021;411:113385. [PMID: 34048874 DOI: 10.1016/j.bbr.2021.113385] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
148 Zeng M, Shao C, Zhou H, He Y, Li W, Zeng J, Zhao X, Yang J, Wan H. Protocatechudehyde improves mitochondrial energy metabolism through the HIF1α/PDK1 signaling pathway to mitigate ischemic stroke-elicited internal capsule injury. J Ethnopharmacol 2021;277:114232. [PMID: 34044078 DOI: 10.1016/j.jep.2021.114232] [Reference Citation Analysis]
149 Buscemi L, Blochet C, Magistretti PJ, Hirt L. Hydroxycarboxylic Acid Receptor 1 and Neuroprotection in a Mouse Model of Cerebral Ischemia-Reperfusion. Front Physiol 2021;12:689239. [PMID: 34093243 DOI: 10.3389/fphys.2021.689239] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
150 Sanz P, Serratosa JM, Sánchez MP. Beneficial Effects of Metformin on the Central Nervous System, with a Focus on Epilepsy and Lafora Disease. Int J Mol Sci 2021;22:5351. [PMID: 34069559 DOI: 10.3390/ijms22105351] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
151 Tsunematsu T, Sakata S, Sanagi T, Tanaka KF, Matsui K. Region-Specific and State-Dependent Astrocyte Ca2+ Dynamics during the Sleep-Wake Cycle in Mice. J Neurosci 2021;41:5440-52. [PMID: 34006590 DOI: 10.1523/JNEUROSCI.2912-20.2021] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
152 Büchel D, Sandbakk Ø, Baumeister J. Exploring intensity-dependent modulations in EEG resting-state network efficiency induced by exercise. Eur J Appl Physiol 2021;121:2423-35. [PMID: 34003363 DOI: 10.1007/s00421-021-04712-6] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
153 Godoy DA, Badenes R, Murillo-Cabezas F. Ten physiological commandments for severe head injury. Rev Esp Anestesiol Reanim (Engl Ed) 2021;68:280-92. [PMID: 34140125 DOI: 10.1016/j.redare.2020.09.007] [Reference Citation Analysis]
154 Carrard A, Cassé F, Carron C, Burlet-Godinot S, Toni N, Magistretti PJ, Martin JL. Role of adult hippocampal neurogenesis in the antidepressant actions of lactate. Mol Psychiatry 2021. [PMID: 33990772 DOI: 10.1038/s41380-021-01122-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
155 Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, Vernon AC. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull 2020;46:484-95. [PMID: 31755955 DOI: 10.1093/schbul/sbz119] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
156 Nosi D, Lana D, Giovannini MG, Delfino G, Zecchi-Orlandini S. Neuroinflammation: Integrated Nervous Tissue Response through Intercellular Interactions at the "Whole System" Scale. Cells 2021;10:1195. [PMID: 34068375 DOI: 10.3390/cells10051195] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
157 Morrison BM. Surprising New Players in Glia-Neuron Crosstalk: Role in CNS Regeneration. Cell Metab 2020;32:695-6. [PMID: 33147480 DOI: 10.1016/j.cmet.2020.10.009] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
158 Zhou Z, Okamoto K, Onodera J, Hiragi T, Andoh M, Ikawa M, Tanaka KF, Ikegaya Y, Koyama R. Astrocytic cAMP modulates memory via synaptic plasticity. Proc Natl Acad Sci U S A 2021;118:e2016584118. [PMID: 33452135 DOI: 10.1073/pnas.2016584118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
159 Lorenzo PI, Martin Vazquez E, López-Noriega L, Fuente-Martín E, Mellado-Gil JM, Franco JM, Cobo-Vuilleumier N, Guerrero Martínez JA, Romero-Zerbo SY, Perez-Cabello JA, Rivero Canalejo S, Campos-Caro A, Lachaud CC, Crespo Barreda A, Aguilar-Diosdado M, García Fuentes E, Martin-Montalvo A, Álvarez Dolado M, Martin F, Rojo-Martinez G, Pozo D, Bérmudez-Silva FJ, Comaills V, Reyes JC, Gauthier BR. The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity. Theranostics 2021;11:6983-7004. [PMID: 34093866 DOI: 10.7150/thno.57237] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
160 Fan S, Xu Y, Lu Y, Jiang Z, Li H, Morrill JC, Cai J, Wu Q, Xu Y, Xue M, Arenkiel BR, Huang C, Tong Q. A neural basis for brain leptin action on reducing type 1 diabetic hyperglycemia. Nat Commun 2021;12:2662. [PMID: 33976218 DOI: 10.1038/s41467-021-22940-4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
161 Gonzalez-Vazquez A, Aguilar-Peralta AK, Tomas-Sanchez C, Blanco-Alvarez VM, Martinez-Fong D, Gonzalez-Barrios JA, Treviño S, Millán-Perez Peña L, Alatriste V, Soto-Rodriguez G, Brambila E, Leon-Chavez BA. Taurine Increases Zinc Preconditioning-Induced Prevention of Nitrosative Stress, Metabolic Alterations, and Motor Deficits in Young Rats following Intrauterine Ischemia. Oxid Med Cell Longev 2021;2021:6696538. [PMID: 34040692 DOI: 10.1155/2021/6696538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
162 Nizari S, Basalay M, Chapman P, Korte N, Korsak A, Christie IN, Theparambil SM, Davidson SM, Reimann F, Trapp S, Yellon DM, Gourine AV. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res Cardiol 2021;116:32. [PMID: 33942194 DOI: 10.1007/s00395-021-00873-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
163 Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021;148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
164 Hillyer KE, Beale DJ, Shima JS. Artificial light at night interacts with predatory threat to alter reef fish metabolite profiles. Science of The Total Environment 2021;769:144482. [DOI: 10.1016/j.scitotenv.2020.144482] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
165 Zhang X, Alshakhshir N, Zhao L. Glycolytic Metabolism, Brain Resilience, and Alzheimer's Disease. Front Neurosci 2021;15:662242. [PMID: 33994936 DOI: 10.3389/fnins.2021.662242] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
166 Finsterwald C, Dias S, Magistretti PJ, Lengacher S. Ganglioside GM1 Targets Astrocytes to Stimulate Cerebral Energy Metabolism. Front Pharmacol 2021;12:653842. [PMID: 33995070 DOI: 10.3389/fphar.2021.653842] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
167 Mao XY, Yin XX, Guan QW, Xia QX, Yang N, Zhou HH, Liu ZQ, Jin WL. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021;226:107861. [PMID: 33901506 DOI: 10.1016/j.pharmthera.2021.107861] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
168 Martin LJ, Cairns EA, Heblinski M, Fletcher C, Krycer JR, Arnold JC, McGregor IS, Bowen MT, Anderson LL. Cannabichromene and Δ9-Tetrahydrocannabinolic Acid Identified as Lactate Dehydrogenase-A Inhibitors by in Silico and in Vitro Screening. J Nat Prod 2021;84:1469-77. [PMID: 33887133 DOI: 10.1021/acs.jnatprod.0c01281] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
169 Pamies D, Sartori C, Schvartz D, González-Ruiz V, Pellerin L, Nunes C, Tavel D, Maillard V, Boccard J, Rudaz S, Sanchez JC, Zurich MG. Neuroinflammatory Response to TNFα and IL1β Cytokines Is Accompanied by an Increase in Glycolysis in Human Astrocytes In Vitro. Int J Mol Sci 2021;22:4065. [PMID: 33920048 DOI: 10.3390/ijms22084065] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
170 Kambe Y, Yamauchi Y, Thanh Nguyen T, Thi Nguyen T, Ago Y, Shintani N, Hashimoto H, Yoshitake S, Yoshitake T, Kehr J, Kawamura N, Katsuura G, Kurihara T, Miyata A. The pivotal role of pituitary adenylate cyclase-activating polypeptide for lactate production and secretion in astrocytes during fear memory. Pharmacol Rep 2021;73:1109-21. [PMID: 33835466 DOI: 10.1007/s43440-021-00222-6] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
171 Merrells RJ, Madon SB, Chivers PT, Fournier PA. Nausea after Repeated Sprints: Is Lactic Acidosis Really the Culprit? Med Sci Sports Exerc 2021;53:1865-72. [PMID: 34398059 DOI: 10.1249/MSS.0000000000002667] [Reference Citation Analysis]
172 Zehnder T, Petrelli F, Romanos J, De Oliveira Figueiredo EC, Lewis TL Jr, Déglon N, Polleux F, Santello M, Bezzi P. Mitochondrial biogenesis in developing astrocytes regulates astrocyte maturation and synapse formation. Cell Rep 2021;35:108952. [PMID: 33852851 DOI: 10.1016/j.celrep.2021.108952] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
173 Hasel P, Liddelow SA. Astrocytes. Curr Biol 2021;31:R326-7. [PMID: 33848482 DOI: 10.1016/j.cub.2021.01.056] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
174 Wierczeiko A, Gammel L, Radyushkin K, Nguyen VTT, Todorov H, Gerber S, Endres K. Voluntary Wheel Running Did Not Alter Gene Expression in 5xfad Mice, but in Wild-Type Animals Exclusively after One-Day of Physical Activity. Cells 2021;10:693. [PMID: 33804749 DOI: 10.3390/cells10030693] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
