BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017;18:101-13. [PMID: 28104909 DOI: 10.1038/nrn.2016.178] [Cited by in Crossref: 391] [Cited by in F6Publishing: 349] [Article Influence: 78.2] [Reference Citation Analysis]
Number Citing Articles
1 Chowdhury A, Singh PC. Role of the weak noncovalent interactions in the stability of the aggregated protonated dopamine in the aqueous solution: spectroscopic and quantum chemical calculation studies. J Chem Sci 2022;134. [DOI: 10.1007/s12039-021-02014-0] [Reference Citation Analysis]
2 Stefani A, Galati S. PPN-DBS: A utopic vision or a realistic perspective? Neurobiol Dis 2019;128:1-2. [PMID: 30885790 DOI: 10.1016/j.nbd.2019.03.011] [Reference Citation Analysis]
3 da S. Hage-melim LI, Ferreira JV, de Oliveira NK, Correia LC, Almeida MR, Poiani JG, Taft CA, de Paula da Silva CH. The Impact of Natural Compounds on the Treatment of Neurodegenerative Diseases. COC 2019;23:335-60. [DOI: 10.2174/1385272823666190327100418] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
4 Ferrari E, Cardinale A, Picconi B, Gardoni F. From cell lines to pluripotent stem cells for modelling Parkinson's Disease. J Neurosci Methods 2020;340:108741. [PMID: 32311374 DOI: 10.1016/j.jneumeth.2020.108741] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
5 Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018;75:3159-80. [PMID: 29947927 DOI: 10.1007/s00018-018-2854-4] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 12.8] [Reference Citation Analysis]
6 Aradjanski M, Dogan SA, Lotter S, Wang S, Hermans S, Wibom R, Rugarli E, Trifunovic A. DARS2 protects against neuroinflammation and apoptotic neuronal loss, but is dispensable for myelin producing cells. Hum Mol Genet 2017;26:4181-9. [PMID: 28985337 DOI: 10.1093/hmg/ddx307] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
7 Jellinger KA. Is Braak staging valid for all types of Parkinson's disease? J Neural Transm (Vienna) 2019;126:423-31. [PMID: 29943229 DOI: 10.1007/s00702-018-1898-9] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 7.3] [Reference Citation Analysis]
8 Davis AA, Leyns CEG, Holtzman DM. Intercellular Spread of Protein Aggregates in Neurodegenerative Disease. Annu Rev Cell Dev Biol 2018;34:545-68. [PMID: 30044648 DOI: 10.1146/annurev-cellbio-100617-062636] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 11.0] [Reference Citation Analysis]
9 Surmeier DJ. Determinants of dopaminergic neuron loss in Parkinson's disease. FEBS J 2018;285:3657-68. [PMID: 30028088 DOI: 10.1111/febs.14607] [Cited by in Crossref: 85] [Cited by in F6Publishing: 79] [Article Influence: 21.3] [Reference Citation Analysis]
10 Pike AF, Longhena F, Faustini G, van Eik JM, Gombert I, Herrebout MAC, Fayed MMHE, Sandre M, Varanita T, Teunissen CE, Hoozemans JJM, Bellucci A, Veerhuis R, Bubacco L. Dopamine signaling modulates microglial NLRP3 inflammasome activation: implications for Parkinson's disease. J Neuroinflammation 2022;19:50. [PMID: 35172843 DOI: 10.1186/s12974-022-02410-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Farhadi M, Boroujeni ME, Kamrava SK, Bagher Z, Tehrani AM, Aghajanpour F, Ezi S, Soltani R, Khatmi A, Alizadeh R. Implantation of human olfactory ecto-mesenchymal stem cells restores locomotion in a rat model of Parkinson's disease. J Chem Neuroanat 2021;114:101961. [PMID: 33933574 DOI: 10.1016/j.jchemneu.2021.101961] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chang EES, Ho PW, Liu H, Pang SY, Leung C, Malki Y, Choi ZY, Ramsden DB, Ho S. LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. Transl Neurodegener 2022;11. [DOI: 10.1186/s40035-022-00285-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Han J, Fan Y, Wu P, Huang Z, Li X, Zhao L, Ji Y, Zhu M. Parkinson's Disease Dementia: Synergistic Effects of Alpha-Synuclein, Tau, Beta-Amyloid, and Iron. Front Aging Neurosci 2021;13:743754. [PMID: 34707492 DOI: 10.3389/fnagi.2021.743754] [Reference Citation Analysis]
14 Brot S, Thamrin NP, Bonnet ML, Francheteau M, Patrigeon M, Belnoue L, Gaillard A. Long-Term Evaluation of Intranigral Transplantation of Human iPSC-Derived Dopamine Neurons in a Parkinson's Disease Mouse Model. Cells 2022;11:1596. [PMID: 35626637 DOI: 10.3390/cells11101596] [Reference Citation Analysis]
15 Shrivastava AN, Aperia A, Melki R, Triller A. Physico-Pathologic Mechanisms Involved in Neurodegeneration: Misfolded Protein-Plasma Membrane Interactions. Neuron 2017;95:33-50. [DOI: 10.1016/j.neuron.2017.05.026] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 11.8] [Reference Citation Analysis]
16 Nazmuddin M, van Dalen JW, Borra RJH, Stormezand GN, van der Horn HJ, van der Zee S, Boertien J, van Laar T. Postural and gait symptoms in de novo Parkinson's disease patients correlate with cholinergic white matter pathology. Parkinsonism Relat Disord 2021;93:43-9. [PMID: 34784526 DOI: 10.1016/j.parkreldis.2021.11.010] [Reference Citation Analysis]
17 Pandya S, Zeighami Y, Freeze B, Dadar M, Collins DL, Dagher A, Raj A. Predictive model of spread of Parkinson's pathology using network diffusion. Neuroimage 2019;192:178-94. [PMID: 30851444 DOI: 10.1016/j.neuroimage.2019.03.001] [Cited by in Crossref: 30] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
18 Henderson MX, Henrich MT, Geibl FF, Oertel WH, Brundin P, Surmeier DJ. The roles of connectivity and neuronal phenotype in determining the pattern of α-synuclein pathology in Parkinson's disease. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105687] [Reference Citation Analysis]
19 Hatton C, Reeve A, Lax NZ, Blain A, Ng YS, El-Agnaf O, Attems J, Taylor JP, Turnbull D, Erskine D. Complex I reductions in the nucleus basalis of Meynert in Lewy body dementia: the role of Lewy bodies. Acta Neuropathol Commun 2020;8:103. [PMID: 32646480 DOI: 10.1186/s40478-020-00985-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Zampese E, Surmeier DJ. Calcium, Bioenergetics, and Parkinson's Disease. Cells 2020;9:E2045. [PMID: 32911641 DOI: 10.3390/cells9092045] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 7.5] [Reference Citation Analysis]
21 Brown JM, Baker LS, Seroogy KB, Genter MB. Intranasal Carnosine Mitigates α-Synuclein Pathology and Motor Dysfunction in the Thy1-aSyn Mouse Model of Parkinson's Disease. ACS Chem Neurosci 2021;12:2347-59. [PMID: 34138535 DOI: 10.1021/acschemneuro.1c00096] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Genoud S, Jones MWM, Trist BG, Deng J, Chen S, Hare DJ, Double KL. Simultaneous structural and elemental nano-imaging of human brain tissue. Chem Sci 2020;11:8919-27. [PMID: 34123146 DOI: 10.1039/d0sc02844d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Khan AU, Akram M, Daniyal M, Zainab R. Awareness and current knowledge of Parkinson’s disease: a neurodegenerative disorder. International Journal of Neuroscience 2018;129:55-93. [DOI: 10.1080/00207454.2018.1486837] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
24 Hass EW, Sorrentino ZA, Lloyd GM, McFarland NR, Prokop S, Giasson BI. Robust α-synuclein pathology in select brainstem neuronal populations is a potential instigator of multiple system atrophy. Acta Neuropathol Commun 2021;9:80. [PMID: 33941284 DOI: 10.1186/s40478-021-01173-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
25 Miller DR, Lebowitz JJ, Guenther DT, Refowich AJ, Hansen C, Maurer AP, Khoshbouei H. Methamphetamine regulation of activity and topology of ventral midbrain networks. PLoS One 2019;14:e0222957. [PMID: 31536584 DOI: 10.1371/journal.pone.0222957] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
26 Post MR, Lieberman OJ, Mosharov EV. Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease? Front Neurosci 2018;12:161. [PMID: 29593491 DOI: 10.3389/fnins.2018.00161] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
27 Bharat V, Wang X. Precision Neurology for Parkinson's Disease: Coupling Miro1-Based Diagnosis With Drug Discovery. Mov Disord 2020;35:1502-8. [PMID: 32710675 DOI: 10.1002/mds.28194] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Kim TW, Koo SY, Studer L. Pluripotent Stem Cell Therapies for Parkinson Disease: Present Challenges and Future Opportunities. Front Cell Dev Biol 2020;8:729. [PMID: 32903681 DOI: 10.3389/fcell.2020.00729] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
29 Ugalde CL, Annesley SJ, Gordon SE, Mroczek K, Perugini MA, Lawson VA, Fisher PR, Finkelstein DI, Hill AF. Misfolded α-synuclein causes hyperactive respiration without functional deficit in live neuroblastoma cells. Dis Model Mech 2020;13:dmm040899. [PMID: 31848207 DOI: 10.1242/dmm.040899] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
30 Pajares M, I Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson's Disease: Mechanisms and Therapeutic Implications. Cells 2020;9:E1687. [PMID: 32674367 DOI: 10.3390/cells9071687] [Cited by in Crossref: 107] [Cited by in F6Publishing: 82] [Article Influence: 53.5] [Reference Citation Analysis]
31 Outeiro TF, Heutink P, Bezard E, Cenci AM. From iPS Cells to Rodents and Nonhuman Primates: Filling Gaps in Modeling Parkinson's Disease. Mov Disord 2021;36:832-41. [PMID: 33200446 DOI: 10.1002/mds.28387] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
32 Peng C, Trojanowski JQ, Lee VM. Protein transmission in neurodegenerative disease. Nat Rev Neurol 2020;16:199-212. [PMID: 32203399 DOI: 10.1038/s41582-020-0333-7] [Cited by in Crossref: 99] [Cited by in F6Publishing: 88] [Article Influence: 49.5] [Reference Citation Analysis]
33 O'Callaghan C, Hezemans FH, Ye R, Rua C, Jones PS, Murley AG, Holland N, Regenthal R, Tsvetanov KA, Wolpe N, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson's disease. Brain 2021:awab142. [PMID: 33783470 DOI: 10.1093/brain/awab142] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
34 Rossi T, Trevisol MB, Oliveira DSD, Schütz DM, Lima MP, Irigaray TQ, Oliveira CRD, Paloski LH. Executive Functions in Parkinson’s Disease. Psico-USF 2021;26:439-49. [DOI: 10.1590/1413-82712021260304] [Reference Citation Analysis]
35 Blesa J, Trigo-damas I, del Rey NL, Obeso JA. The use of nonhuman primate models to understand processes in Parkinson’s disease. J Neural Transm 2018;125:325-35. [DOI: 10.1007/s00702-017-1715-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
36 Muddapu VR, Mandali A, Chakravarthy VS, Ramaswamy S. A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity. Front Neural Circuits 2019;13:11. [PMID: 30858799 DOI: 10.3389/fncir.2019.00011] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 5.7] [Reference Citation Analysis]
37 Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Commun Biol 2022;5:49. [PMID: 35027645 DOI: 10.1038/s42003-021-02973-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Singh A, Dawson TM, Kulkarni S. Neurodegenerative disorders and gut-brain interactions. J Clin Invest 2021;131:143775. [PMID: 34196307 DOI: 10.1172/JCI143775] [Reference Citation Analysis]
39 Muhammad F, Liu Y, Zhou Y, Yang H, Li H. Antioxidative role of Traditional Chinese Medicine in Parkinson's disease. J Ethnopharmacol 2022;285:114821. [PMID: 34838943 DOI: 10.1016/j.jep.2021.114821] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Peelaerts W, Bousset L, Baekelandt V, Melki R. ɑ-Synuclein strains and seeding in Parkinson's disease, incidental Lewy body disease, dementia with Lewy bodies and multiple system atrophy: similarities and differences. Cell Tissue Res 2018;373:195-212. [PMID: 29704213 DOI: 10.1007/s00441-018-2839-5] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 12.8] [Reference Citation Analysis]
41 Blesa J, Foffani G, Dehay B, Bezard E, Obeso JA. Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2021. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Reference Citation Analysis]
42 [DOI: 10.1101/2020.02.03.932087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
43 Rahayel S, Postuma RB, Montplaisir J, Mišić B, Tremblay C, Vo A, Lewis S, Matar E, Ehgoetz Martens K, Blanc F, Yao C, Carrier J, Monchi O, Gaubert M, Dagher A, Gagnon JF. A Prodromal Brain-Clinical Pattern of Cognition in Synucleinopathies. Ann Neurol 2021;89:341-57. [PMID: 33217037 DOI: 10.1002/ana.25962] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Zhang PL, Chen Y, Zhang CH, Wang YX, Fernandez-Funez P. Genetics of Parkinson's disease and related disorders. J Med Genet 2018;55:73-80. [PMID: 29151060 DOI: 10.1136/jmedgenet-2017-105047] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
45 Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. Outside in: Unraveling the Role of Neuroinflammation in the Progression of Parkinson's Disease. Front Neurol 2018;9:860. [PMID: 30459700 DOI: 10.3389/fneur.2018.00860] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
46 Surmeier DJ. Beyond Just Connectivity - Neuronal Activity Drives α-Synuclein Pathology. Mov Disord 2021;36:1487-8. [PMID: 34302385 DOI: 10.1002/mds.28618] [Reference Citation Analysis]
47 Barbato G, Nisticò R, Triaca V. Exploiting Focused Ultrasound to Aid Intranasal Drug Delivery for Brain Therapy. Front Pharmacol 2022;13:786475. [DOI: 10.3389/fphar.2022.786475] [Reference Citation Analysis]
48 Zhang X, Mantas I, Fridjonsdottir E, Andrén PE, Chergui K, Svenningsson P. Deficits in Motor Performance, Neurotransmitters and Synaptic Plasticity in Elderly and Experimental Parkinsonian Mice Lacking GPR37. Front Aging Neurosci 2020;12:84. [PMID: 32292338 DOI: 10.3389/fnagi.2020.00084] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
49 Blair JC, Barrett MJ, Patrie J, Flanigan JL, Sperling SA, Elias WJ, Druzgal TJ. Brain MRI Reveals Ascending Atrophy in Parkinson's Disease Across Severity. Front Neurol 2019;10:1329. [PMID: 31920949 DOI: 10.3389/fneur.2019.01329] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
50 Landeck N, Strathearn KE, Ysselstein D, Buck K, Dutta S, Banerjee S, Lv Z, Hulleman JD, Hindupur J, Lin LK, Padalkar S, Stanciu LA, Lyubchenko YL, Kirik D, Rochet JC. Two C-terminal sequence variations determine differential neurotoxicity between human and mouse α-synuclein. Mol Neurodegener 2020;15:49. [PMID: 32900375 DOI: 10.1186/s13024-020-00380-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 Del Rio JA, Ferrer I. Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of "prion-like" Protein Assembly and Behavior. Front Bioeng Biotechnol 2020;8:570692. [PMID: 33015021 DOI: 10.3389/fbioe.2020.570692] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Shim JH, Baek HM. White Matter Connectivity between Structures of the Basal Ganglia using 3T and 7T. Neuroscience 2021;483:32-9. [PMID: 34974113 DOI: 10.1016/j.neuroscience.2021.12.034] [Reference Citation Analysis]
53 Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, Donaghy P, Morris C, Taylor JP, Thomas A, Attems J, McKeith I. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener 2019;14:5. [PMID: 30665447 DOI: 10.1186/s13024-019-0306-8] [Cited by in Crossref: 77] [Cited by in F6Publishing: 69] [Article Influence: 25.7] [Reference Citation Analysis]
54 Berg D, Borghammer P, Fereshtehnejad SM, Heinzel S, Horsager J, Schaeffer E, Postuma RB. Prodromal Parkinson disease subtypes - key to understanding heterogeneity. Nat Rev Neurol 2021;17:349-61. [PMID: 33879872 DOI: 10.1038/s41582-021-00486-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
55 Galet B, Cheval H, Ravassard P. Patient-Derived Midbrain Organoids to Explore the Molecular Basis of Parkinson's Disease. Front Neurol 2020;11:1005. [PMID: 33013664 DOI: 10.3389/fneur.2020.01005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
56 Mezias C, Rey N, Brundin P, Raj A. Neural connectivity predicts spreading of alpha-synuclein pathology in fibril-injected mouse models: Involvement of retrograde and anterograde axonal propagation. Neurobiol Dis 2020;134:104623. [PMID: 31628991 DOI: 10.1016/j.nbd.2019.104623] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