175 Yang W, Pang D, Chen M, Du C, Jia L, Wang L, He Y, Jiang W, Luo L, Yu Z, Mao M, Yuan Q, Tang P, Xia X, Cui Y, Jing B, Platero A, Liu Y, Wei Y, Worley PF, Xiao B. Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation. Dev Cell 2021;56:811-825.e6. [PMID: 33725483 DOI: 10.1016/j.devcel.2021.02.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
176 Tepavčević V. Oligodendroglial Energy Metabolism and (re)Myelination. Life (Basel) 2021;11:238. [PMID: 33805670 DOI: 10.3390/life11030238] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
177 Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021;22:2524. [PMID: 33802413 DOI: 10.3390/ijms22052524] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
178 Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021;11:624607. [PMID: 33718271 DOI: 10.3389/fcimb.2021.624607] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
179 Wahis J, Holt MG. Astrocytes, Noradrenaline, α1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front Cell Neurosci 2021;15:645691. [PMID: 33716677 DOI: 10.3389/fncel.2021.645691] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
180 Lundquist AJ, Gallagher TJ, Petzinger GM, Jakowec MW. Exogenous l-lactate promotes astrocyte plasticity but is not sufficient for enhancing striatal synaptogenesis or motor behavior in mice. J Neurosci Res 2021;99:1433-47. [PMID: 33629362 DOI: 10.1002/jnr.24804] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
181 Hu J, Cai M, Shang Q, Li Z, Feng Y, Liu B, Xue X, Lou S. Elevated Lactate by High-Intensity Interval Training Regulates the Hippocampal BDNF Expression and the Mitochondrial Quality Control System. Front Physiol 2021;12:629914. [PMID: 33716776 DOI: 10.3389/fphys.2021.629914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
182 Smolič T, Tavčar P, Horvat A, Černe U, Halužan Vasle A, Tratnjek L, Kreft ME, Scholz N, Matis M, Petan T, Zorec R, Vardjan N. Astrocytes in stress accumulate lipid droplets. Glia 2021;69:1540-62. [PMID: 33609060 DOI: 10.1002/glia.23978] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
183 Horvat A, Muhič M, Smolič T, Begić E, Zorec R, Kreft M, Vardjan N. Ca2+ as the prime trigger of aerobic glycolysis in astrocytes. Cell Calcium 2021;95:102368. [PMID: 33621899 DOI: 10.1016/j.ceca.2021.102368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
184 Moshkforoush A, Balachandar L, Moncion C, Montejo KA, Riera J. Unraveling ChR2-driven stochastic Ca2+ dynamics in astrocytes: A call for new interventional paradigms. PLoS Comput Biol 2021;17:e1008648. [PMID: 33566841 DOI: 10.1371/journal.pcbi.1008648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
185 Matsui T. Exhaustive endurance exercise activates brain glycogen breakdown and lactate production more than insulin-induced hypoglycemia. Am J Physiol Regul Integr Comp Physiol 2021;320:R500-7. [PMID: 33533310 DOI: 10.1152/ajpregu.00119.2020] [Reference Citation Analysis]
186 Gao R, Ren L, Zhou Y, Wang L, Xie Y, Zhang M, Liu X, Ke S, Wu K, Zheng J, Liu X, Chen Z, Liu L. Recurrent non-severe hypoglycemia aggravates cognitive decline in diabetes and induces mitochondrial dysfunction in cultured astrocytes. Mol Cell Endocrinol 2021;526:111192. [PMID: 33545179 DOI: 10.1016/j.mce.2021.111192] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
187 Petit JM, Eren-Koçak E, Karatas H, Magistretti P, Dalkara T. Brain glycogen metabolism: A possible link between sleep disturbances, headache and depression. Sleep Med Rev 2021;59:101449. [PMID: 33618186 DOI: 10.1016/j.smrv.2021.101449] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
188 Aboufares El Alaoui A, Jackson M, Fabri M, de Vivo L, Bellesi M. Characterization of Subcellular Organelles in Cortical Perisynaptic Astrocytes. Front Cell Neurosci 2020;14:573944. [PMID: 33633542 DOI: 10.3389/fncel.2020.573944] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
189 Godoy DA, Badenes R, Murillo-Cabezas F. Ten physiological commandments for severe head injury. Rev Esp Anestesiol Reanim (Engl Ed) 2021;68:280-92. [PMID: 33487456 DOI: 10.1016/j.redar.2020.09.005] [Reference Citation Analysis]
190 Fink K, Velebit J, Vardjan N, Zorec R, Kreft M. Noradrenaline-induced l-lactate production requires d-glucose entry and transit through the glycogen shunt in single-cultured rat astrocytes. J Neurosci Res 2021;99:1084-98. [PMID: 33491223 DOI: 10.1002/jnr.24783] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
191 Cho S, Lee H, Seo J. Impact of Genetic Risk Factors for Alzheimer's Disease on Brain Glucose Metabolism. Mol Neurobiol 2021;58:2608-19. [PMID: 33479841 DOI: 10.1007/s12035-021-02297-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
192 Floriou-Servou A, von Ziegler L, Waag R, Schläppi C, Germain PL, Bohacek J. The Acute Stress Response in the Multiomic Era. Biol Psychiatry 2021;89:1116-26. [PMID: 33722387 DOI: 10.1016/j.biopsych.2020.12.031] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
193 Kofuji P, Araque A. Astrocytes and Behavior. Annu Rev Neurosci 2021;44:49-67. [PMID: 33406370 DOI: 10.1146/annurev-neuro-101920-112225] [Cited by in Crossref: 8] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
194 Wiktorowska L, Bilecki W, Tertil M, Kudla L, Szumiec L, Mackowiak M, Przewlocki R. Knockdown of the astrocytic glucocorticoid receptor in the central nucleus of the amygdala diminishes conditioned fear expression and anxiety. Behav Brain Res 2021;402:113095. [PMID: 33359366 DOI: 10.1016/j.bbr.2020.113095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
195 Vaccari Cardoso B, Shevelkin AV, Terrillion C, Mychko O, Mosienko V, Kasparov S, Pletnikov MV, Teschemacher AG. Reducing l-lactate release from hippocampal astrocytes by intracellular oxidation increases novelty induced activity in mice. Glia 2021;69:1241-50. [PMID: 33400321 DOI: 10.1002/glia.23960] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
196 Chen Y, Lin Q, Liao X, Zhou C, He Y. Association of aerobic glycolysis with the structural connectome reveals a benefit-risk balancing mechanism in the human brain. Proc Natl Acad Sci U S A 2021;118:e2013232118. [PMID: 33443160 DOI: 10.1073/pnas.2013232118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
197 Mahan VL. Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Med Gas Res 2021;11:158-73. [PMID: 34213499 DOI: 10.4103/2045-9912.318862] [Reference Citation Analysis]
198 Qi G, Mi Y, Shi X, Gu H, Brinton RD, Yin F. ApoE4 Impairs Neuron-Astrocyte Coupling of Fatty Acid Metabolism. Cell Rep 2021;34:108572. [PMID: 33406436 DOI: 10.1016/j.celrep.2020.108572] [Cited by in Crossref: 16] [Cited by in F6Publishing: 40] [Article Influence: 16.0] [Reference Citation Analysis]
199 Philips T, Mironova YA, Jouroukhin Y, Chew J, Vidensky S, Farah MH, Pletnikov MV, Bergles DE, Morrison BM, Rothstein JD. MCT1 Deletion in Oligodendrocyte Lineage Cells Causes Late-Onset Hypomyelination and Axonal Degeneration. Cell Rep 2021;34:108610. [PMID: 33440165 DOI: 10.1016/j.celrep.2020.108610] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
200 Lee TH, Yau SY. From Obesity to Hippocampal Neurodegeneration: Pathogenesis and Non-Pharmacological Interventions. Int J Mol Sci 2020;22:E201. [PMID: 33379163 DOI: 10.3390/ijms22010201] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
201 Hsieh CL, Akita T, Mita M, Ide T, Lee JA, Hamase K. Development of a selective three-dimensional HPLC system for enantiomer discriminated analysis of lactate and 3-hydroxybutyrate in human plasma and urine. J Pharm Biomed Anal 2021;195:113871. [PMID: 33429251 DOI: 10.1016/j.jpba.2020.113871] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
202 Burton MT, Santin JM. A direct excitatory action of lactate ions in the central respiratory network of bullfrogs, Lithobates catesbeianus. J Exp Biol 2020;223:jeb235705. [PMID: 33161381 DOI: 10.1242/jeb.235705] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
203 Antony R, Li Y. BDNF secretion from C2C12 cells is enhanced by methionine restriction. Biochem Biophys Res Commun 2020;533:1347-51. [PMID: 33069357 DOI: 10.1016/j.bbrc.2020.10.017] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
204 Xu P, Ning J, Jiang Q, Li C, Yan J, Zhao L, Gao H, Zheng H. Region-specific metabolic characterization of the type 1 diabetic brain in mice with and without cognitive impairment. Neurochem Int 2021;143:104941. [PMID: 33333211 DOI: 10.1016/j.neuint.2020.104941] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