57 McMackin R, Muthuraman M, Groppa S, Babiloni C, Taylor JP, Kiernan MC, Nasseroleslami B, Hardiman O. Measuring network disruption in neurodegenerative diseases: New approaches using signal analysis. J Neurol Neurosurg Psychiatry 2019;90:1011-20. [PMID: 30760643 DOI: 10.1136/jnnp-2018-319581] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
58 Strickland MR, Koller EJ, Deng DZ, Ceballos-Diaz C, Golde TE, Chakrabarty P. Ifngr1 and Stat1 mediated canonical Ifn-γ signaling drives nigrostriatal degeneration. Neurobiol Dis 2018;110:133-41. [PMID: 29196213 DOI: 10.1016/j.nbd.2017.11.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
59 Thomas GEC, Leyland LA, Schrag AE, Lees AJ, Acosta-Cabronero J, Weil RS. Brain iron deposition is linked with cognitive severity in Parkinson's disease. J Neurol Neurosurg Psychiatry 2020;91:418-25. [PMID: 32079673 DOI: 10.1136/jnnp-2019-322042] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 28.5] [Reference Citation Analysis]
60 Kolay S, Diamond MI. Alzheimer's disease risk modifier genes do not affect tau aggregate uptake, seeding or maintenance in cell models. FEBS Open Bio 2020;10:1912-20. [PMID: 32649026 DOI: 10.1002/2211-5463.12928] [Reference Citation Analysis]
61 Buck SA, De Miranda BR, Logan RW, Fish KN, Greenamyre JT, Freyberg Z. VGLUT2 Is a Determinant of Dopamine Neuron Resilience in a Rotenone Model of Dopamine Neurodegeneration. J Neurosci 2021;41:4937-47. [PMID: 33893220 DOI: 10.1523/JNEUROSCI.2770-20.2021] [Reference Citation Analysis]
62 Avila-luna A, Ríos C, Gálvez-rosas A, Montes S, Arias-montaño J, Bueno-nava A. Chronic administration of the histamine H3 receptor agonist immepip decreases l-Dopa-induced dyskinesias in 6-hydroxydopamine-lesioned rats. Psychopharmacology 2019;236:1937-48. [DOI: 10.1007/s00213-019-5182-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
63 Di Martino R, Sisalli MJ, Sirabella R, Della Notte S, Borzacchiello D, Feliciello A, Annunziato L, Scorziello A. Ncx3-Induced Mitochondrial Dysfunction in Midbrain Leads to Neuroinflammation in Striatum of A53t-α-Synuclein Transgenic Old Mice. Int J Mol Sci 2021;22:8177. [PMID: 34360942 DOI: 10.3390/ijms22158177] [Reference Citation Analysis]
64 Mancini A, Mazzocchetti P, Sciaccaluga M, Megaro A, Bellingacci L, Beccano-Kelly DA, Di Filippo M, Tozzi A, Calabresi P. From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Front Cell Neurosci 2020;14:158. [PMID: 32848606 DOI: 10.3389/fncel.2020.00158] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
65 Cho B, Kim T, Huh YJ, Lee J, Lee YI. Amelioration of Mitochondrial Quality Control and Proteostasis by Natural Compounds in Parkinson's Disease Models. Int J Mol Sci 2019;20:E5208. [PMID: 31640129 DOI: 10.3390/ijms20205208] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
66 Kremer Y, Flakowski J, Rohner C, Lüscher C. Context-Dependent Multiplexing by Individual VTA Dopamine Neurons. J Neurosci 2020;40:7489-509. [PMID: 32859713 DOI: 10.1523/JNEUROSCI.0502-20.2020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
67 Korecka JA, Thomas R, Christensen DP, Hinrich AJ, Ferrari EJ, Levy SA, Hastings ML, Hallett PJ, Isacson O. Mitochondrial clearance and maturation of autophagosomes are compromised in LRRK2 G2019S familial Parkinson's disease patient fibroblasts. Hum Mol Genet 2019;28:3232-43. [PMID: 31261377 DOI: 10.1093/hmg/ddz126] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
68 Hung AY, Schwarzschild MA. Approaches to Disease Modification for Parkinson's Disease: Clinical Trials and Lessons Learned. Neurotherapeutics 2020;17:1393-405. [PMID: 33205384 DOI: 10.1007/s13311-020-00964-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
69 Carrarini C, Russo M, Dono F, Di Pietro M, Rispoli MG, Di Stefano V, Ferri L, Barbone F, Vitale M, Thomas A, Sensi SL, Onofrj M, Bonanni L. A Stage-Based Approach to Therapy in Parkinson's Disease. Biomolecules 2019;9:E388. [PMID: 31434341 DOI: 10.3390/biom9080388] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
70 Parrella E, Bellucci A, Porrini V, Benarese M, Lanzillotta A, Faustini G, Longhena F, Abate G, Uberti D, Pizzi M. NF-κB/c-Rel deficiency causes Parkinson's disease-like prodromal symptoms and progressive pathology in mice. Transl Neurodegener 2019;8:16. [PMID: 31139367 DOI: 10.1186/s40035-019-0154-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
71 Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS. Emerging therapies in Parkinson disease - repurposed drugs and new approaches. Nat Rev Neurol 2019;15:204-23. [PMID: 30867588 DOI: 10.1038/s41582-019-0155-7] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 39.5] [Reference Citation Analysis]
72 Cooper G, Kang S, Perez-rosello T, Guzman JN, Galtieri D, Xie Z, Kondapalli J, Mordell J, Silverman RB, Surmeier DJ. A Single Amino Acid Determines the Selectivity and Efficacy of Selective Negative Allosteric Modulators of Ca V 1.3 L-Type Calcium Channels. ACS Chem Biol 2020;15:2539-50. [DOI: 10.1021/acschembio.0c00577] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
73 Tate KM, Munson JM. Assessing drug response in engineered brain microenvironments. Brain Res Bull 2019;150:21-34. [PMID: 31054318 DOI: 10.1016/j.brainresbull.2019.04.027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
74 Thakur P, Chiu WH, Roeper J, Goldberg JA. α-Synuclein 2.0 — Moving towards Cell Type Specific Pathophysiology. Neuroscience 2019;412:248-56. [DOI: 10.1016/j.neuroscience.2019.06.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
75 Menon S, Armstrong S, Hamzeh A, Visanji NP, Sardi SP, Tandon A. Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Front Neurol 2022;13:852003. [DOI: 10.3389/fneur.2022.852003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
76 Hinkle JT, Dawson VL, Dawson TM. The A1 astrocyte paradigm: New avenues for pharmacological intervention in neurodegeneration. Mov Disord 2019;34:959-69. [PMID: 31136698 DOI: 10.1002/mds.27718] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
77 Xiao G, Song Y, Zhang Y, Xing Y, Zhao H, Xie J, Xu S, Gao F, Wang M, Xing G, Cai X. Microelectrode Arrays Modified with Nanocomposites for Monitoring Dopamine and Spike Firings under Deep Brain Stimulation in Rat Models of Parkinson's Disease. ACS Sens 2019;4:1992-2000. [PMID: 31272150 DOI: 10.1021/acssensors.9b00182] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
78 Sigirli D, Ozdemir ST, Erer S, Sahin I, Ercan I, Ozpar R, Orun MO, Hakyemez B. Statistical shape analysis of putamen in early-onset Parkinson's disease. Clin Neurol Neurosurg 2021;209:106936. [PMID: 34530266 DOI: 10.1016/j.clineuro.2021.106936] [Reference Citation Analysis]
79 Lim CZJ, Natalia A, Sundah NR, Shao H. Biomarker Organization in Circulating Extracellular Vesicles: New Applications in Detecting Neurodegenerative Diseases. Adv Biosyst 2020;4:e1900309. [PMID: 32597034 DOI: 10.1002/adbi.201900309] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
80 Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017;298:225-35. [PMID: 28987463 DOI: 10.1016/j.expneurol.2017.10.003] [Cited by in Crossref: 116] [Cited by in F6Publishing: 100] [Article Influence: 23.2] [Reference Citation Analysis]
81 Walker L, McAleese KE, Erskine D, Attems J. Neurodegenerative Diseases and Ageing. Subcell Biochem 2019;91:75-106. [PMID: 30888650 DOI: 10.1007/978-981-13-3681-2_4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
82 Graves SM, Schwarzschild SE, Tai RA, Chen Y, Surmeier DJ. Mitochondrial oxidant stress mediates methamphetamine neurotoxicity in substantia nigra dopaminergic neurons. Neurobiol Dis 2021;156:105409. [PMID: 34082123 DOI: 10.1016/j.nbd.2021.105409] [Reference Citation Analysis]
83 Agostini F, Masato A, Bubacco L, Bisaglia M. Metformin Repurposing for Parkinson Disease Therapy: Opportunities and Challenges. Int J Mol Sci 2021;23:398. [PMID: 35008822 DOI: 10.3390/ijms23010398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
84 Borghammer P, Horsager J, Andersen K, Van Den Berge N, Raunio A, Murayama S, Parkkinen L, Myllykangas L. Neuropathological evidence of body-first vs. brain-first Lewy body disease. Neurobiol Dis 2021;161:105557. [PMID: 34763110 DOI: 10.1016/j.nbd.2021.105557] [Reference Citation Analysis]
85 Du Y, Lee YB, Graves SM. Chronic methamphetamine-induced neurodegeneration: Differential vulnerability of ventral tegmental area and substantia nigra pars compacta dopamine neurons. Neuropharmacology 2021;200:108817. [PMID: 34610287 DOI: 10.1016/j.neuropharm.2021.108817] [Reference Citation Analysis]
86 Antonini A, Bravi D, Sandre M, Bubacco L. Immunization therapies for Parkinson's disease: state of the art and considerations for future clinical trials. Expert Opin Investig Drugs 2020;29:685-95. [PMID: 32419521 DOI: 10.1080/13543784.2020.1771693] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
87 Sun Y, Pham AN, Hider RC, Zheng H, Waite TD. Effectiveness of the Iron Chelator CN128 in Mitigating the Formation of Dopamine Oxidation Products Associated with the Progression of Parkinson's Disease. ACS Chem Neurosci 2020;11:3646-57. [PMID: 33143428 DOI: 10.1021/acschemneuro.0c00557] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
88 Farkhondeh A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, Lo DC, Zheng W. Induced pluripotent stem cells for neural drug discovery. Drug Discov Today 2019;24:992-9. [PMID: 30664937 DOI: 10.1016/j.drudis.2019.01.007] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
89 Courte J, Bousset L, Boxberg YV, Villard C, Melki R, Peyrin JM. The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding. Sci Rep 2020;10:4895. [PMID: 32184415 DOI: 10.1038/s41598-020-61757-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
90 Smith LM, Parr-brownlie LC. A neuroscience perspective of the gut theory of Parkinson's disease. Eur J Neurosci 2019;49:817-23. [DOI: 10.1111/ejn.13869] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
91 Drobny A, Ngo PA, Neurath MF, Zunke F, López-Posadas R. Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. Front Med (Lausanne) 2021;8:655123. [PMID: 34368179 DOI: 10.3389/fmed.2021.655123] [Reference Citation Analysis]
92 Mestre-Francés N, Serratrice N, Gennetier A, Devau G, Cobo S, Trouche SG, Fontès P, Zussy C, De Deurwaerdere P, Salinas S, Mennechet FJ, Dusonchet J, Schneider BL, Saggio I, Kalatzis V, Luquin-Piudo MR, Verdier JM, Kremer EJ. Exogenous LRRK2G2019S induces parkinsonian-like pathology in a nonhuman primate. JCI Insight 2018;3:98202. [PMID: 30046008 DOI: 10.1172/jci.insight.98202] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
93 Granzotto A, Canzoniero LMT, Sensi SL. A Neurotoxic Ménage-à-trois: Glutamate, Calcium, and Zinc in the Excitotoxic Cascade. Front Mol Neurosci 2020;13:600089. [PMID: 33324162 DOI: 10.3389/fnmol.2020.600089] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
94 Chu WT, DeSimone JC, Riffe CJ, Liu H, Chakrabarty P, Giasson BI, Vedam-Mai V, Vaillancourt DE. α-Synuclein Induces Progressive Changes in Brain Microstructure and Sensory-Evoked Brain Function That Precedes Locomotor Decline. J Neurosci 2020;40:6649-59. [PMID: 32669353 DOI: 10.1523/JNEUROSCI.0189-20.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
95 Hang L, Wang Z, Foo ASC, Goh GWY, Choong HC, Thundyil J, Xu S, Lam KP, Lim KL. Conditional disruption of AMP kinase in dopaminergic neurons promotes Parkinson's disease-associated phenotypes in vivo. Neurobiol Dis 2021;161:105560. [PMID: 34767944 DOI: 10.1016/j.nbd.2021.105560] [Reference Citation Analysis]
96 Manayi A, Omidpanah S, Barreca D, Ficarra S, Daglia M, Nabavi SF, Nabavi SM. Neuroprotective effects of paeoniflorin in neurodegenerative diseases of the central nervous system. Phytochem Rev 2017;16:1173-81. [DOI: 10.1007/s11101-017-9527-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 3.4] [Reference Citation Analysis]
97 Ye R, O'Callaghan C, Rua C, Hezemans FH, Holland N, Malpetti M, Jones PS, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe J. Locus Coeruleus Integrity from 7 T MRI Relates to Apathy and Cognition in Parkinsonian Disorders. Mov Disord 2022. [PMID: 35576973 DOI: 10.1002/mds.29072] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
98 Vicario M, Cieri D, Brini M, Calì T. The Close Encounter Between Alpha-Synuclein and Mitochondria. Front Neurosci 2018;12:388. [PMID: 29930495 DOI: 10.3389/fnins.2018.00388] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 13.3] [Reference Citation Analysis]
99 Ayers JI, Cashman NR. Prion-like mechanisms in amyotrophic lateral sclerosis. Handb Clin Neurol 2018;153:337-54. [PMID: 29887144 DOI: 10.1016/B978-0-444-63945-5.00018-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
100 Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol Neurobiol 2019;56:3295-312. [PMID: 30117106 DOI: 10.1007/s12035-018-1283-6] [Cited by in Crossref: 139] [Cited by in F6Publishing: 121] [Article Influence: 34.8] [Reference Citation Analysis]
101 Lang AE, Espay AJ. Disease Modification in Parkinson's Disease: Current Approaches, Challenges, and Future Considerations: Disease Modification in PD. Mov Disord 2018;33:660-77. [DOI: 10.1002/mds.27360] [Cited by in F6Publishing: 115] [Reference Citation Analysis]
102 de Almeida EJR, Ibrahim HJ, Chitolina Schetinger MR, de Andrade CM, Cardoso AM. Modulation of Inflammatory Mediators and Microglial Activation Through Physical Exercise in Alzheimer's and Parkinson's Diseases. Neurochem Res 2022. [PMID: 35962936 DOI: 10.1007/s11064-022-03713-x] [Reference Citation Analysis]
103 Bellucci A, Bubacco L, Longhena F, Parrella E, Faustini G, Porrini V, Bono F, Missale C, Pizzi M. Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Front Aging Neurosci 2020;12:68. [PMID: 32265684 DOI: 10.3389/fnagi.2020.00068] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
104 Sharma T, Kaur D, Grewal AK, Singh TG. Therapies modulating insulin resistance in Parkinson's disease: A cross talk. Neurosci Lett 2021;749:135754. [PMID: 33610666 DOI: 10.1016/j.neulet.2021.135754] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
105 Islam KUS, Meli N, Blaess S. The Development of the Mesoprefrontal Dopaminergic System in Health and Disease. Front Neural Circuits 2021;15:746582. [PMID: 34712123 DOI: 10.3389/fncir.2021.746582] [Reference Citation Analysis]
106 Shine JM, Bell PT, Matar E, Poldrack RA, Lewis SJG, Halliday GM, O'Callaghan C. Dopamine depletion alters macroscopic network dynamics in Parkinson's disease. Brain 2019;142:1024-34. [PMID: 30887035 DOI: 10.1093/brain/awz034] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
107 Che Y, Hou L, Sun F, Zhang C, Liu X, Piao F, Zhang D, Li H, Wang Q. Taurine protects dopaminergic neurons in a mouse Parkinson's disease model through inhibition of microglial M1 polarization. Cell Death Dis 2018;9:435. [PMID: 29568078 DOI: 10.1038/s41419-018-0468-2] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 11.8] [Reference Citation Analysis]
108 Mahajani S, Raina A, Fokken C, Kügler S, Bähr M. Homogenous generation of dopaminergic neurons from multiple hiPSC lines by transient expression of transcription factors. Cell Death Dis 2019;10:898. [PMID: 31776327 DOI: 10.1038/s41419-019-2133-9] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
109 Tegtmeyer M, Nehme R. Leveraging the Genetic Diversity of Human Stem Cells in Therapeutic Approaches. J Mol Biol 2021;:167221. [PMID: 34474087 DOI: 10.1016/j.jmb.2021.167221] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
110 Sun Y, Kamat A, Singh BB. Isoproterenol-Dependent Activation of TRPM7 Protects Against Neurotoxin-Induced Loss of Neuroblastoma Cells. Front Physiol 2020;11:305. [PMID: 32390858 DOI: 10.3389/fphys.2020.00305] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
111 Zhang HL, Wang XC, Liu R. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases. Biomolecules 2022;12:785. [PMID: 35740910 DOI: 10.3390/biom12060785] [Reference Citation Analysis]
112 Jan A, Gonçalves NP, Vaegter CB, Jensen PH, Ferreira N. The Prion-Like Spreading of Alpha-Synuclein in Parkinson's Disease: Update on Models and Hypotheses. Int J Mol Sci 2021;22:8338. [PMID: 34361100 DOI: 10.3390/ijms22158338] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
113 Matschke LA, Rinné S, Snutch TP, Oertel WH, Dolga AM, Decher N. Calcium-activated SK potassium channels are key modulators of the pacemaker frequency in locus coeruleus neurons. Molecular and Cellular Neuroscience 2018;88:330-41. [DOI: 10.1016/j.mcn.2018.03.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
114 Sinnige T, Stroobants K, Dobson CM, Vendruscolo M. Biophysical studies of protein misfolding and aggregation in in vivo models of Alzheimer's and Parkinson's diseases. Q Rev Biophys 2020;49:e22. [PMID: 32493529 DOI: 10.1017/S0033583520000025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
115 Billingsley KJ, Bandres-Ciga S, Saez-Atienzar S, Singleton AB. Genetic risk factors in Parkinson's disease. Cell Tissue Res 2018;373:9-20. [PMID: 29536161 DOI: 10.1007/s00441-018-2817-y] [Cited by in Crossref: 85] [Cited by in F6Publishing: 71] [Article Influence: 21.3] [Reference Citation Analysis]
116 Pike AF, Szabò I, Veerhuis R, Bubacco L. The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2022;8:32. [PMID: 35332154 DOI: 10.1038/s41531-022-00293-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
117 Coughlin DG, Hurtig HI, Irwin DJ. Pathological Influences on Clinical Heterogeneity in Lewy Body Diseases. Mov Disord 2020;35:5-19. [PMID: 31660655 DOI: 10.1002/mds.27867] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
118 Spotorno N, Coughlin DG, Olm CA, Wolk D, Vaishnavi SN, Shaw LM, Dahodwala N, Morley JF, Duda JE, Deik AF, Spindler MA, Chen-Plotkin A, Lee EB, Trojanowski JQ, McMillan CT, Weintraub D, Grossman M, Irwin DJ. Tau pathology associates with in vivo cortical thinning in Lewy body disorders. Ann Clin Transl Neurol 2020;7:2342-55. [PMID: 33108692 DOI: 10.1002/acn3.51183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
119 Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, Burn D, Halliday GM, Bezard E, Przedborski S, Lehericy S, Brooks DJ, Rothwell JC, Hallett M, DeLong MR, Marras C, Tanner CM, Ross GW, Langston JW, Klein C, Bonifati V, Jankovic J, Lozano AM, Deuschl G, Bergman H, Tolosa E, Rodriguez-Violante M, Fahn S, Postuma RB, Berg D, Marek K, Standaert DG, Surmeier DJ, Olanow CW, Kordower JH, Calabresi P, Schapira AHV, Stoessl AJ. Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov Disord 2017;32:1264-310. [PMID: 28887905 DOI: 10.1002/mds.27115] [Cited by in Crossref: 283] [Cited by in F6Publishing: 245] [Article Influence: 70.8] [Reference Citation Analysis]
120 Chen C, Mossman E, Malko P, McDonald D, Blain AP, Bone L, Erskine D, Filby A, Vincent AE, Hudson G, Reeve AK. Astrocytic Changes in Mitochondrial Oxidative Phosphorylation Protein Levels in Parkinson's Disease. Mov Disord 2021. [PMID: 34779538 DOI: 10.1002/mds.28849] [Reference Citation Analysis]
121 Foffani G, Trigo‐damas I, Pineda‐pardo JA, Blesa J, Rodríguez‐rojas R, Martínez‐fernández R, Obeso JA. Focused ultrasound in Parkinson's disease: A twofold path toward disease modification. Mov Disord 2019;34:1262-73. [DOI: 10.1002/mds.27805] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
122 Chiang PL, Chen HL, Lu CH, Chen PC, Chen MH, Yang IH, Tsai NW, Lin WC. White matter damage and systemic inflammation in Parkinson's disease. BMC Neurosci 2017;18:48. [PMID: 28595572 DOI: 10.1186/s12868-017-0367-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 4.6] [Reference Citation Analysis]
123 Brás IC, Lopes LV, Outeiro TF. Sensing α-Synuclein From the Outside via the Prion Protein: Implications for Neurodegeneration: Sensing αSyn From Outside Via Prion Protein. Mov Disord 2018;33:1675-84. [DOI: 10.1002/mds.27478] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
124 Goiran T, Eldeeb MA, Zorca CE, Fon EA. Hallmarks and Molecular Tools for the Study of Mitophagy in Parkinson’s Disease. Cells 2022;11:2097. [DOI: 10.3390/cells11132097] [Reference Citation Analysis]
125 Huynh B, Fu Y, Kirik D, Shine JM, Halliday GM. Comparison of Locus Coeruleus Pathology with Nigral and Forebrain Pathology in Parkinson's Disease. Mov Disord 2021. [PMID: 33899954 DOI: 10.1002/mds.28615] [Reference Citation Analysis]
126 Corriveau RA, Koroshetz WJ, Gladman JT, Jeon S, Babcock D, Bennett DA, Carmichael ST, Dickinson SL, Dickson DW, Emr M, Fillit H, Greenberg SM, Hutton ML, Knopman DS, Manly JJ, Marder KS, Moy CS, Phelps CH, Scott PA, Seeley WW, Sieber BA, Silverberg NB, Sutherland ML, Taylor A, Torborg CL, Waddy SP, Gubitz AK, Holtzman DM. Alzheimer's Disease-Related Dementias Summit 2016: National research priorities. Neurology 2017;89:2381-91. [PMID: 29117955 DOI: 10.1212/WNL.0000000000004717] [Cited by in Crossref: 59] [Cited by in F6Publishing: 38] [Article Influence: 11.8] [Reference Citation Analysis]
127 Zhu G, Harischandra DS, Ghaisas S, Zhang P, Prall W, Huang L, Maghames C, Guo L, Luna E, Mack KL, Torrente MP, Luk KC, Shorter J, Yang X. TRIM11 Prevents and Reverses Protein Aggregation and Rescues a Mouse Model of Parkinson's Disease. Cell Rep 2020;33:108418. [PMID: 33264628 DOI: 10.1016/j.celrep.2020.108418] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
128 Cui W, Zhan Y, Shao X, Fu W, Xiao D, Zhu J, Qin X, Zhang T, Zhang M, Zhou Y, Lin Y. Neuroprotective and Neurotherapeutic Effects of Tetrahedral Framework Nucleic Acids on Parkinson’s Disease in Vitro. ACS Appl Mater Interfaces 2019;11:32787-97. [DOI: 10.1021/acsami.9b10308] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 8.3] [Reference Citation Analysis]
129 Teil M, Doudnikoff E, Thiolat ML, Bohic S, Bezard E, Dehay B. The Zinc Ionophore Clioquinol Reduces Parkinson's Disease Patient-Derived Brain Extracts-Induced Neurodegeneration. Mol Neurobiol 2022. [PMID: 35915387 DOI: 10.1007/s12035-022-02974-5] [Reference Citation Analysis]
130 Lau A, So RWL, Lau HHC, Sang JC, Ruiz-Riquelme A, Fleck SC, Stuart E, Menon S, Visanji NP, Meisl G, Faidi R, Marano MM, Schmitt-Ulms C, Wang Z, Fraser PE, Tandon A, Hyman BT, Wille H, Ingelsson M, Klenerman D, Watts JC. α-Synuclein strains target distinct brain regions and cell types. Nat Neurosci 2020;23:21-31. [PMID: 31792467 DOI: 10.1038/s41593-019-0541-x] [Cited by in Crossref: 64] [Cited by in F6Publishing: 52] [Article Influence: 21.3] [Reference Citation Analysis]
131 Zheng YQ, Zhang Y, Yau Y, Zeighami Y, Larcher K, Misic B, Dagher A. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation. PLoS Biol 2019;17:e3000495. [PMID: 31751329 DOI: 10.1371/journal.pbio.3000495] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
132 Biosa A, Outeiro TF, Bubacco L, Bisaglia M. Diabetes Mellitus as a Risk Factor for Parkinson's Disease: a Molecular Point of View. Mol Neurobiol. 2018;55:8754-8763. [PMID: 29594935 DOI: 10.1007/s12035-018-1025-9] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
133 Gabrielyan L, Liang H, Minalyan A, Hatami A, John V, Wang L. Behavioral Deficits and Brain α-Synuclein and Phosphorylated Serine-129 α-Synuclein in Male and Female Mice Overexpressing Human α-Synuclein. J Alzheimers Dis 2021;79:875-93. [PMID: 33361597 DOI: 10.3233/JAD-200983] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Curry AM, Fernàndez RD, Pagani TD, Abeyawardhane DL, Trahan ML, Lucas HR. Mapping of Photochemically-Derived Dityrosine across Fe-Bound N-Acetylated α-Synuclein. Life (Basel) 2020;10:E124. [PMID: 32726960 DOI: 10.3390/life10080124] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
135 Botelho J, Mascarenhas P, Mendes JJ, Machado V. Network Protein Interaction in Parkinson's Disease and Periodontitis Interplay: A Preliminary Bioinformatic Analysis. Genes (Basel) 2020;11:E1385. [PMID: 33238395 DOI: 10.3390/genes11111385] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
136 Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Krainc D. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science 2017;357:1255-61. [PMID: 28882997 DOI: 10.1126/science.aam9080] [Cited by in Crossref: 332] [Cited by in F6Publishing: 296] [Article Influence: 66.4] [Reference Citation Analysis]
137 Prebble DW, Voser TM, Er S, Hlushchuk I, Domanskyi A, Airavaara M, Ekins MG, Mellick GD, Carroll AR. Hesperine, a new imidazole alkaloid and α-synuclein binding activity of 1-methyl-1,2,7,8-tetrahydro-2,8-dioxoadenosine from the marine sponge Clathria (Thalysias) cf. hesperia. Results in Chemistry 2022. [DOI: 10.1016/j.rechem.2022.100302] [Reference Citation Analysis]
138 Wu G, Lu ZH, Seo JH, Alselehdar SK, DeFrees S, Ledeen RW. Mice deficient in GM1 manifest both motor and non-motor symptoms of Parkinson's disease; successful treatment with synthetic GM1 ganglioside. Exp Neurol 2020;329:113284. [PMID: 32165255 DOI: 10.1016/j.expneurol.2020.113284] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
139 Lee BE, Kim HY, Kim HJ, Jeong H, Kim BG, Lee HE, Lee J, Kim HB, Lee SE, Yang YR, Yi EC, Hanover JA, Myung K, Suh PG, Kwon T, Kim JI. O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain 2020;143:3699-716. [PMID: 33300544 DOI: 10.1093/brain/awaa320] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
140 Van Laar VS, Arnold B, Howlett EH, Calderon MJ, St Croix CM, Greenamyre JT, Sanders LH, Berman SB. Evidence for Compartmentalized Axonal Mitochondrial Biogenesis: Mitochondrial DNA Replication Increases in Distal Axons As an Early Response to Parkinson's Disease-Relevant Stress. J Neurosci 2018;38:7505-15. [PMID: 30030401 DOI: 10.1523/JNEUROSCI.0541-18.2018] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
141 Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna) 2019;126:377-96. [PMID: 30643975 DOI: 10.1007/s00702-019-01970-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
142 Schwab AD, Thurston MJ, Machhi J, Olson KE, Namminga KL, Gendelman HE, Mosley RL. Immunotherapy for Parkinson's disease. Neurobiol Dis 2020;137:104760. [PMID: 31978602 DOI: 10.1016/j.nbd.2020.104760] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
143 Surmeier DJ, Halliday GM, Simuni T. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease. Exp Neurol 2017;298:202-9. [PMID: 28780195 DOI: 10.1016/j.expneurol.2017.08.001] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 9.2] [Reference Citation Analysis]
144 Peralta C, Biafore F, Depetris TS, Bastianello M. Recent Advancement and Clinical Implications of 18FDG-PET in Parkinson's Disease, Atypical Parkinsonisms, and Other Movement Disorders. Curr Neurol Neurosci Rep 2019;19:56. [PMID: 31256288 DOI: 10.1007/s11910-019-0966-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
145 De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F. Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back. Int J Mol Sci 2018;19:E3911. [PMID: 30563246 DOI: 10.3390/ijms19123911] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
146 Wellings TP, Brichta AM, Lim R. Altered neurofilament protein expression in the lateral vestibular nucleus in Parkinson's disease. Exp Brain Res 2017;235:3695-708. [PMID: 28929183 DOI: 10.1007/s00221-017-5092-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
147 O'Keeffe GW, Sullivan AM. Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson's disease. Parkinsonism Relat Disord 2018;56:9-15. [PMID: 29934196 DOI: 10.1016/j.parkreldis.2018.06.025] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
148 Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou FH, Wang L, Dong J. Phosphorylation of Tau and α-Synuclein Induced Neurodegeneration in MPTP Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat 2020;16:651-63. [PMID: 32184604 DOI: 10.2147/NDT.S235562] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
149 Guo YJ, Xiong H, Chen K, Zou JJ, Lei P. Brain regions susceptible to alpha-synuclein spreading. Mol Psychiatry 2021. [PMID: 34561613 DOI: 10.1038/s41380-021-01296-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
150 Nold A, Batulin D, Birkner K, Bittner S, Tchumatchenko T. How Repair-or-Dispose Decisions Under Stress Can Initiate Disease Progression. iScience 2020;23:101701. [PMID: 33235980 DOI: 10.1016/j.isci.2020.101701] [Reference Citation Analysis]
151 Li R, Zou T, Wang X, Wang H, Hu X, Xie F, Meng L, Chen H. Basal ganglia atrophy-associated causal structural network degeneration in Parkinson's disease. Hum Brain Mapp 2021. [PMID: 34792836 DOI: 10.1002/hbm.25715] [Reference Citation Analysis]
152 Singh A, Yadawa AK, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. Mechanism for antiParkinsonian effect of resveratrol: Involvement of transporters, synaptic proteins, dendrite arborization, biochemical alterations, ER stress and apoptosis. Food Chem Toxicol 2021;155:112433. [PMID: 34302886 DOI: 10.1016/j.fct.2021.112433] [Reference Citation Analysis]
153 Linsley JW, Shah K, Castello N, Chan M, Haddad D, Doric Z, Wang S, Leks W, Mancini J, Oza V, Javaherian A, Nakamura K, Kokel D, Finkbeiner S. Genetically encoded cell-death indicators (GEDI) to detect an early irreversible commitment to neurodegeneration. Nat Commun 2021;12:5284. [PMID: 34489414 DOI: 10.1038/s41467-021-25549-9] [Reference Citation Analysis]
154 Chmielarz P, Saarma M. Neurotrophic factors for disease-modifying treatments of Parkinson's disease: gaps between basic science and clinical studies. Pharmacol Rep 2020;72:1195-217. [PMID: 32700249 DOI: 10.1007/s43440-020-00120-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
155 Cattaneo S, Regoni M, Sassone J, Taverna S. Cell-attached and Whole-cell Patch-clamp Recordings of Dopamine Neurons in the Substantia Nigra Pars Compacta of Mouse Brain Slices. Bio Protoc 2021;11:e4109. [PMID: 34458403 DOI: 10.21769/BioProtoc.4109] [Reference Citation Analysis]
156 Muñoz SS, Petersen D, Marlet FR, Kücükköse E, Galvagnion C. The interplay between Glucocerebrosidase, α-synuclein and lipids in human models of Parkinson's disease. Biophys Chem 2021;273:106534. [PMID: 33832803 DOI: 10.1016/j.bpc.2020.106534] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
157 Ferraro F, Fevga C, Bonifati V, Mandemakers W, Mahfouz A, Reinders M. Correcting Differential Gene Expression Analysis for Cyto-Architectural Alterations in Substantia Nigra of Parkinson's Disease Patients Reveals Known and Potential Novel Disease-Associated Genes and Pathways. Cells 2022;11:198. [PMID: 35053314 DOI: 10.3390/cells11020198] [Reference Citation Analysis]
158 Yun J, Jeong D, Xie Z, Lee S, Kim J, Surmeier DJ, Silverman RB, Kang S. Palladium-Catalyzed α-Arylation of Cyclic β-Dicarbonyl Compounds for the Synthesis of CaV1.3 Inhibitors. ACS Omega 2022;7:14252-63. [PMID: 35559207 DOI: 10.1021/acsomega.2c00889] [Reference Citation Analysis]
159 Roh H, Kang J, Koh SB, Kim JH. Hippocampal volume is related to olfactory impairment in Parkinson's disease. J Neuroimaging 2021. [PMID: 34355455 DOI: 10.1111/jon.12911] [Reference Citation Analysis]
160 Oosterveen T, Garção P, Moles-Garcia E, Soleilhavoup C, Travaglio M, Sheraz S, Peltrini R, Patrick K, Labas V, Combes-Soia L, Marklund U, Hohenstein P, Panman L. Pluripotent stem cell derived dopaminergic subpopulations model the selective neuron degeneration in Parkinson's disease. Stem Cell Reports 2021;16:2718-35. [PMID: 34678205 DOI: 10.1016/j.stemcr.2021.09.014] [Reference Citation Analysis]
161 Wu Q, Shaikh MA, Meymand ES, Zhang B, Luk KC, Trojanowski JQ, Lee VM. Neuronal activity modulates alpha-synuclein aggregation and spreading in organotypic brain slice cultures and in vivo. Acta Neuropathol 2020;140:831-49. [PMID: 33021680 DOI: 10.1007/s00401-020-02227-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