205 D'Adamo P, Horvat A, Gurgone A, Mignogna ML, Bianchi V, Masetti M, Ripamonti M, Taverna S, Velebit J, Malnar M, Muhič M, Fink K, Bachi A, Restuccia U, Belloli S, Moresco RM, Mercalli A, Piemonti L, Potokar M, Bobnar ST, Kreft M, Chowdhury HH, Stenovec M, Vardjan N, Zorec R. Inhibiting glycolysis rescues memory impairment in an intellectual disability Gdi1-null mouse. Metabolism 2021;116:154463. [PMID: 33309713 DOI: 10.1016/j.metabol.2020.154463] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
206 Fernández-Moncada I, Robles-Maldonado D, Castro P, Alegría K, Epp R, Ruminot I, Barros LF. Bidirectional astrocytic GLUT1 activation by elevated extracellular K. Glia 2021;69:1012-21. [PMID: 33277953 DOI: 10.1002/glia.23944] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
207 Woodward KE, de Jesus P, Esser MJ. Neuroinflammation and Precision Medicine in Pediatric Neurocritical Care: Multi-Modal Monitoring of Immunometabolic Dysfunction. Int J Mol Sci 2020;21:E9155. [PMID: 33271778 DOI: 10.3390/ijms21239155] [Reference Citation Analysis]
208 Hackett EP, Pinho MC, Harrison CE, Reed GD, Liticker J, Raza J, Hall RG, Malloy CR, Barshikar S, Madden CJ, Park JM. Imaging Acute Metabolic Changes in Patients with Mild Traumatic Brain Injury Using Hyperpolarized [1-13C]Pyruvate. iScience 2020;23:101885. [PMID: 33344923 DOI: 10.1016/j.isci.2020.101885] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
209 Zeng M, He Y, Zhou H, Du H, Shao C, Yang J, Wan H. Domesticated and optimized mitochondria: Mitochondrial modifications based on energetic status and cellular stress. Life Sci 2021;265:118766. [PMID: 33245965 DOI: 10.1016/j.lfs.2020.118766] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
210 Rahman MH, Bhusal A, Kim JH, Jha MK, Song GJ, Go Y, Jang IS, Lee IK, Suk K. Astrocytic pyruvate dehydrogenase kinase-2 is involved in hypothalamic inflammation in mouse models of diabetes. Nat Commun 2020;11:5906. [PMID: 33219201 DOI: 10.1038/s41467-020-19576-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
211 Chapp AD, Behnke JE, Driscoll KM, Hahka T, LaLonde Z, Shan Z, Chen QH. Elevated L-lactate Promotes Major Cellular Pathologies Associated with Neurodegenerative Diseases. Neurosci Bull 2021;37:380-4. [PMID: 33210187 DOI: 10.1007/s12264-020-00611-6] [Reference Citation Analysis]
212 Zeng M, He Y, Du H, Yang J, Wan H. Output Regulation and Function Optimization of Mitochondria in Eukaryotes. Front Cell Dev Biol 2020;8:598112. [PMID: 33330486 DOI: 10.3389/fcell.2020.598112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
213 Kang I, Kondo D, Kim J, Lyoo IK, Yurgelun-Todd D, Hwang J, Renshaw PF. Elevating the level of hypoxia inducible factor may be a new potential target for the treatment of depression. Med Hypotheses 2021;146:110398. [PMID: 33246695 DOI: 10.1016/j.mehy.2020.110398] [Reference Citation Analysis]
214 Takarada-Iemata M. Roles of N-myc downstream-regulated gene 2 in the central nervous system: molecular basis and relevance to pathophysiology. Anat Sci Int 2021;96:1-12. [PMID: 33174183 DOI: 10.1007/s12565-020-00587-3] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
215 Manninen T, Saudargiene A, Linne ML. Astrocyte-mediated spike-timing-dependent long-term depression modulates synaptic properties in the developing cortex. PLoS Comput Biol 2020;16:e1008360. [PMID: 33170856 DOI: 10.1371/journal.pcbi.1008360] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
216 Kovalzon VM, Panchin YV. [D-lactate as a novel somnogenic factor?]. Zh Nevrol Psikhiatr Im S S Korsakova 2020;120:22-5. [PMID: 33076641 DOI: 10.17116/jnevro202012009222] [Reference Citation Analysis]
217 Dong Y, Brewer GJ. Global Metabolic Shifts in Age and Alzheimer's Disease Mouse Brains Pivot at NAD+/NADH Redox Sites. J Alzheimers Dis 2019;71:119-40. [PMID: 31356210 DOI: 10.3233/JAD-190408] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
218 Fan Z, Zhang Z, Zhao S, Zhu Y, Guo D, Yang B, Zhuo L, Han J, Wang R, Fang Z, Dong H, Li Y, Xiong L. Dynamic Variations in Brain Glycogen are Involved in Modulating Isoflurane Anesthesia in Mice. Neurosci Bull 2020;36:1513-23. [PMID: 33048310 DOI: 10.1007/s12264-020-00587-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
219 Israelian L, Nitschke S, Wang P, Zhao X, Perri AM, Lee JPY, Verhalen B, Nitschke F, Minassian BA. Ppp1r3d deficiency preferentially inhibits neuronal and cardiac Lafora body formation in a mouse model of the fatal epilepsy Lafora disease. J Neurochem 2021;157:1897-910. [PMID: 32892347 DOI: 10.1111/jnc.15176] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
220 van Vugt FT, Near J, Hennessy T, Doyon J, Ostry DJ. Early stages of sensorimotor map acquisition: neurochemical signature in primary motor cortex and its relation to functional connectivity. J Neurophysiol 2020;124:1615-24. [PMID: 32997558 DOI: 10.1152/jn.00285.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
221 Linnerbauer M, Rothhammer V. Protective Functions of Reactive Astrocytes Following Central Nervous System Insult. Front Immunol 2020;11:573256. [PMID: 33117368 DOI: 10.3389/fimmu.2020.573256] [Cited by in Crossref: 15] [Cited by in F6Publishing: 37] [Article Influence: 7.5] [Reference Citation Analysis]
222 Jha MK, Morrison BM. Lactate Transporters Mediate Glia-Neuron Metabolic Crosstalk in Homeostasis and Disease. Front Cell Neurosci 2020;14:589582. [PMID: 33132853 DOI: 10.3389/fncel.2020.589582] [Cited by in Crossref: 4] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
223 Stefanov K, McLean J, Allan B, Cavanagh J, Krishnadas R. Mild inflammation causes a reduction in resting-state amplitude of low-frequency fluctuation in healthy adult males. Brain Neurosci Adv 2020;4:2398212820949353. [PMID: 32954008 DOI: 10.1177/2398212820949353] [Reference Citation Analysis]
224 Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2021;158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
225 Bingul D, Kalra K, Murata EM, Belser A, Dash MB. Persistent changes in extracellular lactate dynamics following synaptic potentiation. Neurobiol Learn Mem 2020;175:107314. [PMID: 32961277 DOI: 10.1016/j.nlm.2020.107314] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
226 Garcia-Leon JA, Caceres-Palomo L, Sanchez-Mejias E, Mejias-Ortega M, Nuñez-Diaz C, Fernandez-Valenzuela JJ, Sanchez-Varo R, Davila JC, Vitorica J, Gutierrez A. Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. Int J Mol Sci 2020;21:E6867. [PMID: 32962164 DOI: 10.3390/ijms21186867] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
227 Li F, Sami A, Noristani HN, Slattery K, Qiu J, Groves T, Wang S, Veerasammy K, Chen YX, Morales J, Haynes P, Sehgal A, He Y, Li S, Song Y. Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metab 2020;32:767-785.e7. [PMID: 32941799 DOI: 10.1016/j.cmet.2020.08.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
228 Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte Crosstalk in CNS Inflammation. Neuron 2020;108:608-22. [PMID: 32898475 DOI: 10.1016/j.neuron.2020.08.012] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 24.5] [Reference Citation Analysis]
229 Tassinari ID, Andrade MKG, da Rosa LA, Hoff MLM, Nunes RR, Vogt EL, Fabres RB, Sanches EF, Netto CA, Paz AH, de Fraga LS. Lactate Administration Reduces Brain Injury and Ameliorates Behavioral Outcomes Following Neonatal Hypoxia-Ischemia. Neuroscience 2020;448:191-205. [PMID: 32905840 DOI: 10.1016/j.neuroscience.2020.09.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
230 Nonose Y, Pieper LZ, da Silva JS, Longoni A, Apel RV, Meira-Martins LA, Grings M, Leipnitz G, Souza DO, de Assis AM. Guanosine enhances glutamate uptake and oxidation, preventing oxidative stress in mouse hippocampal slices submitted to high glutamate levels. Brain Res 2020;1748:147080. [PMID: 32866546 DOI: 10.1016/j.brainres.2020.147080] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
231 Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020;518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
232 Prieto-Gómez B, Díaz-Vázquez M, Pérez-Torres D. Hippocampal electrophysiological changes during the elicited metabolic syndrome in Wistar rats. Metabol Open 2020;5:100027. [PMID: 32812943 DOI: 10.1016/j.metop.2020.100027] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