162 Jang CH, Oh J, Lim JS, Kim HJ, Kim JS. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021;10:636. [PMID: 33803607 DOI: 10.3390/foods10030636] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
163 Vila M. Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease. Mov Disord 2019;34:1440-51. [PMID: 31251435 DOI: 10.1002/mds.27776] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
164 Thomas R, Moloney EB, Macbain ZK, Hallett PJ, Isacson O. Fibroblasts from idiopathic Parkinson's disease exhibit deficiency of lysosomal glucocerebrosidase activity associated with reduced levels of the trafficking receptor LIMP2. Mol Brain 2021;14:16. [PMID: 33468204 DOI: 10.1186/s13041-020-00712-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
165 Obergasteiger J, Frapporti G, Lamonaca G, Pizzi S, Picard A, Lavdas AA, Pischedda F, Piccoli G, Hilfiker S, Lobbestael E, Baekelandt V, Hicks AA, Corti C, Pramstaller PP, Volta M. Kinase inhibition of G2019S-LRRK2 enhances autolysosome formation and function to reduce endogenous alpha-synuclein intracellular inclusions. Cell Death Discov 2020;6:45. [PMID: 32550012 DOI: 10.1038/s41420-020-0279-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
166 Koprich JB, Kalia LV, Brotchie JM. Animal models of α-synucleinopathy for Parkinson disease drug development. Nat Rev Neurosci 2017;18:515-29. [DOI: 10.1038/nrn.2017.75] [Cited by in Crossref: 98] [Cited by in F6Publishing: 90] [Article Influence: 19.6] [Reference Citation Analysis]
167 Nouraei N, Mason DM, Miner KM, Carcella MA, Bhatia TN, Dumm BK, Soni D, Johnson DA, Luk KC, Leak RK. Critical appraisal of pathology transmission in the α-synuclein fibril model of Lewy body disorders. Exp Neurol 2018;299:172-96. [PMID: 29056362 DOI: 10.1016/j.expneurol.2017.10.017] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
168 Wang B, Huang M, Shang D, Yan X, Zhao B, Zhang X. Mitochondrial Behavior in Axon Degeneration and Regeneration. Front Aging Neurosci 2021;13:650038. [PMID: 33762926 DOI: 10.3389/fnagi.2021.650038] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
169 Leija-Salazar M, Piette C, Proukakis C. Review: Somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol 2018;44:267-85. [PMID: 29369391 DOI: 10.1111/nan.12465] [Cited by in Crossref: 51] [Cited by in F6Publishing: 35] [Article Influence: 12.8] [Reference Citation Analysis]
170 Howlett EH, Jensen N, Belmonte F, Zafar F, Hu X, Kluss J, Schüle B, Kaufman BA, Greenamyre JT, Sanders LH. LRRK2 G2019S-induced mitochondrial DNA damage is LRRK2 kinase dependent and inhibition restores mtDNA integrity in Parkinson's disease. Hum Mol Genet 2017;26:4340-51. [PMID: 28973664 DOI: 10.1093/hmg/ddx320] [Cited by in Crossref: 42] [Cited by in F6Publishing: 42] [Article Influence: 10.5] [Reference Citation Analysis]
171 Barbuti PA, Ohnmacht J, Santos BFR, Antony PM, Massart F, Cruciani G, Dording CM, Pavelka L, Casadei N, Kwon YJ, Krüger R. Gene-corrected p.A30P SNCA patient-derived isogenic neurons rescue neuronal branching and function. Sci Rep 2021;11:21946. [PMID: 34754035 DOI: 10.1038/s41598-021-01505-x] [Reference Citation Analysis]
172 Kane JPM, Roberts G, Petrides GS, Lloyd JJ, O'Brien JT, Thomas AJ. 123I-MIBG scintigraphy utility and cut-off value in a clinically representative dementia cohort. Parkinsonism Relat Disord 2019;62:79-84. [PMID: 30709778 DOI: 10.1016/j.parkreldis.2019.01.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
173 Schrank S, Barrington N, Stutzmann GE. Calcium-Handling Defects and Neurodegenerative Disease. Cold Spring Harb Perspect Biol. 2020;12. [PMID: 31427373 DOI: 10.1101/cshperspect.a035212] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
174 Draoui A, El Hiba O, Abdelaati EK, Abbaoui A, El Fari R, Aitihya M, Gamrani H. Differential impairment of short working and spatial memories in a rat model of progressive Parkinson’s disease onset: A focus on the prodromal stage. Brain Research Bulletin 2019;150:307-16. [DOI: 10.1016/j.brainresbull.2019.06.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
175 Qu M, Lin Q, He S, Wang L, Fu Y, Zhang Z, Zhang L. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson's disease. J Control Release 2018;277:173-82. [PMID: 29588159 DOI: 10.1016/j.jconrel.2018.03.019] [Cited by in Crossref: 39] [Cited by in F6Publishing: 34] [Article Influence: 9.8] [Reference Citation Analysis]
176 Xie J, Chen S, Bopassa JC, Banerjee S. Drosophila tubulin polymerization promoting protein mutants reveal pathological correlates relevant to human Parkinson's disease. Sci Rep 2021;11:13614. [PMID: 34193896 DOI: 10.1038/s41598-021-92738-3] [Reference Citation Analysis]
177 Parmar M. Targets for astrocyte-based treatments of Parkinson's disease (PD). Proc Natl Acad Sci U S A 2022;119:e2208876119. [PMID: 35858458 DOI: 10.1073/pnas.2208876119] [Reference Citation Analysis]
178 Sunanda T, Ray B, Mahalakshmi AM, Bhat A, Rashan L, Rungratanawanich W, Song BJ, Essa MM, Sakharkar MK, Chidambaram SB. Mitochondria-Endoplasmic Reticulum Crosstalk in Parkinson's Disease: The Role of Brain Renin Angiotensin System Components. Biomolecules 2021;11:1669. [PMID: 34827667 DOI: 10.3390/biom11111669] [Reference Citation Analysis]
179 Stathakos P, Jiménez-Moreno N, Crompton LA, Nistor PA, Badger JL, Barbuti PA, Kerrigan TL, Randall AD, Caldwell MA, Lane JD. A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons. Autophagy 2021;17:855-71. [PMID: 32286126 DOI: 10.1080/15548627.2020.1739441] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
180 Linsley JW, Reisine T, Finkbeiner S. Cell death assays for neurodegenerative disease drug discovery. Expert Opin Drug Discov 2019;14:901-13. [PMID: 31179783 DOI: 10.1080/17460441.2019.1623784] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
181 Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson's disease. Lancet Neurol 2018;17:629-40. [PMID: 29914708 DOI: 10.1016/S1474-4422(18)30169-8] [Cited by in Crossref: 57] [Cited by in F6Publishing: 31] [Article Influence: 19.0] [Reference Citation Analysis]
182 Madadi Asl M, Vahabie A, Valizadeh A, Tass PA. Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson’s Disease Pathophysiology. Front Netw Physiol 2022;2:817524. [DOI: 10.3389/fnetp.2022.817524] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
183 Cresto N, Gardier C, Gubinelli F, Gaillard MC, Liot G, West AB, Brouillet E. The unlikely partnership between LRRK2 and α-synuclein in Parkinson's disease. Eur J Neurosci 2019;49:339-63. [PMID: 30269383 DOI: 10.1111/ejn.14182] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
184 Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson's disease. J Neural Transm (Vienna) 2018;125:337-63. [PMID: 28861737 DOI: 10.1007/s00702-017-1774-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
185 Weykopf B, Haupt S, Jungverdorben J, Flitsch LJ, Hebisch M, Liu GH, Suzuki K, Belmonte JCI, Peitz M, Blaess S, Till A, Brüstle O. Induced pluripotent stem cell-based modeling of mutant LRRK2-associated Parkinson's disease. Eur J Neurosci 2019;49:561-89. [PMID: 30656775 DOI: 10.1111/ejn.14345] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
186 Sardi SP, Simuni T. New Era in disease modification in Parkinson's disease: Review of genetically targeted therapeutics. Parkinsonism & Related Disorders 2019;59:32-8. [DOI: 10.1016/j.parkreldis.2018.10.025] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
187 Nuber S, Rajsombath M, Minakaki G, Winkler J, Müller CP, Ericsson M, Caldarone B, Dettmer U, Selkoe DJ. Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson's Disease. Neuron 2018;100:75-90.e5. [PMID: 30308173 DOI: 10.1016/j.neuron.2018.09.014] [Cited by in Crossref: 54] [Cited by in F6Publishing: 53] [Article Influence: 18.0] [Reference Citation Analysis]
188 Medeiros DC, Lopes Aguiar C, Moraes MFD, Fisone G. Sleep Disorders in Rodent Models of Parkinson's Disease. Front Pharmacol 2019;10:1414. [PMID: 31827439 DOI: 10.3389/fphar.2019.01414] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
189 Tubert C, Galtieri D, Surmeier DJ. The pedunclopontine nucleus and Parkinson's disease. Neurobiol Dis 2019;128:3-8. [PMID: 30171892 DOI: 10.1016/j.nbd.2018.08.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
190 Chiu CC, Yeh TH, Chen RS, Chen HC, Huang YZ, Weng YH, Cheng YC, Liu YC, Cheng AJ, Lu YC, Chen YJ, Lin YW, Hsu CC, Chen YL, Lu CS, Wang HL. Upregulated Expression of MicroRNA-204-5p Leads to the Death of Dopaminergic Cells by Targeting DYRK1A-Mediated Apoptotic Signaling Cascade. Front Cell Neurosci 2019;13:399. [PMID: 31572127 DOI: 10.3389/fncel.2019.00399] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
191 Sun Y, Pham AN, Hare DJ, Waite TD. Kinetic Modeling of pH-Dependent Oxidation of Dopamine by Iron and Its Relevance to Parkinson's Disease. Front Neurosci 2018;12:859. [PMID: 30534046 DOI: 10.3389/fnins.2018.00859] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
192 Li S, Jia C, Li T, Le W. Hot Topics in Recent Parkinson's Disease Research: Where We are and Where We Should Go. Neurosci Bull 2021. [PMID: 34313916 DOI: 10.1007/s12264-021-00749-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
193 Bancroft EA, Srinivasan R. Quantifying Spontaneous Ca2+ Fluxes and their Downstream Effects in Primary Mouse Midbrain Neurons. J Vis Exp 2020. [PMID: 32986023 DOI: 10.3791/61481] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
194 Ysselstein D, Nguyen M, Young TJ, Severino A, Schwake M, Merchant K, Krainc D. LRRK2 kinase activity regulates lysosomal glucocerebrosidase in neurons derived from Parkinson's disease patients. Nat Commun 2019;10:5570. [PMID: 31804465 DOI: 10.1038/s41467-019-13413-w] [Cited by in Crossref: 51] [Cited by in F6Publishing: 53] [Article Influence: 17.0] [Reference Citation Analysis]
195 Zhang R, Wang S, Huang X, Yang Y, Fan H, Yang F, Li J, Dong X, Feng S, Anbu P, Gopinath SC, Xin T. Gold-nanourchin seeded single-walled carbon nanotube on voltammetry sensor for diagnosing neurogenerative Parkinson’s disease. Analytica Chimica Acta 2020;1094:142-50. [DOI: 10.1016/j.aca.2019.10.012] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
196 Tuite P. Brain Magnetic Resonance Imaging (MRI) as a Potential Biomarker for Parkinson's Disease (PD). Brain Sci 2017;7:E68. [PMID: 28621758 DOI: 10.3390/brainsci7060068] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
197 Hernandez LF, Obeso I, Costa RM, Redgrave P, Obeso JA. Dopaminergic Vulnerability in Parkinson Disease: The Cost of Humans’ Habitual Performance. Trends in Neurosciences 2019;42:375-83. [DOI: 10.1016/j.tins.2019.03.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
198 Jellinger KA. Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Reference Citation Analysis]
199 Luna E, Decker SC, Riddle DM, Caputo A, Zhang B, Cole T, Caswell C, Xie SX, Lee VMY, Luk KC. Differential α-synuclein expression contributes to selective vulnerability of hippocampal neuron subpopulations to fibril-induced toxicity. Acta Neuropathol 2018;135:855-75. [PMID: 29502200 DOI: 10.1007/s00401-018-1829-8] [Cited by in Crossref: 70] [Cited by in F6Publishing: 57] [Article Influence: 17.5] [Reference Citation Analysis]
200 Ham SJ, Lee D, Xu WJ, Cho E, Choi S, Min S, Park S, Chung J. Loss of UCHL1 rescues the defects related to Parkinson's disease by suppressing glycolysis. Sci Adv 2021;7:eabg4574. [PMID: 34244144 DOI: 10.1126/sciadv.abg4574] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
201 Erskine D, Patterson L, Alexandris A, Hanson PS, McKeith IG, Attems J, Morris CM. Regional levels of physiological α-synuclein are directly associated with Lewy body pathology. Acta Neuropathol 2018;135:153-4. [PMID: 29134319 DOI: 10.1007/s00401-017-1787-6] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
202 Mamelak M. Parkinson's Disease, the Dopaminergic Neuron and Gammahydroxybutyrate. Neurol Ther 2018;7:5-11. [PMID: 29368093 DOI: 10.1007/s40120-018-0091-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
203 De Miranda BR, Rocha EM, Bai Q, El Ayadi A, Hinkle D, Burton EA, Timothy Greenamyre J. Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease. Neurobiol Dis 2018;115:101-14. [PMID: 29649621 DOI: 10.1016/j.nbd.2018.04.008] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]
204 Yau Y, Zeighami Y, Baker TE, Larcher K, Vainik U, Dadar M, Fonov VS, Hagmann P, Griffa A, Mišić B, Collins DL, Dagher A. Network connectivity determines cortical thinning in early Parkinson's disease progression. Nat Commun 2018;9:12. [PMID: 29295991 DOI: 10.1038/s41467-017-02416-0] [Cited by in Crossref: 94] [Cited by in F6Publishing: 66] [Article Influence: 23.5] [Reference Citation Analysis]
205 Betzer C, Jensen PH. Reduced Cytosolic Calcium as an Early Decisive Cellular State in Parkinson's Disease and Synucleinopathies. Front Neurosci 2018;12:819. [PMID: 30459551 DOI: 10.3389/fnins.2018.00819] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
206 Troncoso-Escudero P, Sepulveda D, Pérez-Arancibia R, Parra AV, Arcos J, Grunenwald F, Vidal RL. On the Right Track to Treat Movement Disorders: Promising Therapeutic Approaches for Parkinson's and Huntington's Disease. Front Aging Neurosci 2020;12:571185. [PMID: 33101007 DOI: 10.3389/fnagi.2020.571185] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
207 Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020;13:153. [PMID: 32973447 DOI: 10.3389/fnmol.2020.00153] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
208 Faustini G, Longhena F, Varanita T, Bubacco L, Pizzi M, Missale C, Benfenati F, Björklund A, Spano P, Bellucci A. Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson's disease. Acta Neuropathol 2018;136:621-39. [PMID: 30046897 DOI: 10.1007/s00401-018-1892-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
209 Jarosz DF, Khurana V. Specification of Physiologic and Disease States by Distinct Proteins and Protein Conformations. Cell 2017;171:1001-14. [PMID: 29149602 DOI: 10.1016/j.cell.2017.10.047] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 5.4] [Reference Citation Analysis]
210 Bueno-Carrasco MT, Cuéllar J, Flydal MI, Santiago C, Kråkenes TA, Kleppe R, López-Blanco JR, Marcilla M, Teigen K, Alvira S, Chacón P, Martinez A, Valpuesta JM. Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. Nat Commun 2022;13:74. [PMID: 35013193 DOI: 10.1038/s41467-021-27657-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
211 Rangasamy SB, Dasarathi S, Nutakki A, Mukherjee S, Nellivalasa R, Pahan K. Stimulation of Dopamine Production by Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive. J Alzheimers Dis Rep 2021;5:295-310. [PMID: 34113786 DOI: 10.3233/ADR-210001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
212 El Ganainy SO, Cijsouw T, Ali MA, Schoch S, Hanafy AS. Stereotaxic-assisted gene therapy in Alzheimer's and Parkinson's diseases: therapeutic potentials and clinical frontiers. Expert Rev Neurother 2022;:1-17. [PMID: 35319338 DOI: 10.1080/14737175.2022.2056446] [Reference Citation Analysis]
213 Bourdenx M, Nioche A, Dovero S, Arotcarena ML, Camus S, Porras G, Thiolat ML, Rougier NP, Prigent A, Aubert P, Bohic S, Sandt C, Laferrière F, Doudnikoff E, Kruse N, Mollenhauer B, Novello S, Morari M, Leste-Lasserre T, Damas IT, Goillandeau M, Perier C, Estrada C, Garcia-Carrillo N, Recasens A, Vaikath NN, El-Agnaf OMA, Herrero MT, Derkinderen P, Vila M, Obeso JA, Dehay B, Bezard E. Identification of distinct pathological signatures induced by patient-derived α-synuclein structures in nonhuman primates. Sci Adv 2020;6:eaaz9165. [PMID: 32426502 DOI: 10.1126/sciadv.aaz9165] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