233 Sofroniew MV. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol 2020;41:758-70. [PMID: 32819810 DOI: 10.1016/j.it.2020.07.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 57] [Article Influence: 24.5] [Reference Citation Analysis]
234 Maugard M, Vigneron PA, Bolaños JP, Bonvento G. l-Serine links metabolism with neurotransmission. Prog Neurobiol 2021;197:101896. [PMID: 32798642 DOI: 10.1016/j.pneurobio.2020.101896] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
235 Giovannoni F, Quintana FJ. The Role of Astrocytes in CNS Inflammation. Trends Immunol 2020;41:805-19. [PMID: 32800705 DOI: 10.1016/j.it.2020.07.007] [Cited by in Crossref: 40] [Cited by in F6Publishing: 95] [Article Influence: 20.0] [Reference Citation Analysis]
236 Felix L, Delekate A, Petzold GC, Rose CR. Sodium Fluctuations in Astroglia and Their Potential Impact on Astrocyte Function. Front Physiol 2020;11:871. [PMID: 32903427 DOI: 10.3389/fphys.2020.00871] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
237 Yin YN, Hu J, Wei YL, Li ZL, Luo ZC, Wang RQ, Yang KX, Li SJ, Li XW, Yang JM, Gao TM. Astrocyte-Derived Lactate Modulates the Passive Coping Response to Behavioral Challenge in Male Mice. Neurosci Bull 2021;37:1-14. [PMID: 32785834 DOI: 10.1007/s12264-020-00553-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
238 Hsieh SS, Chueh TY, Huang CJ, Kao SC, Hillman CH, Chang YK, Hung TM. Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. J Sports Sci 2021;39:10-22. [PMID: 32780634 DOI: 10.1080/02640414.2020.1803630] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
239 Mori S, Kurimoto T, Miki A, Maeda H, Kusuhara S, Nakamura M. Aqp9 Gene Deletion Enhances Retinal Ganglion Cell (RGC) Death and Dysfunction Induced by Optic Nerve Crush: Evidence that Aquaporin 9 Acts as an Astrocyte-to-Neuron Lactate Shuttle in Concert with Monocarboxylate Transporters To Support RGC Function and Survival. Mol Neurobiol 2020;57:4530-48. [PMID: 32748371 DOI: 10.1007/s12035-020-02030-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
240 Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biol 2020;36:101664. [PMID: 32863224 DOI: 10.1016/j.redox.2020.101664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
241 Yang WH, Park H, Grau M, Heine O. Decreased Blood Glucose and Lactate: Is a Useful Indicator of Recovery Ability in Athletes? Int J Environ Res Public Health 2020;17:E5470. [PMID: 32751226 DOI: 10.3390/ijerph17155470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
242 Rajamohan S, Davis CR, Ader M. REST: Break through to resilience. Nursing 2020;50:53-6. [PMID: 32701892 DOI: 10.1097/01.NURSE.0000684196.97792.03] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
243 Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020;19:609-33. [PMID: 32709961 DOI: 10.1038/s41573-020-0072-x] [Cited by in Crossref: 73] [Cited by in F6Publishing: 163] [Article Influence: 36.5] [Reference Citation Analysis]
244 Cooper ML, Pasini S, Lambert WS, D'Alessandro KB, Yao V, Risner ML, Calkins DJ. Redistribution of metabolic resources through astrocyte networks mitigates neurodegenerative stress. Proc Natl Acad Sci U S A 2020;117:18810-21. [PMID: 32690710 DOI: 10.1073/pnas.2009425117] [Cited by in Crossref: 27] [Cited by in F6Publishing: 43] [Article Influence: 13.5] [Reference Citation Analysis]
245 Netzahualcoyotzi C, Pellerin L. Neuronal and astroglial monocarboxylate transporters play key but distinct roles in hippocampus-dependent learning and memory formation. Prog Neurobiol 2020;194:101888. [PMID: 32693190 DOI: 10.1016/j.pneurobio.2020.101888] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
246 Forderhase AG, Styers HC, Lee CA, Sombers LA. Simultaneous voltammetric detection of glucose and lactate fluctuations in rat striatum evoked by electrical stimulation of the midbrain. Anal Bioanal Chem 2020;412:6611-24. [PMID: 32666141 DOI: 10.1007/s00216-020-02797-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
247 Li W, Li Y, Jin J. The essential function of IL-33 in metabolic regulation. Acta Biochim Biophys Sin (Shanghai) 2020;52:768-75. [PMID: 32445465 DOI: 10.1093/abbs/gmaa045] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
248 Magistretti PJ. How lactate links cannabis to social behaviour. Nature 2020;583:526-7. [PMID: 32641790 DOI: 10.1038/d41586-020-01975-5] [Reference Citation Analysis]
249 Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, Gómez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, Arnouil D, Saraswat D, Varilh M, Cannich A, Julio-Kalajzic F, Bonilla-Del Río I, Almeida A, Puente N, Achicallende S, Lopez-Rodriguez ML, Jollé C, Déglon N, Pellerin L, Josephine C, Bonvento G, Panatier A, Lutz B, Piazza PV, Guzmán M, Bellocchio L, Bouzier-Sore AK, Grandes P, Bolaños JP, Marsicano G. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 2020;583:603-8. [PMID: 32641832 DOI: 10.1038/s41586-020-2470-y] [Cited by in Crossref: 35] [Cited by in F6Publishing: 72] [Article Influence: 17.5] [Reference Citation Analysis]
250 Dierssen M, Fructuoso M, Martínez de Lagrán M, Perluigi M, Barone E. Down Syndrome Is a Metabolic Disease: Altered Insulin Signaling Mediates Peripheral and Brain Dysfunctions. Front Neurosci 2020;14:670. [PMID: 32733190 DOI: 10.3389/fnins.2020.00670] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
251 Xu J, Zheng Y, Lv S, Kang J, Yu Y, Hou K, Li Y, Chi G. Lactate Promotes Reactive Astrogliosis and Confers Axon Guidance Potential to Astrocytes under Oxygen-Glucose Deprivation. Neuroscience 2020;442:54-68. [PMID: 32634533 DOI: 10.1016/j.neuroscience.2020.06.041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
252 Rangaraju V, Lewis TL Jr, Hirabayashi Y, Bergami M, Motori E, Cartoni R, Kwon SK, Courchet J. Pleiotropic Mitochondria: The Influence of Mitochondria on Neuronal Development and Disease. J Neurosci 2019;39:8200-8. [PMID: 31619488 DOI: 10.1523/JNEUROSCI.1157-19.2019] [Cited by in Crossref: 39] [Cited by in F6Publishing: 53] [Article Influence: 19.5] [Reference Citation Analysis]
253 Bourourou M, Gouix E, Melis N, Friard J, Heurteaux C, Tauc M, Blondeau N. Inhibition of eIF5A hypusination pathway as a new pharmacological target for stroke therapy. J Cereb Blood Flow Metab 2021;41:1080-90. [PMID: 32615885 DOI: 10.1177/0271678X20928882] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
254 Schwartz L, Peres S, Jolicoeur M, da Veiga Moreira J. Cancer and Alzheimer's disease: intracellular pH scales the metabolic disorders. Biogerontology 2020;21:683-94. [PMID: 32617766 DOI: 10.1007/s10522-020-09888-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
255 Hollnagel JO, Cesetti T, Schneider J, Vazetdinova A, Valiullina-Rakhmatullina F, Lewen A, Rozov A, Kann O. Lactate Attenuates Synaptic Transmission and Affects Brain Rhythms Featuring High Energy Expenditure. iScience 2020;23:101316. [PMID: 32653807 DOI: 10.1016/j.isci.2020.101316] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
256 Andersen JV, Jakobsen E, Westi EW, Lie MEK, Voss CM, Aldana BI, Schousboe A, Wellendorph P, Bak LK, Pinborg LH, Waagepetersen HS. Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex. Glia 2020;68:2601-12. [PMID: 32584476 DOI: 10.1002/glia.23872] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
257 Yamagata K. Astrocytic nutritional dysfunction associated with hypoxia-induced neuronal vulnerability in stroke-prone spontaneously hypertensive rats. Neurochem Int 2020;138:104786. [PMID: 32579896 DOI: 10.1016/j.neuint.2020.104786] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
258 Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Front Neurosci 2020;14:573. [PMID: 32625051 DOI: 10.3389/fnins.2020.00573] [Cited by in Crossref: 10] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
259 Koveal D, Díaz-García CM, Yellen G. Fluorescent Biosensors for Neuronal Metabolism and the Challenges of Quantitation. Curr Opin Neurobiol 2020;63:111-21. [PMID: 32559637 DOI: 10.1016/j.conb.2020.02.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
260 Henrique EP, Oliveira MA, Paulo DC, Pereira PDC, Dias C, Siqueira LS, Lima CM, Miranda DDA, Rego PS, Araripe J, Melo MAD, Diniz DG, Morais Magalhães NG, Sherry DF, Picanço Diniz CW, Diniz CG. Contrasting migratory journeys and changes in hippocampal astrocyte morphology in shorebirds. Eur J Neurosci 2021;54:5687-704. [DOI: 10.1111/ejn.14781] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