214 Heltberg ML, Awada HN, Lucchetti A, Jensen MH, Dreyer JK, Rasmussen RN. Biophysical Modeling of Dopaminergic Denervation Landscapes in the Striatum Reveals New Therapeutic Strategy. eNeuro 2022;9:ENEURO. [PMID: 35165198 DOI: 10.1523/ENEURO.0458-21.2022] [Reference Citation Analysis]
215 Zheng H, Feng Y, Tang J, Ma S. Interfacing brain organoids with precision medicine and machine learning. Cell Reports Physical Science 2022;3:100974. [DOI: 10.1016/j.xcrp.2022.100974] [Reference Citation Analysis]
216 Lin H, Tseng Y, Shen A, Chao JC, Hsu C, Lin H. Association of angiotensin receptor blockers with incident Parkinson's disease in patients with hypertension: A retrospective cohort study. The American Journal of Medicine 2022. [DOI: 10.1016/j.amjmed.2022.04.029] [Reference Citation Analysis]
217 Taylor NL, Wainstein G, Quek D, Lewis SJG, Shine JM, Ehgoetz Martens KA. The Contribution of Noradrenergic Activity to Anxiety-Induced Freezing of Gait. Mov Disord 2022. [PMID: 35384055 DOI: 10.1002/mds.28999] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
218 Jimenez-Moreno N, Lane JD. Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. Oxid Med Cell Longev 2020;2020:8865611. [PMID: 33224433 DOI: 10.1155/2020/8865611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
219 Taghavi S, Chaouni R, Tafakhori A, Azcona LJ, Firouzabadi SG, Omrani MD, Jamshidi J, Emamalizadeh B, Shahidi GA, Ahmadi M, Habibi SAH, Ahmadifard A, Fazeli A, Motallebi M, Petramfar P, Askarpour S, Askarpour S, Shahmohammadibeni HA, Shahmohammadibeni N, Eftekhari H, Shafiei Zarneh AE, Mohammadihosseinabad S, Khorrami M, Najmi S, Chitsaz A, Shokraeian P, Ehsanbakhsh H, Rezaeidian J, Ebrahimi Rad R, Madadi F, Andarva M, Alehabib E, Atakhorrami M, Mortazavi SE, Azimzadeh Z, Bayat M, Besharati AM, Harati-Ghavi MA, Omidvari S, Dehghani-Tafti Z, Mohammadi F, Mohammad Hossein Pour B, Noorollahi Moghaddam H, Esmaili Shandiz E, Habibi A, Taherian-Esfahani Z, Darvish H, Paisán-Ruiz C. A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations. Mol Neurobiol 2018;55:3477-89. [PMID: 28502045 DOI: 10.1007/s12035-017-0535-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 8.2] [Reference Citation Analysis]
220 Wang L, Liu C, Shao Y, Jin H, Mao C, Chen J. Peripheral Blood Inflammatory Cytokines are Associated with Rapid Eye Movement Sleep Behavior Disorder in Parkinson’s Disease. Neuroscience Letters 2022. [DOI: 10.1016/j.neulet.2022.136692] [Reference Citation Analysis]
221 Foffani G, Obeso JA. A Cortical Pathogenic Theory of Parkinson's Disease. Neuron 2018;99:1116-28. [PMID: 30236282 DOI: 10.1016/j.neuron.2018.07.028] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 11.0] [Reference Citation Analysis]
222 Brooker SM, Krainc D. Glucocerebrosidase dysfunction in neurodegenerative disease. Essays Biochem 2021;65:873-83. [PMID: 34528667 DOI: 10.1042/EBC20210018] [Reference Citation Analysis]
223 Henderson MX, Cornblath EJ, Darwich A, Zhang B, Brown H, Gathagan RJ, Sandler RM, Bassett DS, Trojanowski JQ, Lee VMY. Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat Neurosci 2019;22:1248-57. [PMID: 31346295 DOI: 10.1038/s41593-019-0457-5] [Cited by in Crossref: 81] [Cited by in F6Publishing: 73] [Article Influence: 27.0] [Reference Citation Analysis]
224 Candreva J, Chau E, Rice ME, Kim JR. Interactions between Soluble Species of β-Amyloid and α-Synuclein Promote Oligomerization while Inhibiting Fibrillization. Biochemistry 2020;59:425-35. [PMID: 31854188 DOI: 10.1021/acs.biochem.9b00655] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
225 Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiol Dis 2020;144:105028. [PMID: 32736085 DOI: 10.1016/j.nbd.2020.105028] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 12.5] [Reference Citation Analysis]
226 Shim JH, Baek HM. Diffusion Measure Changes of Substantia Nigra Subregions and the Ventral Tegmental Area in Newly Diagnosed Parkinson's Disease. Exp Neurobiol 2021;30:365-73. [PMID: 34737241 DOI: 10.5607/en21025] [Reference Citation Analysis]
227 Winner BM, Zhang H, Farthing MM, Karchalla LM, Lookingland KJ, Goudreau JL. Metabolism of Dopamine in Nucleus Accumbens Astrocytes Is Preserved in Aged Mice Exposed to MPTP. Front Aging Neurosci 2017;9:410. [PMID: 29311899 DOI: 10.3389/fnagi.2017.00410] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
228 Obeso JA. Editor's note: The origin of Parkinson's disease: The importance of environment and lifestyle. Mov Disord 2019;34:799-800. [PMID: 31206833 DOI: 10.1002/mds.27743] [Reference Citation Analysis]
229 Palermo G, Giannoni S, Bellini G, Siciliano G, Ceravolo R. Dopamine Transporter Imaging, Current Status of a Potential Biomarker: A Comprehensive Review. Int J Mol Sci 2021;22:11234. [PMID: 34681899 DOI: 10.3390/ijms222011234] [Reference Citation Analysis]
230 Cheng X, Vinokurov AY, Zherebtsov EA, Stelmashchuk OA, Angelova PR, Esteras N, Abramov AY. Variability of mitochondrial energy balance across brain regions. J Neurochem 2021;157:1234-43. [PMID: 33190229 DOI: 10.1111/jnc.15239] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
231 Zheng H, Shi C, Luo H, Fan L, Yang Z, Hu X, Zhang Z, Zhang S, Hu Z, Fan Y, Yang J, Mao C, Xu Y. α-Synuclein in Parkinson's Disease: Does a Prion-Like Mechanism of Propagation from Periphery to the Brain Play a Role? Neuroscientist 2021;27:367-87. [PMID: 32729773 DOI: 10.1177/1073858420943180] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
232 Monzani E, Nicolis S, Dell'acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamin, oxidativer Stress und Protein‐Chinonmodifikationen bei Parkinson und anderen neurodegenerativen Erkrankungen. Angew Chem 2019;131:6580-96. [DOI: 10.1002/ange.201811122] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
233 Guzmán-ramos K, Osorio-gómez D, Bermúdez-rattoni F. Cognitive impairment in alzheimer’s and metabolic diseases: A catecholaminergic hypothesis. Neuroscience 2022. [DOI: 10.1016/j.neuroscience.2022.05.031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
234 Lezcano LB, Alberti Amador E, González Fraguela ME, Zaldívar Lelo de Larrea G, Serrano RMP, Jiménez Luna NA, Camejo Rodríguez D, Serrano Sánchez T, Francis Turner L, Estupiñán Díaz B, Vega Hurtado Y, Fernández Jiménez I. Motor Coordination Disorders Evaluated through the Grid Test and Changes in the Nigral Nrf2 mRNA Expression in Rats with Pedunculopontine Lesion. Behav Sci (Basel) 2020;10:E156. [PMID: 33066049 DOI: 10.3390/bs10100156] [Reference Citation Analysis]
235 Ławkowska K, Pokrywczyńska M, Koper K, Kluth LA, Drewa T, Adamowicz J. Application of Graphene in Tissue Engineering of the Nervous System. Int J Mol Sci 2021;23:33. [PMID: 35008456 DOI: 10.3390/ijms23010033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
236 Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020;11:2021. [PMID: 33013859 DOI: 10.3389/fimmu.2020.02021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
237 Xu J, Minobe E, Kameyama M. Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson’s Disease. Front Cell Neurosci 2022;16:867385. [DOI: 10.3389/fncel.2022.867385] [Reference Citation Analysis]
238 Chavarría C, Ivagnes R, Souza JM. Extracellular Alpha-Synuclein: Mechanisms for Glial Cell Internalization and Activation. Biomolecules 2022;12:655. [DOI: 10.3390/biom12050655] [Reference Citation Analysis]
239 Flydal MI, Kråkenes TA, Tai MDS, Tran MPA, Teigen K, Martinez A. Levalbuterol lowers the feedback inhibition by dopamine and delays misfolding and aggregation in tyrosine hydroxylase. Biochimie 2021;183:126-32. [PMID: 33309753 DOI: 10.1016/j.biochi.2020.12.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
240 Li G, Luo W, Wang B, Qian C, Ye Y, Li Y, Zhang S. HMGA1 Induction of miR-103/107 Forms a Negative Feedback Loop to Regulate Autophagy in MPTP Model of Parkinson's Disease. Front Cell Neurosci 2020;14:620020. [PMID: 33536877 DOI: 10.3389/fncel.2020.620020] [Reference Citation Analysis]
241 Chiang PL, Chen HL, Lu CH, Chen YS, Chou KH, Hsu TW, Chen MH, Tsai NW, Li SH, Lin WC. Interaction of systemic oxidative stress and mesial temporal network degeneration in Parkinson's disease with and without cognitive impairment. J Neuroinflammation 2018;15:281. [PMID: 30257698 DOI: 10.1186/s12974-018-1317-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
242 Roussarie JP, Rodriguez-Rodriguez P. Deciphering cell-type specific signal transduction in the brain: Challenges and promises. Adv Pharmacol 2021;90:145-71. [PMID: 33706931 DOI: 10.1016/bs.apha.2020.09.009] [Reference Citation Analysis]
243 Avrutsky MI, Lawson JM, Smart JE, Chen CW, Troy CM. Noninvasive Ophthalmic Imaging Measures Retinal Degeneration and Vision Deficits in Ndufs4-/- Mouse Model of Mitochondrial Complex I Deficiency. Transl Vis Sci Technol 2022;11:5. [PMID: 35921115 DOI: 10.1167/tvst.11.8.5] [Reference Citation Analysis]
244 Recasens A, Carballo-Carbajal I, Parent A, Bové J, Gelpi E, Tolosa E, Vila M. Lack of pathogenic potential of peripheral α-synuclein aggregates from Parkinson's disease patients. Acta Neuropathol Commun 2018;6:8. [PMID: 29422109 DOI: 10.1186/s40478-018-0509-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
245 Mou L, Ding W, Fernandez-Funez P. Open questions on the nature of Parkinson's disease: from triggers to spreading pathology. J Med Genet 2020;57:73-81. [PMID: 31484719 DOI: 10.1136/jmedgenet-2019-106210] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
246 Francardo V. Modeling Parkinson’s disease and treatment complications in rodents: Potentials and pitfalls of the current options. Behavioural Brain Research 2018;352:142-50. [DOI: 10.1016/j.bbr.2017.12.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
247 Kanwore K, Guo XX, Abdulrahman AA, Kambey PA, Nadeem I, Gao D. SOX1 Is a Backup Gene for Brain Neurons and Glioma Stem Cell Protection and Proliferation. Mol Neurobiol 2021;58:2634-42. [PMID: 33481176 DOI: 10.1007/s12035-020-02240-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
248 Thomas GEC, Zarkali A, Ryten M, Shmueli K, Gil-Martinez AL, Leyland LA, McColgan P, Acosta-Cabronero J, Lees AJ, Weil RS. Regional brain iron and gene expression provide insights into neurodegeneration in Parkinson's disease. Brain 2021;144:1787-98. [PMID: 33704443 DOI: 10.1093/brain/awab084] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
249 O'Callaghan C, Hall JM, Tomassini A, Muller AJ, Walpola IC, Moustafa AA, Shine JM, Lewis SJG. Visual Hallucinations Are Characterized by Impaired Sensory Evidence Accumulation: Insights From Hierarchical Drift Diffusion Modeling in Parkinson's Disease. Biol Psychiatry Cogn Neurosci Neuroimaging 2017;2:680-8. [PMID: 29560902 DOI: 10.1016/j.bpsc.2017.04.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
250 Ge P, Dawson VL, Dawson TM. PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. Mol Neurodegener 2020;15:20. [PMID: 32169097 DOI: 10.1186/s13024-020-00367-7] [Cited by in Crossref: 59] [Cited by in F6Publishing: 59] [Article Influence: 29.5] [Reference Citation Analysis]
251 Landolfo E, Cutuli D, Petrosini L, Caltagirone C. Effects of Palmitoylethanolamide on Neurodegenerative Diseases: A Review from Rodents to Humans. Biomolecules 2022;12:667. [DOI: 10.3390/biom12050667] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
252 Tan Y, Sgobio C, Arzberger T, Machleid F, Tang Q, Findeis E, Tost J, Chakroun T, Gao P, Höllerhage M, Bötzel K, Herms J, Höglinger G, Koeglsperger T. Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathol 2020;139:319-45. [PMID: 31768670 DOI: 10.1007/s00401-019-02099-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
253 Hou Y, Peng S, Song Z, Bai F, Li X, Fang J. Oat polyphenol avenanthramide-2c confers protection from oxidative stress by regulating the Nrf2-ARE signaling pathway in PC12 cells. Arch Biochem Biophys 2021;706:108857. [PMID: 33781769 DOI: 10.1016/j.abb.2021.108857] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
254 Dinter E, Saridaki T, Diederichs L, Reichmann H, Falkenburger BH. Parkinson's disease and translational research. Transl Neurodegener 2020;9:43. [PMID: 33256849 DOI: 10.1186/s40035-020-00223-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
255 Airavaara M, Parkkinen I, Konovalova J, Albert K, Chmielarz P, Domanskyi A. Back and to the Future: From Neurotoxin-Induced to Human Parkinson's Disease Models. Curr Protoc Neurosci 2020;91:e88. [PMID: 32049438 DOI: 10.1002/cpns.88] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
256 Tsunemi T, Perez-Rosello T, Ishiguro Y, Yoroisaka A, Jeon S, Hamada K, Rammonhan M, Wong YC, Xie Z, Akamatsu W, Mazzulli JR, Surmeier DJ, Hattori N, Krainc D. Increased Lysosomal Exocytosis Induced by Lysosomal Ca2+ Channel Agonists Protects Human Dopaminergic Neurons from α-Synuclein Toxicity. J Neurosci 2019;39:5760-72. [PMID: 31097622 DOI: 10.1523/JNEUROSCI.3085-18.2019] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 12.7] [Reference Citation Analysis]
257 Llavero Hurtado M, Fuller HR, Wong AMS, Eaton SL, Gillingwater TH, Pennetta G, Cooper JD, Wishart TM. Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo. Sci Rep 2017;7:12412. [PMID: 28963550 DOI: 10.1038/s41598-017-12603-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
258 Sun Y, Cui B, Ye L, Hu Y, Pan Y. Pramipexole Inhibits Neuronal Apoptosis in Rats with Parkinson's Disease. J Healthc Eng 2022;2022:7002630. [PMID: 35463692 DOI: 10.1155/2022/7002630] [Reference Citation Analysis]
259 Renaud J, Bassareo V, Beaulieu J, Pinna A, Schlich M, Lavoie C, Murtas D, Simola N, Martinoli M. Dopaminergic neurodegeneration in a rat model of long-term hyperglycemia: preferential degeneration of the nigrostriatal motor pathway. Neurobiology of Aging 2018;69:117-28. [DOI: 10.1016/j.neurobiolaging.2018.05.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
260 Henderson MX, Trojanowski JQ, Lee VM. α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neurosci Lett 2019;709:134316. [PMID: 31170426 DOI: 10.1016/j.neulet.2019.134316] [Cited by in Crossref: 56] [Cited by in F6Publishing: 47] [Article Influence: 18.7] [Reference Citation Analysis]
261 Gao Y, Wilson GR, Stephenson SEM, Bozaoglu K, Farrer MJ, Lockhart PJ. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease: Rab Gtpases in PD. Mov Disord 2018;33:196-207. [DOI: 10.1002/mds.27270] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
262 Watanabe H, Ariyoshi T, Ozaki A, Ihara M, Ono M, Saji H. Synthesis and biological evaluation of novel radioiodinated benzimidazole derivatives for imaging α-synuclein aggregates. Bioorganic & Medicinal Chemistry 2017;25:6398-403. [DOI: 10.1016/j.bmc.2017.10.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
263 Somayaji M, Lanseur Z, Choi SJ, Sulzer D, Mosharov EV. Roles for α-Synuclein in Gene Expression. Genes (Basel) 2021;12:1166. [PMID: 34440340 DOI: 10.3390/genes12081166] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
264 Íñigo-Marco I, Valencia M, Larrea L, Bugallo R, Martínez-Goikoetxea M, Zuriguel I, Arrasate M. E46K α-synuclein pathological mutation causes cell-autonomous toxicity without altering protein turnover or aggregation. Proc Natl Acad Sci U S A 2017;114:E8274-83. [PMID: 28900007 DOI: 10.1073/pnas.1703420114] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
265 Steinkellner T, Zell V, Farino ZJ, Sonders MS, Villeneuve M, Freyberg RJ, Przedborski S, Lu W, Freyberg Z, Hnasko TS. Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. J Clin Invest 2018;128:774-88. [PMID: 29337309 DOI: 10.1172/JCI95795] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 10.3] [Reference Citation Analysis]
266 Yu H, Liu X, Chen B, Vickstrom CR, Friedman V, Kelly TJ, Bai X, Zhao L, Hillard CJ, Liu QS. The Neuroprotective Effects of the CB2 Agonist GW842166x in the 6-OHDA Mouse Model of Parkinson's Disease. Cells 2021;10:3548. [PMID: 34944056 DOI: 10.3390/cells10123548] [Reference Citation Analysis]