261 Long DM, Frame AK, Reardon PN, Cumming RC, Hendrix DA, Kretzschmar D, Giebultowicz JM. Lactate dehydrogenase expression modulates longevity and neurodegeneration in Drosophila melanogaster. Aging (Albany NY) 2020;12:10041-58. [PMID: 32484787 DOI: 10.18632/aging.103373] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
262 Liu Y, Yang S, Cai E, Lin L, Zeng P, Nie B, Xu F, Tian Q, Wang J. Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/MRS and in vitro approaches. CNS Neurosci Ther 2020. [PMID: 32488963 DOI: 10.1111/cns.13399] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
263 Sherwood CC, Miller SB, Karl M, Stimpson CD, Phillips KA, Jacobs B, Hof PR, Raghanti MA, Smaers JB. Invariant Synapse Density and Neuronal Connectivity Scaling in Primate Neocortical Evolution. Cereb Cortex 2020;30:5604-15. [PMID: 32488266 DOI: 10.1093/cercor/bhaa149] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
264 Scandella V, Knobloch M. Sensing the Environment: Extracellular Lactate Levels Control Adult Neurogenesis. Cell Stem Cell 2019;25:729-31. [PMID: 31809733 DOI: 10.1016/j.stem.2019.11.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
265 Zhao L, Cui C, Liu Q, Sun J, He K, Adam AA, Luo J, Li Z, Wang Y, Yang S. Combined exposure to hypoxia and ammonia aggravated biological effects on glucose metabolism, oxidative stress, inflammation and apoptosis in largemouth bass (Micropterus salmoides). Aquat Toxicol 2020;224:105514. [PMID: 32502847 DOI: 10.1016/j.aquatox.2020.105514] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
266 Evans AM, Hardie DG. AMPK and the Need to Breathe and Feed: What's the Matter with Oxygen? Int J Mol Sci 2020;21:E3518. [PMID: 32429235 DOI: 10.3390/ijms21103518] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
267 Cure E, Cumhur Cure M. Comment on "Subtype-Dependent Reporting of Stroke With SGLT2 Inhibitors: Implications From a Japanese Pharmacovigilance Study". J Clin Pharmacol 2020;60:793-4. [PMID: 32408385 DOI: 10.1002/jcph.1615] [Reference Citation Analysis]
268 Watters O, Connolly NMC, König HG, Düssmann H, Prehn JHM. AMPK Preferentially Depresses Retrograde Transport of Axonal Mitochondria during Localized Nutrient Deprivation. J Neurosci 2020;40:4798-812. [PMID: 32393534 DOI: 10.1523/JNEUROSCI.2067-19.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
269 Hu J, Cai M, Liu Y, Liu B, Xue X, Ji R, Bian X, Lou S. The roles of GRP81 as a metabolic sensor and inflammatory mediator. J Cell Physiol 2020;235:8938-50. [PMID: 32342523 DOI: 10.1002/jcp.29739] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
270 Müller P, Duderstadt Y, Lessmann V, Müller NG. Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J Clin Med 2020;9:E1136. [PMID: 32326586 DOI: 10.3390/jcm9041136] [Cited by in Crossref: 22] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
271 Velebit J, Horvat A, Smolič T, Prpar Mihevc S, Rogelj B, Zorec R, Vardjan N. Astrocytes with TDP-43 inclusions exhibit reduced noradrenergic cAMP and Ca2+ signaling and dysregulated cell metabolism. Sci Rep 2020;10:6003. [PMID: 32265469 DOI: 10.1038/s41598-020-62864-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
272 Fernandez-de-cossio-diaz J, Mulet R. Statistical mechanics of interacting metabolic networks. Phys Rev E 2020;101. [DOI: 10.1103/physreve.101.042401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
273 Hagenston AM, Bading H, Bas-Orth C. Functional Consequences of Calcium-Dependent Synapse-to-Nucleus Communication: Focus on Transcription-Dependent Metabolic Plasticity. Cold Spring Harb Perspect Biol 2020;12:a035287. [PMID: 31570333 DOI: 10.1101/cshperspect.a035287] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
274 Kurtz P, Rocha EEM. Nutrition Therapy, Glucose Control, and Brain Metabolism in Traumatic Brain Injury: A Multimodal Monitoring Approach. Front Neurosci 2020;14:190. [PMID: 32265626 DOI: 10.3389/fnins.2020.00190] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
275 Laranjinha J, Nunes C, Ledo A, Lourenço C, Rocha B, Barbosa RM. The Peculiar Facets of Nitric Oxide as a Cellular Messenger: From Disease-Associated Signaling to the Regulation of Brain Bioenergetics and Neurovascular Coupling. Neurochem Res 2021;46:64-76. [PMID: 32193753 DOI: 10.1007/s11064-020-03015-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
276 Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020;32:1188-236. [PMID: 32050773 DOI: 10.1089/ars.2019.7763] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 15.0] [Reference Citation Analysis]
277 Rey S, Zalc B, Klämbt C. Evolution of glial wrapping: A new hypothesis. Dev Neurobiol 2021;81:453-63. [PMID: 32133794 DOI: 10.1002/dneu.22739] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
278 Barros LF, San Martín A, Ruminot I, Sandoval PY, Baeza-lehnert F, Arce-molina R, Rauseo D, Contreras-baeza Y, Galaz A, Valdivia S. Fluid Brain Glycolysis: Limits, Speed, Location, Moonlighting, and the Fates of Glycogen and Lactate. Neurochem Res 2020;45:1328-34. [DOI: 10.1007/s11064-020-03005-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
279 Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 2019;20:353-67. [PMID: 30814649 DOI: 10.1038/s41580-019-0108-4] [Cited by in Crossref: 143] [Cited by in F6Publishing: 251] [Article Influence: 71.5] [Reference Citation Analysis]
280 Buscemi L, Blochet C, Price M, Magistretti PJ, Lei H, Hirt L. Extended preclinical investigation of lactate for neuroprotection after ischemic stroke. Clinical and Translational Neuroscience 2020;4:2514183X2090457. [DOI: 10.1177/2514183x20904571] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
281 Zuend M, Saab AS, Wyss MT, Ferrari KD, Hösli L, Looser ZJ, Stobart JL, Duran J, Guinovart JJ, Barros LF, Weber B. Arousal-induced cortical activity triggers lactate release from astrocytes. Nat Metab 2020;2:179-91. [PMID: 32694692 DOI: 10.1038/s42255-020-0170-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 36] [Article Influence: 13.5] [Reference Citation Analysis]
282 Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 2020;21:139-52. [DOI: 10.1038/s41583-020-0263-9] [Cited by in Crossref: 82] [Cited by in F6Publishing: 117] [Article Influence: 41.0] [Reference Citation Analysis]
283 Vicente-Gutiérrez C, Jiménez-Blasco D, Quintana-Cabrera R. Intertwined ROS and Metabolic Signaling at the Neuron-Astrocyte Interface. Neurochem Res 2021;46:23-33. [PMID: 31989468 DOI: 10.1007/s11064-020-02965-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
284 Barros LF, Ruminot I, San Martín A, Lerchundi R, Fernández-Moncada I, Baeza-Lehnert F. Aerobic Glycolysis in the Brain: Warburg and Crabtree Contra Pasteur. Neurochem Res 2021;46:15-22. [PMID: 31981059 DOI: 10.1007/s11064-020-02964-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
285 Ghosh-Choudhary S, Liu J, Finkel T. Metabolic Regulation of Cell Fate and Function. Trends Cell Biol 2020;30:201-12. [PMID: 31983571 DOI: 10.1016/j.tcb.2019.12.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
286 Kim JC, Hwang SN, Kim SY. Alteration of Gene Associated with Retinoid-interferon-induced Mortality-19-expressing Cell Types in the Mouse Hippocampus Following Pilocarpine-induced Status Epilepticus. Neuroscience 2020;425:49-58. [PMID: 31790668 DOI: 10.1016/j.neuroscience.2019.11.015] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
287 Vohra R, Kolko M. Lactate: More Than Merely a Metabolic Waste Product in the Inner Retina. Mol Neurobiol 2020;57:2021-37. [PMID: 31916030 DOI: 10.1007/s12035-019-01863-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
288 Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C. Metabolic regulation of neurodifferentiation in the adult brain. Cell Mol Life Sci 2020;77:2483-96. [PMID: 31912194 DOI: 10.1007/s00018-019-03430-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
289 Ehrke E, Steinmeier J, Stapelfeldt K, Dringen R. The Menadione-Mediated WST1 Reduction by Cultured Astrocytes Depends on NQO1 Activity and Cytosolic Glucose Metabolism. Neurochem Res 2021;46:88-99. [PMID: 31902045 DOI: 10.1007/s11064-019-02930-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
290 Carrière A, Lagarde D, Jeanson Y, Portais JC, Galinier A, Ader I, Casteilla L. The emerging roles of lactate as a redox substrate and signaling molecule in adipose tissues. J Physiol Biochem 2020;76:241-50. [PMID: 31898016 DOI: 10.1007/s13105-019-00723-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
291 Lee CY, Soliman H, Geraghty BJ, Chen AP, Connelly KA, Endre R, Perks WJ, Heyn C, Black SE, Cunningham CH. Lactate topography of the human brain using hyperpolarized 13C-MRI. NeuroImage 2020;204:116202. [DOI: 10.1016/j.neuroimage.2019.116202] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
292 Cragnolini AB, Lampitella G, Virtuoso A, Viscovo I, Panetsos F, Papa M, Cirillo G. Regional brain susceptibility to neurodegeneration: what is the role of glial cells? Neural Regen Res 2020;15:838-42. [PMID: 31719244 DOI: 10.4103/1673-5374.268897] [Cited by in Crossref: 20] [Cited by in F6Publishing: 28] [Article Influence: 10.0] [Reference Citation Analysis]
293 Scavuzzo CJ, Rakotovao I, Dickson CT. Differential effects of L- and D-lactate on memory encoding and consolidation: Potential role of HCAR1 signaling. Neurobiol Learn Mem 2020;168:107151. [PMID: 31881352 DOI: 10.1016/j.nlm.2019.107151] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
294 Zhu Y, Fan Z, Wang R, Xie R, Guo H, Zhang M, Guo B, Sun T, Zhang H, Zhuo L, Li Y, Wu S. Single-Cell Analysis for Glycogen Localization and Metabolism in Cultured Astrocytes. Cell Mol Neurobiol 2020;40:801-12. [PMID: 31863221 DOI: 10.1007/s10571-019-00775-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
295 Patsatzis DG, Tingas EA, Goussis DA, Sarathy SM. Computational singular perturbation analysis of brain lactate metabolism. PLoS One 2019;14:e0226094. [PMID: 31846455 DOI: 10.1371/journal.pone.0226094] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
296 Certo M, Marone G, de Paulis A, Mauro C, Pucino V. Lactate: Fueling the fire starter. Wiley Interdiscip Rev Syst Biol Med 2020;12:e1474. [PMID: 31840439 DOI: 10.1002/wsbm.1474] [Cited by in Crossref: 12] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
297 Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neuroscience & Biobehavioral Reviews 2019;107:927-44. [DOI: 10.1016/j.neubiorev.2019.09.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
298 Wang J, Cui Y, Yu Z, Wang W, Cheng X, Ji W, Guo S, Zhou Q, Wu N, Chen Y, Chen Y, Song X, Jiang H, Wang Y, Lan Y, Zhou B, Mao L, Li J, Yang H, Guo W, Yang X. Brain Endothelial Cells Maintain Lactate Homeostasis and Control Adult Hippocampal Neurogenesis. Cell Stem Cell 2019;25:754-767.e9. [DOI: 10.1016/j.stem.2019.09.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
299 Cirillo G, Cirillo M, Panetsos F, Virtuoso A, Papa M. Selective Vulnerability of Basal Ganglia: Insights into the Mechanisms of Bilateral Striatal Necrosis. J Neuropathol Exp Neurol 2019;78:123-9. [PMID: 30605553 DOI: 10.1093/jnen/nly123] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
300 Merrells RJ, Cripps AJ, Chivers PT, Fournier PA. Role of lactic acidosis as a mediator of sprint-mediated nausea. Physiol Rep 2019;7:e14283. [PMID: 31724342 DOI: 10.14814/phy2.14283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
301 Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, Haas R, Smith J, Headland SE, Blighe K, Ruscica M, Humby F, Lewis MJ, Kamphorst JJ, Bombardieri M, Pitzalis C, Mauro C. Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4+ T Cell Metabolic Rewiring. Cell Metab 2019;30:1055-1074.e8. [PMID: 31708446 DOI: 10.1016/j.cmet.2019.10.004] [Cited by in Crossref: 71] [Cited by in F6Publishing: 135] [Article Influence: 23.7] [Reference Citation Analysis]
302 Rich LR, Harris W, Brown AM. The Role of Brain Glycogen in Supporting Physiological Function. Front Neurosci 2019;13:1176. [PMID: 31749677 DOI: 10.3389/fnins.2019.01176] [Cited by in Crossref: 14] [Cited by in F6Publishing: 23] [Article Influence: 4.7] [Reference Citation Analysis]
303 Kalinin S, Meares GP, Lin SX, Pietruczyk EA, Saher G, Spieth L, Nave KA, Boullerne AI, Lutz SE, Benveniste EN, Feinstein DL. Liver kinase B1 depletion from astrocytes worsens disease in a mouse model of multiple sclerosis. Glia 2020;68:600-16. [PMID: 31664743 DOI: 10.1002/glia.23742] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
304 Maïer B, Kubis N. Hypertension and Its Impact on Stroke Recovery: From a Vascular to a Parenchymal Overview. Neural Plast 2019;2019:6843895. [PMID: 31737062 DOI: 10.1155/2019/6843895] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
305 Astakhova A, Chistyakov D, Thomas D, Geisslinger G, Brüne B, Sergeeva M, Namgaladze D. Inhibitors of Oxidative Phosphorylation Modulate Astrocyte Inflammatory Responses through AMPK-Dependent Ptgs2 mRNA Stabilization. Cells 2019;8:E1185. [PMID: 31581537 DOI: 10.3390/cells8101185] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
306 Calì C, Agus M, Kare K, Boges DJ, Lehväslaiho H, Hadwiger M, Magistretti PJ. 3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. Prog Neurobiol 2019;183:101696. [PMID: 31550514 DOI: 10.1016/j.pneurobio.2019.101696] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
307 Verkhratsky A, Rodrigues JJ, Pivoriunas A, Zorec R, Semyanov A. Astroglial atrophy in Alzheimer’s disease. Pflugers Arch - Eur J Physiol 2019;471:1247-61. [DOI: 10.1007/s00424-019-02310-2] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]
308 Tauffenberger A, Fiumelli H, Almustafa S, Magistretti PJ. Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Cell Death Dis 2019;10:653. [PMID: 31506428 DOI: 10.1038/s41419-019-1877-6] [Cited by in Crossref: 46] [Cited by in F6Publishing: 54] [Article Influence: 15.3] [Reference Citation Analysis]
309 Erdener ŞE, Dalkara T. Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection. Front Neurol 2019;10:889. [PMID: 31474933 DOI: 10.3389/fneur.2019.00889] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
310 Tourigny DS, Karim MKA, Echeveste R, Kotter MRN, O'Neill JS. Energetic substrate availability regulates synchronous activity in an excitatory neural network. PLoS One 2019;14:e0220937. [PMID: 31408504 DOI: 10.1371/journal.pone.0220937] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
311 Onozato M, Umino M, Shoji A, Ichiba H, Tsujino N, Funatogawa T, Tagata H, Nemoto T, Mizuno M, Fukushima T. Serum d ‐ and l ‐lactate, pyruvate and glucose levels in individuals with at‐risk mental state and correlations with clinical symptoms. Early Intervention in Psychiatry 2020;14:410-7. [DOI: 10.1111/eip.12866] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
312 Kahanovitch U, Patterson KC, Hernandez R, Olsen ML. Glial Dysfunction in MeCP2 Deficiency Models: Implications for Rett Syndrome. Int J Mol Sci 2019;20:E3813. [PMID: 31387202 DOI: 10.3390/ijms20153813] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
313 Guyenet PG. Sodium Is Detected by the OVLT to Regulate Sympathetic Tone. Neuron 2019;101:3-5. [PMID: 30605656 DOI: 10.1016/j.neuron.2018.12.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
314 Martinez-arroyo O, Gruevska A, Victor VM, González-polo RA, Yakhine-diop SM, Fuentes JM, Esplugues JV, Blas-garcia A, Apostolova N. Mitophagy in human astrocytes treated with the antiretroviral drug Efavirenz: Lack of evidence or evidence of the lack. Antiviral Research 2019;168:36-50. [DOI: 10.1016/j.antiviral.2019.04.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
315 Furness AM, Pal R, Michealis EK, Lunte CE, Lunte SM. Neurochemical investigation of multiple locally induced seizures using microdialysis sampling: Epilepsy effects on glutamate release. Brain Res 2019;1722:146360. [PMID: 31377104 DOI: 10.1016/j.brainres.2019.146360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
316 Vergara RC, Jaramillo-Riveri S, Luarte A, Moënne-Loccoz C, Fuentes R, Couve A, Maldonado PE. The Energy Homeostasis Principle: Neuronal Energy Regulation Drives Local Network Dynamics Generating Behavior. Front Comput Neurosci 2019;13:49. [PMID: 31396067 DOI: 10.3389/fncom.2019.00049] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
317 Descalzi G, Gao V, Steinman MQ, Suzuki A, Alberini CM. Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons. Commun Biol 2019;2:247. [PMID: 31286064 DOI: 10.1038/s42003-019-0495-2] [Cited by in Crossref: 30] [Cited by in F6Publishing: 54] [Article Influence: 10.0] [Reference Citation Analysis]