267 Olubodun-Obadun TG, Ishola IO, Adeyemi OO. Impact of environmental toxicants exposure on gut-brain axis in Parkinson disease. Drug Metab Pers Ther 2022. [PMID: 35377569 DOI: 10.1515/dmpt-2021-0144] [Reference Citation Analysis]
268 Fan D, Liu L, Wu Z, Cao M. Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential. Curr Neuropharmacol 2019;17:563-79. [PMID: 29676231 DOI: 10.2174/1570159X16666180419141613] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
269 Vecchio LM, Sullivan P, Dunn AR, Bermejo MK, Fu R, Masoud ST, Gregersen E, Urs NM, Nazari R, Jensen PH, Ramsey A, Goldstein DS, Miller GW, Salahpour A. Enhanced tyrosine hydroxylase activity induces oxidative stress, causes accumulation of autotoxic catecholamine metabolites, and augments amphetamine effects in vivo. J Neurochem 2021;158:960-79. [PMID: 33991113 DOI: 10.1111/jnc.15432] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
270 Borghammer P. The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson's Disease: Explaining Motor Asymmetry, Non-Motor Phenotypes, and Cognitive Decline. J Parkinsons Dis 2021;11:455-74. [PMID: 33682732 DOI: 10.3233/JPD-202481] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
271 Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson's disease pathogenesis. Mol Neurodegener 2019;14:35. [PMID: 31488222 DOI: 10.1186/s13024-019-0332-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 14.0] [Reference Citation Analysis]
272 Hamrick MW, Stranahan AM. Metabolic regulation of aging and age-related disease. Ageing Res Rev 2020;64:101175. [PMID: 32971259 DOI: 10.1016/j.arr.2020.101175] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
273 Jiang H, Song N, Jiao Q, Shi L, Du X. Iron Pathophysiology in Parkinson Diseases. Adv Exp Med Biol 2019;1173:45-66. [PMID: 31456205 DOI: 10.1007/978-981-13-9589-5_4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
274 Rodsiri R, Benya-aphikul H, Teerapattarakan N, Wanakhachornkrai O, Boonlert W, Tansawat R, Wiwattanapatapee R, Sritularak B, Likhitwitayawuid K. Neuroprotective Effect of Oxyresveratrol in Rotenone-Induced Parkinsonism Rats. Natural Product Communications 2020;15:1934578X2096619. [DOI: 10.1177/1934578x20966199] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
275 Lin CH, Wei PC, Chen CM, Huang YT, Lin JL, Lo YS, Lin JL, Lin CY, Wu YR, Chang KH, Lee-Chen GJ. Lactulose and Melibiose Attenuate MPTP-Induced Parkinson's Disease in Mice by Inhibition of Oxidative Stress, Reduction of Neuroinflammation and Up-Regulation of Autophagy. Front Aging Neurosci 2020;12:226. [PMID: 32848705 DOI: 10.3389/fnagi.2020.00226] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
276 Faiz K, Lam FC, Chen J, Kasper EM, Salehi F. The Emerging Applications of Nanotechnology in Neuroimaging: A Comprehensive Review. Front Bioeng Biotechnol 2022;10:855195. [DOI: 10.3389/fbioe.2022.855195] [Reference Citation Analysis]
277 Li H, Mirabel R, Zimmerman J, Ghiviriga I, Phidd DK, Horenstein N, Urs NM. Structure-Functional Selectivity Relationship Studies on A-86929 Analogs and Small Aryl Fragments toward the Discovery of Biased Dopamine D1 Receptor Agonists. ACS Chem Neurosci 2022. [PMID: 35658399 DOI: 10.1021/acschemneuro.2c00235] [Reference Citation Analysis]
278 Elmabruk A, Das B, Yedlapudi D, Xu L, Antonio T, Reith MEA, Dutta AK. Design, Synthesis, and Pharmacological Characterization of Carbazole Based Dopamine Agonists as Potential Symptomatic and Neuroprotective Therapeutic Agents for Parkinson's Disease. ACS Chem Neurosci 2019;10:396-411. [PMID: 30301349 DOI: 10.1021/acschemneuro.8b00291] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
279 Sgambato V. Breathing new life into neurotoxic-based monkey models of Parkinson's disease to study the complex biological interplay between serotonin and dopamine. Prog Brain Res 2021;261:265-85. [PMID: 33785131 DOI: 10.1016/bs.pbr.2020.07.015] [Reference Citation Analysis]
280 Garcia P, Jürgens‐wemheuer W, Uriarte Huarte O, Michelucci A, Masuch A, Brioschi S, Weihofen A, Koncina E, Coowar D, Heurtaux T, Glaab E, Balling R, Sousa C, Kaoma T, Nicot N, Pfander T, Schulz‐schaeffer W, Allouche A, Fischer N, Biber K, Kleine‐borgmann F, Mittelbronn M, Ostaszewski M, Schmit KJ, Buttini M. Neurodegeneration and neuroinflammation are linked, but independent of alpha‐synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia. [DOI: 10.1002/glia.24149] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
281 Pembroke WG, Hartl CL, Geschwind DH. Evolutionary conservation and divergence of the human brain transcriptome. Genome Biol 2021;22:52. [PMID: 33514394 DOI: 10.1186/s13059-020-02257-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
282 Zhang X, Mantas I, Alvarsson A, Yoshitake T, Shariatgorji M, Pereira M, Nilsson A, Kehr J, Andrén PE, Millan MJ, Chergui K, Svenningsson P. Striatal Tyrosine Hydroxylase Is Stimulated via TAAR1 by 3-Iodothyronamine, But Not by Tyramine or β-Phenylethylamine. Front Pharmacol 2018;9:166. [PMID: 29545750 DOI: 10.3389/fphar.2018.00166] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
283 Peze-Heidsieck E, Bonnifet T, Znaidi R, Ravel-Godreuil C, Massiani-Beaudoin O, Joshi RL, Fuchs J. Retrotransposons as a Source of DNA Damage in Neurodegeneration. Front Aging Neurosci 2021;13:786897. [PMID: 35058771 DOI: 10.3389/fnagi.2021.786897] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
284 Olsen AL, Feany MB. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia 2019;67:1933-57. [PMID: 31267577 DOI: 10.1002/glia.23671] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
285 Niaz A, Karunia J, Mandwie M, Keay KA, Musumeci G, Al-Badri G, Castorina A. Robust Dopaminergic Differentiation and Enhanced LPS-Induced Neuroinflammatory Response in Serum-Deprived Human SH-SY5Y Cells: Implication for Parkinson's Disease. J Mol Neurosci 2021;71:565-82. [PMID: 32789724 DOI: 10.1007/s12031-020-01678-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
286 Wang L, Zhang W, Liu F, Mao C, Liu CF, Cheng W, Feng J. Association of Cerebrospinal Fluid Neurofilament Heavy Protein Levels With Clinical Progression in Patients With Parkinson Disease. JAMA Netw Open 2022;5:e2223821. [PMID: 35881392 DOI: 10.1001/jamanetworkopen.2022.23821] [Reference Citation Analysis]
287 Liss B, Striessnig J. The Potential of L-Type Calcium Channels as a Drug Target for Neuroprotective Therapy in Parkinson's Disease. Annu Rev Pharmacol Toxicol 2019;59:263-89. [PMID: 30625283 DOI: 10.1146/annurev-pharmtox-010818-021214] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 14.7] [Reference Citation Analysis]
288 Tolve M, Ulusoy A, Patikas N, Islam KUS, Bodea GO, Öztürk E, Broske B, Mentani A, Wagener A, van Loo KMJ, Britsch S, Liu P, Khaled WT, Metzakopian E, Baader SL, Di Monte DA, Blaess S. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Rep 2021;36:109697. [PMID: 34525371 DOI: 10.1016/j.celrep.2021.109697] [Reference Citation Analysis]
289 Venuto CS, Yang L, Javidnia M, Oakes D, James Surmeier D, Simuni T. Isradipine plasma pharmacokinetics and exposure-response in early Parkinson's disease. Ann Clin Transl Neurol 2021;8:603-12. [PMID: 33460320 DOI: 10.1002/acn3.51300] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
290 Chaudhuri KR, Jenner P. Two hundred years since James Parkinson's essay on the shaking palsy-Have we made progress? Insights from the James Parkinson's 200 years course held in London, March 2017: 200 Years Since “The Shaking Palsy”. Mov Disord 2017;32:1311-5. [DOI: 10.1002/mds.27104] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
291 Dou T, Zhou L, Kurouski D. Unravelling the Structural Organization of Individual α-Synuclein Oligomers Grown in the Presence of Phospholipids. J Phys Chem Lett 2021;12:4407-14. [DOI: 10.1021/acs.jpclett.1c00820] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
292 Duperrier S, Bortolozzi A, Sgambato V. Increased Expression of Alpha-, Beta-, and Gamma-Synucleins in Brainstem Regions of a Non-Human Primate Model of Parkinson’s Disease. IJMS 2022;23:8586. [DOI: 10.3390/ijms23158586] [Reference Citation Analysis]
293 Gcwensa NZ, Russell DL, Cowell RM, Volpicelli-Daley LA. Molecular Mechanisms Underlying Synaptic and Axon Degeneration in Parkinson's Disease. Front Cell Neurosci 2021;15:626128. [PMID: 33737866 DOI: 10.3389/fncel.2021.626128] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
294 Shaltouki A, Hsieh CH, Kim MJ, Wang X. Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson's models. Acta Neuropathol 2018;136:607-20. [PMID: 29923074 DOI: 10.1007/s00401-018-1873-4] [Cited by in Crossref: 66] [Cited by in F6Publishing: 59] [Article Influence: 16.5] [Reference Citation Analysis]
295 Milanese C, Payán-gómez C, Mastroberardino PG. Cysteine oxidation and redox signaling in dopaminergic neurons physiology and in Parkinson’s disease. Current Opinion in Physiology 2019;9:73-8. [DOI: 10.1016/j.cophys.2019.04.025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
296 Tang J, Lu L, Wang Q, Liu H, Xue W, Zhou T, Xu L, Wang K, Wu D, Wei F, Tao W, Chen G. Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway. Mol Neurobiol 2020;57:3158-70. [DOI: 10.1007/s12035-020-01941-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
297 Chen Y, Li YY, Wang S, Zhou T, Chen NH, Yuan YH. Ginsenoside Rg1 Plays a Neuroprotective Role in Regulating the Iron-Regulated Proteins and Against Lipid Peroxidation in Oligodendrocytes. Neurochem Res 2022. [PMID: 35229270 DOI: 10.1007/s11064-022-03564-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
298 Burbulla LF, Krainc D. The role of dopamine in the pathogenesis of GBA1-linked Parkinson's disease. Neurobiol Dis 2019;132:104545. [PMID: 31351996 DOI: 10.1016/j.nbd.2019.104545] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
299 Sergi D, Renaud J, Simola N, Martinoli MG. Diabetes, a Contemporary Risk for Parkinson's Disease: Epidemiological and Cellular Evidences. Front Aging Neurosci 2019;11:302. [PMID: 31787891 DOI: 10.3389/fnagi.2019.00302] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
300 Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 2017;298:137-47. [PMID: 28988910 DOI: 10.1016/j.expneurol.2017.10.001] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 7.2] [Reference Citation Analysis]
301 Bartels M, Weckbecker D, Kuhn PH, Ryazanov S, Leonov A, Griesinger C, Lichtenthaler SF, Bötzel K, Giese A. Iron-mediated aggregation and toxicity in a novel neuronal cell culture model with inducible alpha-synuclein expression. Sci Rep 2019;9:9100. [PMID: 31235814 DOI: 10.1038/s41598-019-45298-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
302 Sorrentino ZA, Giasson BI, Chakrabarty P. α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease. Acta Neuropathol 2019;138:1-21. [PMID: 30798354 DOI: 10.1007/s00401-019-01977-2] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 20.7] [Reference Citation Analysis]
303 Yves K, Jérôme F, Clément R, Luscher C. VTA Dopamine Neurons Multiplex External with Internal Representations of Goal-Directed Action. SSRN Journal. [DOI: 10.2139/ssrn.3249465] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
304 Bohush A, Niewiadomska G, Weis S, Filipek A. HSP90 and Its Novel Co-Chaperones, SGT1 and CHP-1, in Brain of Patients with Parkinson's Disease and Dementia with Lewy Bodies. J Parkinsons Dis 2019;9:97-107. [PMID: 30741686 DOI: 10.3233/JPD-181443] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
305 Leyland LA, Bremner FD, Mahmood R, Hewitt S, Durteste M, Cartlidge MRE, Lai MM, Miller LE, Saygin AP, Keane PA, Schrag AE, Weil RS. Visual tests predict dementia risk in Parkinson disease. Neurol Clin Pract 2020;10:29-39. [PMID: 32190418 DOI: 10.1212/CPJ.0000000000000719] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
306 Lamonaca G, Volta M. Alpha-Synuclein and LRRK2 in Synaptic Autophagy: Linking Early Dysfunction to Late-Stage Pathology in Parkinson's Disease. Cells 2020;9:E1115. [PMID: 32365906 DOI: 10.3390/cells9051115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
307 Gorges M, Kunz MS, Müller HP, Liepelt-Scarfone I, Storch A, Dodel R, Hilker-Roggendorf R, Berg D, Kalbe E, Braak H, Del Tredici K, Baudrexel S, Huppertz HJ, Kassubek J; LANDSCAPE Consortium. Longitudinal brain atrophy distribution in advanced Parkinson's disease: What makes the difference in "cognitive status" converters? Hum Brain Mapp 2020;41:1416-34. [PMID: 31789477 DOI: 10.1002/hbm.24884] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
308 Abdelmotilib H, Maltbie T, Delic V, Liu Z, Hu X, Fraser KB, Moehle MS, Stoyka L, Anabtawi N, Krendelchtchikova V, Volpicelli-Daley LA, West A. α-Synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic Neurodegeneration. Neurobiol Dis 2017;105:84-98. [PMID: 28576704 DOI: 10.1016/j.nbd.2017.05.014] [Cited by in Crossref: 76] [Cited by in F6Publishing: 71] [Article Influence: 15.2] [Reference Citation Analysis]
309 Monti G, Gomes Moreira D, Richner M, Mutsaers HAM, Ferreira N, Jan A. GLP-1 Receptor Agonists in Neurodegeneration: Neurovascular Unit in the Spotlight. Cells 2022;11:2023. [DOI: 10.3390/cells11132023] [Reference Citation Analysis]
310 Ghiglieri V, Calabrese V, Calabresi P. Alpha-Synuclein: From Early Synaptic Dysfunction to Neurodegeneration. Front Neurol 2018;9:295. [PMID: 29780350 DOI: 10.3389/fneur.2018.00295] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 14.8] [Reference Citation Analysis]
311 Sun C, Mo M, Wang Y, Yu W, Song C, Wang X, Chen S, Liu Y. Activation of the immunoproteasome protects SH-SY5Y cells from the toxicity of rotenone. Neurotoxicology 2019;73:112-9. [PMID: 30904435 DOI: 10.1016/j.neuro.2019.03.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
312 Pérez MJ, Baden P, Deleidi M. Progresses in both basic research and clinical trials of NAD+ in Parkinson's disease. Mech Ageing Dev 2021;197:111499. [PMID: 33989633 DOI: 10.1016/j.mad.2021.111499] [Reference Citation Analysis]
313 Surmeier DJ, Obeso JA, Halliday GM. Parkinson's Disease Is Not Simply a Prion Disorder. J Neurosci 2017;37:9799-807. [PMID: 29021297 DOI: 10.1523/JNEUROSCI.1787-16.2017] [Cited by in Crossref: 102] [Cited by in F6Publishing: 71] [Article Influence: 20.4] [Reference Citation Analysis]
314 Rangasamy SB, Dasarathi S, Pahan P, Jana M, Pahan K. Low-Dose Aspirin Upregulates Tyrosine Hydroxylase and Increases Dopamine Production in Dopaminergic Neurons: Implications for Parkinson's Disease. J Neuroimmune Pharmacol 2019;14:173-87. [PMID: 30187283 DOI: 10.1007/s11481-018-9808-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
315 Vargas JY, Grudina C, Zurzolo C. The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Res Rev 2019;50:89-101. [PMID: 30690184 DOI: 10.1016/j.arr.2019.01.012] [Cited by in Crossref: 38] [Cited by in F6Publishing: 32] [Article Influence: 12.7] [Reference Citation Analysis]
316 Ortner NJ. Voltage-Gated Ca2+ Channels in Dopaminergic Substantia Nigra Neurons: Therapeutic Targets for Neuroprotection in Parkinson's Disease? Front Synaptic Neurosci 2021;13:636103. [PMID: 33716705 DOI: 10.3389/fnsyn.2021.636103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
317 Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson's disease: Clinical evidence, latest concepts and future goals: A systematic review. J Neurosci Methods 2021;347:108957. [PMID: 33017643 DOI: 10.1016/j.jneumeth.2020.108957] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
318 Pereira Luppi M, Azcorra M, Caronia-Brown G, Poulin JF, Gaertner Z, Gatica S, Moreno-Ramos OA, Nouri N, Dubois M, Ma YC, Ramakrishnan C, Fenno L, Kim YS, Deisseroth K, Cicchetti F, Dombeck DA, Awatramani R. Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins. Cell Rep 2021;37:109975. [PMID: 34758317 DOI: 10.1016/j.celrep.2021.109975] [Reference Citation Analysis]
319 Rouaud T, Corbillé AG, Leclair-Visonneau L, de Guilhem de Lataillade A, Lionnet A, Preterre C, Damier P, Derkinderen P. Pathophysiology of Parkinson's disease: Mitochondria, alpha-synuclein and much more…. Rev Neurol (Paris) 2021;177:260-71. [PMID: 33032797 DOI: 10.1016/j.neurol.2020.07.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
320 Teplov IY, Tuleukhanov ST, Zinchenko VP. Regulation of Action Potential Frequency and Amplitude by T-type Ca2+ Channel During Spontaneous Synchronous Activity of Hippocampal Neurons. BIOPHYSICS 2018;63:566-75. [DOI: 10.1134/s0006350918040206] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
321 Vidyadhara DJ, Lee JE, Chandra SS. Role of the endolysosomal system in Parkinson's disease. J Neurochem 2019;150:487-506. [PMID: 31287913 DOI: 10.1111/jnc.14820] [Cited by in Crossref: 37] [Cited by in F6Publishing: 27] [Article Influence: 12.3] [Reference Citation Analysis]
322 Betzer C, Lassen LB, Olsen A, Kofoed RH, Reimer L, Gregersen E, Zheng J, Calì T, Gai WP, Chen T, Moeller A, Brini M, Fu Y, Halliday G, Brudek T, Aznar S, Pakkenberg B, Andersen JP, Jensen PH. Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep 2018;19:e44617. [PMID: 29599149 DOI: 10.15252/embr.201744617] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
323 Sian-Hulsmann J, Riederer P. The Nigral Coup in Parkinson's Disease by α-Synuclein and Its Associated Rebels. Cells 2021;10:598. [PMID: 33803185 DOI: 10.3390/cells10030598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
324 Flønes IH, Nyland H, Sandnes D, Alves GW, Tysnes O, Tzoulis C. Early Forms of α-Synuclein Pathology Are Associated with Neuronal Complex I Deficiency in the Substantia Nigra of Individuals with Parkinson’s Disease. Biomolecules 2022;12:747. [DOI: 10.3390/biom12060747] [Reference Citation Analysis]
325 Hezemans FH, Wolpe N, O'Callaghan C, Ye R, Rua C, Jones PS, Murley AG, Holland N, Regenthal R, Tsvetanov KA, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Noradrenergic deficits contribute to apathy in Parkinson's disease through the precision of expected outcomes. PLoS Comput Biol 2022;18:e1010079. [PMID: 35533200 DOI: 10.1371/journal.pcbi.1010079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
326 Lebowitz JJ, Khoshbouei H. Heterogeneity of dopamine release sites in health and degeneration. Neurobiol Dis 2020;134:104633. [PMID: 31698055 DOI: 10.1016/j.nbd.2019.104633] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
327 Fang Q, Xicoy H, Shen J, Luchetti S, Dai D, Zhou P, Qi XR, Martens GJM, Huitinga I, Swaab DF, Liu C, Shan L. Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain Behav Immun 2021;92:127-38. [PMID: 33249171 DOI: 10.1016/j.bbi.2020.11.036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
328 Usmani A, Shavarebi F, Hiniker A. The Cell Biology of LRRK2 in Parkinson's Disease. Mol Cell Biol 2021;41:e00660-20. [PMID: 33526455 DOI: 10.1128/MCB.00660-20] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
329 Ho DH, Nam D, Jeong S, Seo MK, Park SW, Seol W, Son I. Expression of transduced nucleolin promotes the clearance of accumulated α-synuclein in rodent cells and animal model. Neurobiol Dis 2021;154:105349. [PMID: 33781924 DOI: 10.1016/j.nbd.2021.105349] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
330 Mannal N, Kleiner K, Fauler M, Dougalis A, Poetschke C, Liss B. Multi-Electrode Array Analysis Identifies Complex Dopamine Responses and Glucose Sensing Properties of Substantia Nigra Neurons in Mouse Brain Slices. Front Synaptic Neurosci 2021;13:635050. [PMID: 33716704 DOI: 10.3389/fnsyn.2021.635050] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
331 Tarakad A, Jankovic J. Recent advances in understanding and treatment of Parkinson's disease. Fac Rev 2020;9:6. [PMID: 33659938 DOI: 10.12703/b/9-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
332 Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neuroscience & Biobehavioral Reviews 2022. [DOI: 10.1016/j.neubiorev.2022.104541] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
333 Rani L, Mondal AC. Emerging concepts of mitochondrial dysfunction in Parkinson’s disease progression: Pathogenic and therapeutic implications. Mitochondrion 2020;50:25-34. [DOI: 10.1016/j.mito.2019.09.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 13.0] [Reference Citation Analysis]
334 Wang WW, Han R, He HJ, Li J, Chen SY, Gu Y, Xie C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson's disease models. Aging (Albany NY) 2021;13:11738-51. [PMID: 33878030 DOI: 10.18632/aging.202868] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
335 Tolö J, Taschenberger G, Leite K, Stahlberg MA, Spehlbrink G, Kues J, Munari F, Capaldi S, Becker S, Zweckstetter M, Dean C, Bähr M, Kügler S. Pathophysiological Consequences of Neuronal α-Synuclein Overexpression: Impacts on Ion Homeostasis, Stress Signaling, Mitochondrial Integrity, and Electrical Activity. Front Mol Neurosci 2018;11:49. [PMID: 29563864 DOI: 10.3389/fnmol.2018.00049] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
336 Minakaki G, Krainc D, Burbulla LF. The Convergence of Alpha-Synuclein, Mitochondrial, and Lysosomal Pathways in Vulnerability of Midbrain Dopaminergic Neurons in Parkinson's Disease. Front Cell Dev Biol 2020;8:580634. [PMID: 33381501 DOI: 10.3389/fcell.2020.580634] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
337 Sánchez E, Azcona LJ, Paisán-Ruiz C. Pla2g6 Deficiency in Zebrafish Leads to Dopaminergic Cell Death, Axonal Degeneration, Increased β-Synuclein Expression, and Defects in Brain Functions and Pathways. Mol Neurobiol 2018;55:6734-54. [PMID: 29344929 DOI: 10.1007/s12035-017-0846-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
338 Weil RS, Lashley TL, Bras J, Schrag AE, Schott JM. Current concepts and controversies in the pathogenesis of Parkinson's disease dementia and Dementia with Lewy Bodies. F1000Res 2017;6:1604. [PMID: 28928962 DOI: 10.12688/f1000research.11725.1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
339 Bougea A. Synuclein in neurodegeneration. Adv Clin Chem 2021;103:97-134. [PMID: 34229853 DOI: 10.1016/bs.acc.2020.08.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
340 Abd Elkodous M, El-husseiny HM, El-sayyad GS, Hashem AH, Doghish AS, Elfadil D, Radwan Y, El-zeiny HM, Bedair H, Ikhdair OA, Hashim H, Salama AM, Alshater H, Ahmed AA, Elsayed MG, Nagy M, Ali NY, Elahmady M, Kamel AM, Elkodous MA, Maallem I, Kaml MBS, Nasser N, Nouh AA, Safwat FM, Alshal MM, Ahmed SK, Nagib T, El-sayed FM, Almahdi M, Adla Y, Elnashar NT, Hussien AM, Salih AS, Mahmoud SA, Magdy S, Ahmed DI, Hassan FMS, Edward NA, Milad KS, Halasa SR, Arafa MM, Hegazy A, Kawamura G, Tan WK, Matsuda A. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnology Reviews 2021;10:1662-739. [DOI: 10.1515/ntrev-2021-0099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
341 Volta M, Lewis PA, Lobbestael E. Editorial: Protein Degradation Pathways in Parkinson's Disease and Neurodegeneration. Front Neurosci 2020;14:741. [PMID: 32848540 DOI: 10.3389/fnins.2020.00741] [Reference Citation Analysis]
342 Gonzalez-Rodriguez P, Zampese E, Surmeier DJ. Selective neuronal vulnerability in Parkinson's disease. Prog Brain Res 2020;252:61-89. [PMID: 32247375 DOI: 10.1016/bs.pbr.2020.02.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
343 He J, Huang Y, Du G, Wang Z, Xiang Y, Wang Q. Lasting spatial learning and memory deficits following chronic cerebral hypoperfusion are associated with hippocampal mitochondrial aging in rats. Neuroscience 2019;415:215-29. [DOI: 10.1016/j.neuroscience.2019.04.044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
344 Giguère N, Burke Nanni S, Trudeau LE. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Front Neurol 2018;9:455. [PMID: 29971039 DOI: 10.3389/fneur.2018.00455] [Cited by in Crossref: 101] [Cited by in F6Publishing: 87] [Article Influence: 25.3] [Reference Citation Analysis]
345 Draoui A, El Hiba O, Aimrane A, El Khiat A, Gamrani H. Parkinson's disease: From bench to bedside. Revue Neurologique 2020;176:543-59. [DOI: 10.1016/j.neurol.2019.11.002] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
346 Mestre TA, Fereshtehnejad SM, Berg D, Bohnen NI, Dujardin K, Erro R, Espay AJ, Halliday G, van Hilten JJ, Hu MT, Jeon B, Klein C, Leentjens AFG, Marinus J, Mollenhauer B, Postuma R, Rajalingam R, Rodríguez-Violante M, Simuni T, Surmeier DJ, Weintraub D, McDermott MP, Lawton M, Marras C. Parkinson's Disease Subtypes: Critical Appraisal and Recommendations. J Parkinsons Dis 2021;11:395-404. [PMID: 33682731 DOI: 10.3233/JPD-202472] [Reference Citation Analysis]
347 Muddapu VR, Chakravarthy VS. Influence of energy deficiency on the subcellular processes of Substantia Nigra Pars Compacta cell for understanding Parkinsonian neurodegeneration. Sci Rep 2021;11:1754. [PMID: 33462293 DOI: 10.1038/s41598-021-81185-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
348 Lara Ordóñez AJ, Fasiczka R, Naaldijk Y, Hilfiker S. Rab GTPases in Parkinson's disease: a primer. Essays Biochem 2021;65:961-74. [PMID: 34414419 DOI: 10.1042/EBC20210016] [Reference Citation Analysis]
349 McGrath K, Agarwal S, Tonelli M, Dergai M, Gaeta AL, Shum AK, Lacoste J, Zhang Y, Wen W, Chung D, Wiersum G, Shevade A, Zaichick S, van Rossum DB, Shuvalova L, Savas JN, Kuchin S, Taipale M, Caldwell KA, Caldwell GA, Fasshauer D, Caraveo G. A conformational switch driven by phosphorylation regulates the activity of the evolutionarily conserved SNARE Ykt6. Proc Natl Acad Sci U S A 2021;118:e2016730118. [PMID: 33723042 DOI: 10.1073/pnas.2016730118] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
350 Janitzky K. Impaired Phasic Discharge of Locus Coeruleus Neurons Based on Persistent High Tonic Discharge-A New Hypothesis With Potential Implications for Neurodegenerative Diseases. Front Neurol 2020;11:371. [PMID: 32477246 DOI: 10.3389/fneur.2020.00371] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
351 Xu J, Fu X, Pan M, Zhou X, Chen Z, Wang D, Zhang X, Chen Q, Li Y, Huang X, Liu G, Lu J, Liu Y, Hu Y, Pan S, Wang Q, Wang Q, Xu Y. Mitochondrial Creatine Kinase is Decreased in the Serum of Idiopathic Parkinson's Disease Patients. Aging Dis 2019;10:601-10. [PMID: 31165004 DOI: 10.14336/AD.2018.0615] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
352 Bellucci A, Antonini A, Pizzi M, Spano P. The End Is the Beginning: Parkinson's Disease in the Light of Brain Imaging. Front Aging Neurosci 2017;9:330. [PMID: 29066967 DOI: 10.3389/fnagi.2017.00330] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
353 Wang R, Sun H, Ren H, Wang G. α-Synuclein aggregation and transmission in Parkinson's disease: a link to mitochondria and lysosome. Sci China Life Sci 2020;63:1850-9. [PMID: 32681494 DOI: 10.1007/s11427-020-1756-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
354 Sancandi M, Schul EV, Economides G, Constanti A, Mercer A. Structural Changes Observed in the Piriform Cortex in a Rat Model of Pre-motor Parkinson's Disease. Front Cell Neurosci 2018;12:479. [PMID: 30618629 DOI: 10.3389/fncel.2018.00479] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
355 González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B, Tkatch T, Stavarache MA, Wokosin DL, Gao L, Kaplitt MG, López-Barneo J, Schumacker PT, Surmeier DJ. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 2021;599:650-6. [PMID: 34732887 DOI: 10.1038/s41586-021-04059-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
356 Ehgoetz Martens KA, Shine JM. The interactions between non-motor symptoms of Parkinson's disease. Expert Rev Neurother 2018;18:457-60. [PMID: 29722588 DOI: 10.1080/14737175.2018.1472578] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
357 Legarda SB, Michas-martin PA, Mcdermott D. Managing Intractable Symptoms of Parkinson's Disease: A Nonsurgical Approach Employing Infralow Frequency Neuromodulation. Front Hum Neurosci 2022;16:894781. [DOI: 10.3389/fnhum.2022.894781] [Reference Citation Analysis]
358 Genoud S, Roberts BR, Gunn AP, Halliday GM, Lewis SJG, Ball HJ, Hare DJ, Double KL. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson's disease brain. Metallomics 2017;9:1447-55. [PMID: 28944802 DOI: 10.1039/c7mt00244k] [Cited by in Crossref: 51] [Cited by in F6Publishing: 28] [Article Influence: 12.8] [Reference Citation Analysis]
359 Duda J, Fauler M, Gründemann J, Liss B. Cell-Specific RNA Quantification in Human SN DA Neurons from Heterogeneous Post-mortem Midbrain Samples by UV-Laser Microdissection and RT-qPCR. Methods Mol Biol 2018;1723:335-60. [PMID: 29344870 DOI: 10.1007/978-1-4939-7558-7_19] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
360 Billings JL, Gordon SL, Rawling T, Doble PA, Bush AI, Adlard PA, Finkelstein DI, Hare DJ. l ‐3,4‐dihydroxyphenylalanine ( l ‐DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha‐synuclein mouse models of Parkinson's disease. J Neurochem 2019;150:88-106. [DOI: 10.1111/jnc.14676] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
361 Rahman RU, Liebhoff AM, Bansal V, Fiosins M, Rajput A, Sattar A, Magruder DS, Madan S, Sun T, Gautam A, Heins S, Liwinski T, Bethune J, Trenkwalder C, Fluck J, Mollenhauer B, Bonn S. SEAweb: the small RNA Expression Atlas web application. Nucleic Acids Res 2020;48:D204-19. [PMID: 31598718 DOI: 10.1093/nar/gkz869] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
362 Lizama BN, Palubinsky AM, McLaughlin B. Alterations in the E3 ligases Parkin and CHIP result in unique metabolic signaling defects and mitochondrial quality control issues. Neurochem Int 2018;117:139-55. [PMID: 28851515 DOI: 10.1016/j.neuint.2017.08.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
363 Borroto-Escuela DO, Fuxe K. The integrative role of G protein-coupled receptor heterocomplexes in Parkinson's disease. Neural Regen Res 2022;17:2211-2. [PMID: 35259834 DOI: 10.4103/1673-5374.335792] [Reference Citation Analysis]
364 Chmielarz P, Er Ş, Konovalova J, Bandres L, Hlushchuk I, Albert K, Panhelainen A, Luk K, Airavaara M, Domanskyi A. GDNF/RET Signaling Pathway Activation Eliminates Lewy Body Pathology in Midbrain Dopamine Neurons. Mov Disord 2020;35:2279-89. [PMID: 32964492 DOI: 10.1002/mds.28258] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
365 Zhang L, Sun H, Zhao J, Lee J, Ee Low L, Gong L, Chen Y, Wang N, Zhu C, Lin P, Liang Z, Wei M, Ling D, Li F. Dynamic nanoassemblies for imaging and therapy of neurological disorders. Adv Drug Deliv Rev 2021;175:113832. [PMID: 34146626 DOI: 10.1016/j.addr.2021.113832] [Reference Citation Analysis]
366 Sango J, Kakihana T, Takahashi M, Katsuragi Y, Anisimov S, Komatsu M, Fujii M. USP10 inhibits the dopamine-induced reactive oxygen species-dependent apoptosis of neuronal cells by stimulating the antioxidant Nrf2 activity. J Biol Chem 2021;298:101448. [PMID: 34838592 DOI: 10.1016/j.jbc.2021.101448] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
367 Burtscher J, Millet GP. Hypoxia, Acidification and Inflammation: Partners in Crime in Parkinson’s Disease Pathogenesis? Immuno 2021;1:78-90. [DOI: 10.3390/immuno1020006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
368 Schneider SA, Hennig A, Martino D. Relationship between COVID-19 and movement disorders: A narrative review. Eur J Neurol 2021. [PMID: 34918437 DOI: 10.1111/ene.15217] [Reference Citation Analysis]
369 Rousseaux MWC, Shulman JM, Jankovic J. Progress toward an integrated understanding of Parkinson's disease. F1000Res 2017;6:1121. [PMID: 28751973 DOI: 10.12688/f1000research.11820.1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