318 Evans AM. AMPK breathing and oxygen supply. Respiratory Physiology & Neurobiology 2019;265:112-20. [DOI: 10.1016/j.resp.2018.08.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
319 Skupio U, Tertil M, Bilecki W, Barut J, Korostynski M, Golda S, Kudla L, Wiktorowska L, Sowa JE, Siwiec M, Bobula B, Pels K, Tokarski K, Hess G, Ruszczycki B, Wilczynski G, Przewlocki R. Astrocytes determine conditioned response to morphine via glucocorticoid receptor-dependent regulation of lactate release. Neuropsychopharmacology 2020;45:404-15. [PMID: 31254970 DOI: 10.1038/s41386-019-0450-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
320 Corcoran E, Hemkin S. Calcium(II) oscillations to glucose: An astrocyte relation. Biophys Chem 2019;252:106195. [PMID: 31195340 DOI: 10.1016/j.bpc.2019.106195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
321 Jacobsen DW, Hannibal L. Redox signaling in inherited diseases of metabolism. Current Opinion in Physiology 2019;9:48-55. [DOI: 10.1016/j.cophys.2019.04.024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
322 Bose S, Ramesh V, Locasale JW. Acetate Metabolism in Physiology, Cancer, and Beyond. Trends Cell Biol 2019;29:695-703. [PMID: 31160120 DOI: 10.1016/j.tcb.2019.05.005] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
323 Lev-Vachnish Y, Cadury S, Rotter-Maskowitz A, Feldman N, Roichman A, Illouz T, Varvak A, Nicola R, Madar R, Okun E. L-Lactate Promotes Adult Hippocampal Neurogenesis. Front Neurosci 2019;13:403. [PMID: 31178678 DOI: 10.3389/fnins.2019.00403] [Cited by in Crossref: 37] [Cited by in F6Publishing: 46] [Article Influence: 12.3] [Reference Citation Analysis]
324 Stevens JS, Al-Awqati Q. Lactate dehydrogenase 5: identification of a druggable target to reduce oxaluria. J Clin Invest 2019;129:2201-4. [PMID: 31107247 DOI: 10.1172/JCI128709] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
325 Baker WB, Balu R, He L, Kavuri VC, Busch DR, Amendolia O, Quattrone F, Frangos S, Maloney-Wilensky E, Abramson K, Mahanna Gabrielli E, Yodh AG, Andrew Kofke W. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. J Cereb Blood Flow Metab 2019;39:1469-85. [PMID: 31088234 DOI: 10.1177/0271678X19846657] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
326 Killeen PR. Models of attention-deficit hyperactivity disorder. Behavioural Processes 2019;162:205-14. [DOI: 10.1016/j.beproc.2019.01.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
327 Souza DG, Almeida RF, Souza DO, Zimmer ER. The astrocyte biochemistry. Semin Cell Dev Biol 2019;95:142-50. [PMID: 30951895 DOI: 10.1016/j.semcdb.2019.04.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
328 Przepiura TCS, Herrerias T, Kandalski PK, Zaleski T, Machado C, Forgati M, Souza MRDP, Donatti L. Metabolic responses in Antarctic Nototheniidae brains subjected to thermal stress. Brain Res 2019;1708:126-37. [PMID: 30527682 DOI: 10.1016/j.brainres.2018.12.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
329 Ullmann E, Perry SW, Licinio J, Wong ML, Dremencov E, Zavjalov EL, Shevelev OB, Khotskin NV, Koncevaya GV, Khotshkina AS, Moshkin MP, Lapshin MS, Komelkova MV, Feklicheva IV, Tseilikman OB, Cherkasova OP, Bhui KS, Jones E, Kirschbaum C, Bornstein SR, Tseilikman V. From Allostatic Load to Allostatic State-An Endogenous Sympathetic Strategy to Deal With Chronic Anxiety and Stress? Front Behav Neurosci 2019;13:47. [PMID: 30967764 DOI: 10.3389/fnbeh.2019.00047] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 4.7] [Reference Citation Analysis]
330 Matsui T, Liu YF, Soya M, Shima T, Soya H. Tyrosine as a Mechanistic-Based Biomarker for Brain Glycogen Decrease and Supercompensation With Endurance Exercise in Rats: A Metabolomics Study of Plasma. Front Neurosci 2019;13:200. [PMID: 30941004 DOI: 10.3389/fnins.2019.00200] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
331 Murphy‐royal C, Gordon GR, Bains JS. Stress‐induced structural and functional modifications of astrocytes—Further implicating glia in the central response to stress. Glia 2019. [DOI: 10.1002/glia.23610] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
332 Vohra R, Aldana BI, Bulli G, Skytt DM, Waagepetersen H, Bergersen LH, Kolko M. Lactate-Mediated Protection of Retinal Ganglion Cells. J Mol Biol 2019;431:1878-88. [PMID: 30878479 DOI: 10.1016/j.jmb.2019.03.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
333 Calì C, Tauffenberger A, Magistretti P. The Strategic Location of Glycogen and Lactate: From Body Energy Reserve to Brain Plasticity. Front Cell Neurosci 2019;13:82. [PMID: 30894801 DOI: 10.3389/fncel.2019.00082] [Cited by in Crossref: 29] [Cited by in F6Publishing: 39] [Article Influence: 9.7] [Reference Citation Analysis]
334 Harris RA, Lone A, Lim H, Martinez F, Frame AK, Scholl TJ, Cumming RC. Aerobic Glycolysis Is Required for Spatial Memory Acquisition But Not Memory Retrieval in Mice. eNeuro 2019;6:ENEURO. [PMID: 30809587 DOI: 10.1523/ENEURO.0389-18.2019] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 5.7] [Reference Citation Analysis]
335 Hagos FT, Adams SM, Poloyac SM, Kochanek PM, Horvat CM, Clark RSB, Empey PE. Membrane transporters in traumatic brain injury: Pathological, pharmacotherapeutic, and developmental implications. Exp Neurol 2019;317:10-21. [PMID: 30797827 DOI: 10.1016/j.expneurol.2019.02.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
336 Morita M, Ikeshima-Kataoka H, Kreft M, Vardjan N, Zorec R, Noda M. Metabolic Plasticity of Astrocytes and Aging of the Brain. Int J Mol Sci 2019;20:E941. [PMID: 30795555 DOI: 10.3390/ijms20040941] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
337 Arend C, Ehrke E, Dringen R. Consequences of a Metabolic Glucose-Depletion on the Survival and the Metabolism of Cultured Rat Astrocytes. Neurochem Res 2019;44:2288-300. [PMID: 30788754 DOI: 10.1007/s11064-019-02752-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
338 Dienel GA. Brain Glucose Metabolism: Integration of Energetics with Function. Physiol Rev 2019;99:949-1045. [PMID: 30565508 DOI: 10.1152/physrev.00062.2017] [Cited by in Crossref: 158] [Cited by in F6Publishing: 208] [Article Influence: 52.7] [Reference Citation Analysis]
339 Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V, Jimenez-Blasco D, Lopez-Fabuel I, Fernandez E, Josephine C, Bonvento G, Enriquez JA, Almeida A, Bolaños JP. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat Metab 2019;1:201-11. [PMID: 32694785 DOI: 10.1038/s42255-018-0031-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 58] [Article Influence: 14.0] [Reference Citation Analysis]
340 Hirase H, Akther S, Wang X, Oe Y. Glycogen distribution in mouse hippocampus. J Neurosci Res 2019;97:923-32. [PMID: 30675919 DOI: 10.1002/jnr.24386] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
341 Gonçalves CA, Rodrigues L, Bobermin LD, Zanotto C, Vizuete A, Quincozes-Santos A, Souza DO, Leite MC. Glycolysis-Derived Compounds From Astrocytes That Modulate Synaptic Communication. Front Neurosci 2018;12:1035. [PMID: 30728759 DOI: 10.3389/fnins.2018.01035] [Cited by in Crossref: 22] [Cited by in F6Publishing: 30] [Article Influence: 7.3] [Reference Citation Analysis]
342 Santello M, Toni N, Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 2019;22:154-66. [DOI: 10.1038/s41593-018-0325-8] [Cited by in Crossref: 169] [Cited by in F6Publishing: 219] [Article Influence: 56.3] [Reference Citation Analysis]
343 Chowen JA, Frago LM, Fernández-Alfonso MS. Physiological and pathophysiological roles of hypothalamic astrocytes in metabolism. J Neuroendocrinol 2019;31:e12671. [PMID: 30561077 DOI: 10.1111/jne.12671] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
344 Oddo M, Vespa P, Menon DK. Boosting the injured brain with supplemental energy fuels. Intensive Care Med 2019;45:872-5. [PMID: 30637446 DOI: 10.1007/s00134-018-05517-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
345 Dong M, Ren M, Li C, Zhang X, Yang C, Zhao L, Gao H. Analysis of Metabolic Alterations Related to Pathogenic Process of Diabetic Encephalopathy Rats. Front Cell Neurosci 2018;12:527. [PMID: 30692917 DOI: 10.3389/fncel.2018.00527] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
346 Juaristi I, Llorente-Folch I, Satrústegui J, Del Arco A. Extracellular ATP and glutamate drive pyruvate production and energy demand to regulate mitochondrial respiration in astrocytes. Glia 2019;67:759-74. [PMID: 30623988 DOI: 10.1002/glia.23574] [Cited by in Crossref: 13] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
347 Caruso G, Caraci F, Jolivet RB. Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2019;175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Cited by in Crossref: 29] [Cited by in F6Publishing: 38] [Article Influence: 7.3] [Reference Citation Analysis]
348 Sobral-Monteiro-Junior R, Maillot P, Gatica-Rojas V, Ávila WRM, de Paula AMB, Guimarães ALS, Santos SHS, Pupe CCB, Deslandes AC. Is the "lactormone" a key-factor for exercise-related neuroplasticity? A hypothesis based on an alternative lactate neurobiological pathway. Med Hypotheses 2019;123:63-6. [PMID: 30696595 DOI: 10.1016/j.mehy.2018.12.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
349 Díaz-García CM, Yellen G. Neurons rely on glucose rather than astrocytic lactate during stimulation. J Neurosci Res 2019;97:883-9. [PMID: 30575090 DOI: 10.1002/jnr.24374] [Cited by in Crossref: 30] [Cited by in F6Publishing: 37] [Article Influence: 7.5] [Reference Citation Analysis]
350 Downes DP, Collins JHP, Lama B, Zeng H, Nguyen T, Keller G, Febo M, Long JR. Characterization of Brain Metabolism by Nuclear Magnetic Resonance. Chemphyschem 2019;20:216-30. [PMID: 30536696 DOI: 10.1002/cphc.201800917] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
351 Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science. 2018;362:181-185. [PMID: 30309945 DOI: 10.1126/science.aat0473] [Cited by in Crossref: 190] [Cited by in F6Publishing: 241] [Article Influence: 47.5] [Reference Citation Analysis]
352 Bentsen MA, Mirzadeh Z, Schwartz MW. Revisiting How the Brain Senses Glucose-And Why. Cell Metab 2019;29:11-7. [PMID: 30527741 DOI: 10.1016/j.cmet.2018.11.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
353 Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: A Metabolic Driver in the Tumour Landscape. Trends Biochem Sci 2019;44:153-66. [PMID: 30473428 DOI: 10.1016/j.tibs.2018.10.011] [Cited by in Crossref: 82] [Cited by in F6Publishing: 128] [Article Influence: 20.5] [Reference Citation Analysis]
354 Shaif NA, Chang DH, Cho D, Kim S, Seo DB, Shim I. The Antidepressant-Like Effect of Lactate in an Animal Model of Menopausal Depression. Biomedicines 2018;6:E108. [PMID: 30469388 DOI: 10.3390/biomedicines6040108] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
355 Bernini A, Masoodi M, Solari D, Miroz JP, Carteron L, Christinat N, Morelli P, Beaumont M, Abed-Maillard S, Hartweg M, Foltzer F, Eckert P, Cuenoud B, Oddo M. Modulation of cerebral ketone metabolism following traumatic brain injury in humans. J Cereb Blood Flow Metab 2020;40:177-86. [PMID: 30353770 DOI: 10.1177/0271678X18808947] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
356 Gonçalves DF, Courtes AA, Hartmann DD, da Rosa PC, Oliveira DM, Soares FAA, Dalla Corte CL. 6-Hydroxydopamine induces different mitochondrial bioenergetics response in brain regions of rat. Neurotoxicology 2019;70:1-11. [PMID: 30359634 DOI: 10.1016/j.neuro.2018.10.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
357 Margineanu MB, Mahmood H, Fiumelli H, Magistretti PJ. L-Lactate Regulates the Expression of Synaptic Plasticity and Neuroprotection Genes in Cortical Neurons: A Transcriptome Analysis. Front Mol Neurosci 2018;11:375. [PMID: 30364173 DOI: 10.3389/fnmol.2018.00375] [Cited by in Crossref: 31] [Cited by in F6Publishing: 38] [Article Influence: 7.8] [Reference Citation Analysis]
358 Smith SK, Gosrani SP, Lee CA, Mccarty GS, Sombers LA. Carbon-Fiber Microbiosensor for Monitoring Rapid Lactate Fluctuations in Brain Tissue Using Fast-Scan Cyclic Voltammetry. Anal Chem 2018;90:12994-9. [DOI: 10.1021/acs.analchem.8b03694] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
359 Coggan JS, Calì C, Keller D, Agus M, Boges D, Abdellah M, Kare K, Lehväslaiho H, Eilemann S, Jolivet RB, Hadwiger M, Markram H, Schürmann F, Magistretti PJ. A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble. Front Neurosci 2018;12:664. [PMID: 30319342 DOI: 10.3389/fnins.2018.00664] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
360 Bellesi M, de Vivo L, Koebe S, Tononi G, Cirelli C. Sleep and Wake Affect Glycogen Content and Turnover at Perisynaptic Astrocytic Processes. Front Cell Neurosci 2018;12:308. [PMID: 30254569 DOI: 10.3389/fncel.2018.00308] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
361 Jourdain P, Rothenfusser K, Ben-Adiba C, Allaman I, Marquet P, Magistretti PJ. Dual action of L-Lactate on the activity of NR2B-containing NMDA receptors: from potentiation to neuroprotection. Sci Rep 2018;8:13472. [PMID: 30194439 DOI: 10.1038/s41598-018-31534-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
362 Pucino V, Cucchi D, Mauro C. Lactate transporters as therapeutic targets in cancer and inflammatory diseases. Expert Opin Ther Targets 2018;22:735-43. [PMID: 30106309 DOI: 10.1080/14728222.2018.1511706] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
363 Gavrilov N, Golyagina I, Brazhe A, Scimemi A, Turlapov V, Semyanov A. Astrocytic Coverage of Dendritic Spines, Dendritic Shafts, and Axonal Boutons in Hippocampal Neuropil. Front Cell Neurosci 2018;12:248. [PMID: 30174590 DOI: 10.3389/fncel.2018.00248] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 9.5] [Reference Citation Analysis]
364 Zorec R, Županc TA, Verkhratsky A. Astrogliopathology in the infectious insults of the brain. Neurosci Lett 2019;689:56-62. [PMID: 30096375 DOI: 10.1016/j.neulet.2018.08.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
365 Bourdon AK, Spano GM, Marshall W, Bellesi M, Tononi G, Serra PA, Baghdoyan HA, Lydic R, Campagna SR, Cirelli C. Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep. Sci Rep 2018;8:11225. [PMID: 30046159 DOI: 10.1038/s41598-018-29511-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
366 Jalalvand E, Robertson B, Tostivint H, Löw P, Wallén P, Grillner S. Cerebrospinal Fluid-Contacting Neurons Sense pH Changes and Motion in the Hypothalamus. J Neurosci 2018;38:7713-24. [PMID: 30037834 DOI: 10.1523/JNEUROSCI.3359-17.2018] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
367 Jha MK, Morrison BM. Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters. Exp Neurol 2018;309:23-31. [PMID: 30044944 DOI: 10.1016/j.expneurol.2018.07.009] [Cited by in Crossref: 66] [Cited by in F6Publishing: 84] [Article Influence: 16.5] [Reference Citation Analysis]
368 Welcome MO, Mastorakis NE. Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons. Neuromol Med 2018;20:281-300. [DOI: 10.1007/s12017-018-8503-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
369 Saiki M, Matsui T, Soya M, Kashibe T, Shima T, Shimizu T, Naruto T, Kitayoshi T, Akimoto K, Ninomiya S, Soya H. Thiamine tetrahydrofurfuryl disulfide promotes voluntary activity through dopaminergic activation in the medial prefrontal cortex. Sci Rep 2018;8:10469. [PMID: 29992990 DOI: 10.1038/s41598-018-28462-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
370 Xin W, Bonci A. Functional Astrocyte Heterogeneity and Implications for Their Role in Shaping Neurotransmission. Front Cell Neurosci 2018;12:141. [PMID: 29896091 DOI: 10.3389/fncel.2018.00141] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
371 Mul JD, Soto M, Cahill ME, Ryan RE, Takahashi H, So K, Zheng J, Croote DE, Hirshman MF, la Fleur SE, Nestler EJ, Goodyear LJ. Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens ΔFosB. Neuropsychopharmacology 2018;43:1934-42. [PMID: 29875450 DOI: 10.1038/s41386-018-0103-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
372 Datta S, Chakrabarti N. Age related rise in lactate and its correlation with lactate dehydrogenase (LDH) status in post-mitochondrial fractions isolated from different regions of brain in mice. Neurochem Int 2018;118:23-33. [PMID: 29678731 DOI: 10.1016/j.neuint.2018.04.007] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
373 Vohra R, Aldana BI, Skytt DM, Freude K, Waagepetersen H, Bergersen LH, Kolko M. Essential Roles of Lactate in Müller Cell Survival and Function. Mol Neurobiol 2018;55:9108-21. [PMID: 29644598 DOI: 10.1007/s12035-018-1056-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
374 [DOI: 10.1101/2021.02.02.428370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]