370 Matschke LA, Komadowski MA, Stöhr A, Lee B, Henrich MT, Griesbach M, Rinné S, Geibl FF, Chiu WH, Koprich JB, Brotchie JM, Kiper AK, Dolga AM, Oertel WH, Decher N. Enhanced firing of locus coeruleus neurons and SK channel dysfunction are conserved in distinct models of prodromal Parkinson's disease. Sci Rep 2022;12:3180. [PMID: 35210472 DOI: 10.1038/s41598-022-06832-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
371 Tanimura A, Shen W, Wokosin D, Surmeier DJ. Pathway-Specific Remodeling of Thalamostriatal Synapses in a Mouse Model of Parkinson's Disease. Mov Disord 2022. [PMID: 35485341 DOI: 10.1002/mds.29030] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
372 Chiu WH, Kovacheva L, Musgrove RE, Arien-Zakay H, Koprich JB, Brotchie JM, Yaka R, Ben-Zvi D, Hanani M, Roeper J, Goldberg JA. α-Synuclein-induced Kv4 channelopathy in mouse vagal motoneurons drives nonmotor parkinsonian symptoms. Sci Adv 2021;7:eabd3994. [PMID: 33692101 DOI: 10.1126/sciadv.abd3994] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
373 Rizevsky S, Matveyenka M, Kurouski D. Nanoscale Structural Analysis of a Lipid-Driven Aggregation of Insulin. J Phys Chem Lett 2022;:2467-73. [PMID: 35266717 DOI: 10.1021/acs.jpclett.1c04012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
374 Wang X, Becker K, Levine N, Zhang M, Lieberman AP, Moore DJ, Ma J. Pathogenic alpha-synuclein aggregates preferentially bind to mitochondria and affect cellular respiration. Acta Neuropathol Commun 2019;7:41. [PMID: 30871620 DOI: 10.1186/s40478-019-0696-4] [Cited by in Crossref: 80] [Cited by in F6Publishing: 67] [Article Influence: 26.7] [Reference Citation Analysis]
375 Grotemeyer A, McFleder RL, Wu J, Wischhusen J, Ip CW. Neuroinflammation in Parkinson's Disease - Putative Pathomechanisms and Targets for Disease-Modification. Front Immunol 2022;13:878771. [PMID: 35663989 DOI: 10.3389/fimmu.2022.878771] [Reference Citation Analysis]
376 Liu J, Liu W, Yang H. Balancing Apoptosis and Autophagy for Parkinson's Disease Therapy: Targeting BCL-2. ACS Chem Neurosci 2019;10:792-802. [PMID: 30400738 DOI: 10.1021/acschemneuro.8b00356] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
377 Movahedpour A, Vakili O, Khalifeh M, Mousavi P, Mahmoodzadeh A, Taheri-Anganeh M, Razmeh S, Shabaninejad Z, Yousefi F, Behrouj H, Ghasemi H, Khatami SH. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy. Cell Biochem Funct 2022. [PMID: 35258097 DOI: 10.1002/cbf.3692] [Reference Citation Analysis]
378 Perez-Rodriguez D, Kalyva M, Leija-Salazar M, Lashley T, Tarabichi M, Chelban V, Gentleman S, Schottlaender L, Franklin H, Vasmatzis G, Houlden H, Schapira AHV, Warner TT, Holton JL, Jaunmuktane Z, Proukakis C. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing. Acta Neuropathol Commun 2019;7:219. [PMID: 31870437 DOI: 10.1186/s40478-019-0873-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
379 Borroto-Escuela DO, Fuxe K. Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson's disease and its treatment. J Neural Transm (Vienna) 2019;126:455-71. [PMID: 30637481 DOI: 10.1007/s00702-019-01969-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
380 Alonso-garrido M, Tedeschi P, Maietti A, Font G, Marchetti N, Manyes L. Mitochondrial transcriptional study of the effect of aflatoxins, enniatins and carotenoids in vitro in a blood brain barrier model. Food and Chemical Toxicology 2020;137:111077. [DOI: 10.1016/j.fct.2019.111077] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
381 Chen S, He Z, Han X, He X, Li R, Zhu H, Zhao D, Dai C, Zhang Y, Lu Z, Chi X, Niu B. How Big Data and High-performance Computing Drive Brain Science. Genomics Proteomics Bioinformatics 2019;17:381-92. [PMID: 31805369 DOI: 10.1016/j.gpb.2019.09.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
382 Erskine D, Ding J, Thomas AJ, Kaganovich A, Khundakar AA, Hanson PS, Taylor JP, McKeith IG, Attems J, Cookson MR, Morris CM. Molecular changes in the absence of severe pathology in the pulvinar in dementia with Lewy bodies. Mov Disord 2018;33:982-91. [PMID: 29570843 DOI: 10.1002/mds.27333] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
383 Du Y, Choi S, Pilski A, Graves SM. Differential vulnerability of locus coeruleus and dorsal raphe neurons to chronic methamphetamine-induced degeneration. Front Cell Neurosci 2022;16:949923. [DOI: 10.3389/fncel.2022.949923] [Reference Citation Analysis]
384 Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019;126:933-95. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
385 Stathakos P, Jimenez-Moreno N, Crompton L, Nistor P, Caldwell MA, Lane JD. Imaging Autophagy in hiPSC-Derived Midbrain Dopaminergic Neuronal Cultures for Parkinson's Disease Research. Methods Mol Biol 2019;1880:257-80. [PMID: 30610703 DOI: 10.1007/978-1-4939-8873-0_17] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
386 van Heesbeen HJ, Smidt MP. Entanglement of Genetics and Epigenetics in Parkinson's Disease. Front Neurosci 2019;13:277. [PMID: 30983962 DOI: 10.3389/fnins.2019.00277] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
387 Chalazonitis A, Rao M, Sulzer D. Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson's disease. NPJ Parkinsons Dis 2022;8:50. [PMID: 35459867 DOI: 10.1038/s41531-022-00308-9] [Reference Citation Analysis]
388 Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamine, Oxidative Stress and Protein-Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angew Chem Int Ed Engl 2019;58:6512-27. [PMID: 30536578 DOI: 10.1002/anie.201811122] [Cited by in Crossref: 73] [Cited by in F6Publishing: 56] [Article Influence: 24.3] [Reference Citation Analysis]
389 Shin J, Kovacheva L, Thomas D, Stojanovic S, Knowlton CJ, Mankel J, Boehm J, Farassat N, Paladini C, Striessnig J, Canavier CC, Geisslinger G, Roeper J. Cav1.3 calcium channels are full-range linear amplifiers of firing frequencies in lateral DA SN neurons. Sci Adv 2022;8:eabm4560. [PMID: 35675413 DOI: 10.1126/sciadv.abm4560] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
390 Liu Z, Yang N, Dong J, Tian W, Chang L, Ma J, Guo J, Tan J, Dong A, He K, Zhou J, Cinar R, Wu J, Salinas AG, Sun L, Kumar M, Sullivan BT, Oldham BB, Pitz V, Makarious MB, Ding J, Kung J, Xie C, Hawes SL, Wang L, Wang T, Chan P, Zhang Z, Le W, Chen S, Lovinger DM, Blauwendraat C, Singleton AB, Cui G, Li Y, Cai H, Tang B. Deficiency in endocannabinoid synthase DAGLB contributes to early onset Parkinsonism and murine nigral dopaminergic neuron dysfunction. Nat Commun 2022;13:3490. [PMID: 35715418 DOI: 10.1038/s41467-022-31168-9] [Reference Citation Analysis]
391 Bernal-Conde LD, Ramos-Acevedo R, Reyes-Hernández MA, Balbuena-Olvera AJ, Morales-Moreno ID, Argüero-Sánchez R, Schüle B, Guerra-Crespo M. Alpha-Synuclein Physiology and Pathology: A Perspective on Cellular Structures and Organelles. Front Neurosci 2019;13:1399. [PMID: 32038126 DOI: 10.3389/fnins.2019.01399] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
392 Karakatsani ME, Blesa J, Konofagou EE. Blood-brain barrier opening with focused ultrasound in experimental models of Parkinson's disease. Mov Disord 2019;34:1252-61. [PMID: 31361356 DOI: 10.1002/mds.27804] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
393 Diederich NJ, James Surmeier D, Uchihara T, Grillner S, Goetz CG. Parkinson's disease: Is it a consequence of human brain evolution? Mov Disord 2019;34:453-9. [PMID: 30759321 DOI: 10.1002/mds.27628] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
394 Rani L, Ranjan Sahu M, Chandra Mondal A. Age-related Mitochondrial Dysfunction in Parkinson's Disease: New Insights Into the Disease Pathology. Neuroscience 2022:S0306-4522(22)00350-5. [PMID: 35839924 DOI: 10.1016/j.neuroscience.2022.07.007] [Reference Citation Analysis]
395 Chen X, Wang Q, Li S, Li X, Yang W. Mitochondrial-Dependent and Independent Functions of PINK1. Front Cell Dev Biol 2022;10:954536. [DOI: 10.3389/fcell.2022.954536] [Reference Citation Analysis]
396 Musgrove RE, Helwig M, Bae EJ, Aboutalebi H, Lee SJ, Ulusoy A, Di Monte DA. Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J Clin Invest 2019;129:3738-53. [PMID: 31194700 DOI: 10.1172/JCI127330] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 13.3] [Reference Citation Analysis]
397 Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM. α-Synuclein in Parkinson's disease: causal or bystander? J Neural Transm (Vienna) 2019;126:815-40. [PMID: 31240402 DOI: 10.1007/s00702-019-02025-9] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 13.7] [Reference Citation Analysis]
398 Henrich MT, Geibl FF, Lakshminarasimhan H, Stegmann A, Giasson BI, Mao X, Dawson VL, Dawson TM, Oertel WH, Surmeier DJ. Determinants of seeding and spreading of α-synuclein pathology in the brain. Sci Adv 2020;6:eabc2487. [PMID: 33177086 DOI: 10.1126/sciadv.abc2487] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
399 Solís O, Moratalla R. Dopamine receptors: homomeric and heteromeric complexes in l-DOPA-induced dyskinesia. J Neural Transm 2018;125:1187-94. [DOI: 10.1007/s00702-018-1852-x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
400 Ding Y, Kong D, Zhou T, Yang ND, Xin C, Xu J, Wang Q, Zhang H, Wu Q, Lu X, Lim K, Ma B, Zhang C, Li L, Huang W. α-Arbutin Protects Against Parkinson's Disease-Associated Mitochondrial Dysfunction In Vitro and In Vivo. Neuromolecular Med 2020;22:56-67. [PMID: 31401719 DOI: 10.1007/s12017-019-08562-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
401 Eyer G, Di Santo S, Hewer E, Andereggen L, Seiler S, Widmer HR. Co-Expression of Nogo-A in Dopaminergic Neurons of the Human Substantia Nigra Pars Compacta Is Reduced in Parkinson’s Disease. Cells 2021;10:3368. [DOI: 10.3390/cells10123368] [Reference Citation Analysis]
402 Flønes IH, Tzoulis C. Mitochondrial Respiratory Chain Dysfunction—A Hallmark Pathology of Idiopathic Parkinson’s Disease? Front Cell Dev Biol 2022;10:874596. [DOI: 10.3389/fcell.2022.874596] [Reference Citation Analysis]
403 Deng J, Xu J, Ouyang M, Zou Z, Lei Y, Li J, Qing Z, Yang R. Target-triggered hairpin-free chain-branching growth of DNA dendrimers for contrast-enhanced imaging in living cells by avoiding signal dispersion. Chinese Chemical Letters 2022;33:773-7. [DOI: 10.1016/j.cclet.2021.08.046] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
404 Kee TR, Espinoza Gonzalez P, Wehinger JL, Bukhari MZ, Ermekbaeva A, Sista A, Kotsiviras P, Liu T, Kang DE, Woo JA. Mitochondrial CHCHD2: Disease-Associated Mutations, Physiological Functions, and Current Animal Models. Front Aging Neurosci 2021;13:660843. [PMID: 33967741 DOI: 10.3389/fnagi.2021.660843] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
405 Brundin P, Melki R. Prying into the Prion Hypothesis for Parkinson's Disease. J Neurosci 2017;37:9808-18. [PMID: 29021298 DOI: 10.1523/JNEUROSCI.1788-16.2017] [Cited by in Crossref: 132] [Cited by in F6Publishing: 82] [Article Influence: 26.4] [Reference Citation Analysis]
406 Ye R, Rua C, O'Callaghan C, Jones PS, Hezemans FH, Kaalund SS, Tsvetanov KA, Rodgers CT, Williams G, Passamonti L, Rowe JB. An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field. Neuroimage 2021;225:117487. [PMID: 33164875 DOI: 10.1016/j.neuroimage.2020.117487] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
407 Enterría-Morales D, Del Rey NL, Blesa J, López-López I, Gallet S, Prévot V, López-Barneo J, d'Anglemont de Tassigny X. Molecular targets for endogenous glial cell line-derived neurotrophic factor modulation in striatal parvalbumin interneurons. Brain Commun 2020;2:fcaa105. [PMID: 32954345 DOI: 10.1093/braincomms/fcaa105] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
408 Jiménez-Moreno N, Stathakos P, Caldwell MA, Lane JD. Induced Pluripotent Stem Cell Neuronal Models for the Study of Autophagy Pathways in Human Neurodegenerative Disease. Cells 2017;6:E24. [PMID: 28800101 DOI: 10.3390/cells6030024] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
409 Gómez-Suaga P, Bravo-San Pedro JM, González-Polo RA, Fuentes JM, Niso-Santano M. ER-mitochondria signaling in Parkinson's disease. Cell Death Dis 2018;9:337. [PMID: 29497039 DOI: 10.1038/s41419-017-0079-3] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 14.0] [Reference Citation Analysis]
410 Prange S, Metereau E, Thobois S. Structural Imaging in Parkinson’s Disease: New Developments. Curr Neurol Neurosci Rep 2019;19. [DOI: 10.1007/s11910-019-0964-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
411 Liddell JR, White AR. Nexus between mitochondrial function, iron, copper and glutathione in Parkinson's disease. Neurochem Int 2018;117:126-38. [PMID: 28577988 DOI: 10.1016/j.neuint.2017.05.016] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 5.4] [Reference Citation Analysis]
412 Vanhauwaert R, Bharat V, Wang X. Surveillance and transportation of mitochondria in neurons. Curr Opin Neurobiol 2019;57:87-93. [PMID: 30784981 DOI: 10.1016/j.conb.2019.01.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
413 Wallings R, Connor-Robson N, Wade-Martins R. LRRK2 interacts with the vacuolar-type H+-ATPase pump a1 subunit to regulate lysosomal function. Hum Mol Genet 2019;28:2696-710. [PMID: 31039583 DOI: 10.1093/hmg/ddz088] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 17.0] [Reference Citation Analysis]
414 de Schipper LJ, Hafkemeijer A, van der Grond J, Marinus J, Henselmans JML, van Hilten JJ. Altered Whole-Brain and Network-Based Functional Connectivity in Parkinson's Disease. Front Neurol 2018;9:419. [PMID: 29928255 DOI: 10.3389/fneur.2018.00419] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
415 McGregor MM, Nelson AB. Circuit Mechanisms of Parkinson's Disease. Neuron 2019;101:1042-56. [PMID: 30897356 DOI: 10.1016/j.neuron.2019.03.004] [Cited by in Crossref: 90] [Cited by in F6Publishing: 80] [Article Influence: 30.0] [Reference Citation Analysis]
416 Sharifi P, Bae H, Gveric D, Gentleman SM, Smith PJ, Tierney TS, Alavian KN. CAV2.3 expression is upregulated in the substantia nigra pars compacta of humans with Parkinson's disease. Brain Disorders 2022;5:100031. [DOI: 10.1016/j.dscb.2022.100031] [Reference Citation Analysis]
417 Thomas R, Hallett PJ, Isacson O. Experimental studies of mitochondrial and lysosomal function in in vitro and in vivo models relevant to Parkinson's disease genetic risk. Int Rev Neurobiol 2020;154:279-302. [PMID: 32739007 DOI: 10.1016/bs.irn.2020.02.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
418 Gorges M, Müller HP, Liepelt-Scarfone I, Storch A, Dodel R, Hilker-Roggendorf R, Berg D, Kunz MS, Kalbe E, Baudrexel S, Kassubek J; LANDSCAPE Consortium. Structural brain signature of cognitive decline in Parkinson's disease: DTI-based evidence from the LANDSCAPE study. Ther Adv Neurol Disord 2019;12:1756286419843447. [PMID: 31205489 DOI: 10.1177/1756286419843447] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
419 Guzman JN, Ilijic E, Yang B, Sanchez-Padilla J, Wokosin D, Galtieri D, Kondapalli J, Schumacker PT, Surmeier DJ. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 2018;128:2266-80. [PMID: 29708514 DOI: 10.1172/JCI95898] [Cited by in Crossref: 53] [Cited by in F6Publishing: 28] [Article Influence: 13.3] [Reference Citation Analysis]
420 Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S, Lee JH, Kim WR, Kook M, Foss CA, Shen C, Lee H, Kulkarni S, Pasricha PJ, Lee G, Pomper MG, Dawson VL, Dawson TM, Ko HS. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson's Disease. Neuron 2019;103:627-641.e7. [PMID: 31255487 DOI: 10.1016/j.neuron.2019.05.035] [Cited by in Crossref: 322] [Cited by in F6Publishing: 304] [Article Influence: 107.3] [Reference Citation Analysis]
421 Tseng YF, Lin HC, Chao JC, Hsu CY, Lin HL. Calcium Channel blockers are associated with reduced risk of Parkinson's disease in patients with hypertension: A population-based retrospective cohort study. J Neurol Sci 2021;424:117412. [PMID: 33799214 DOI: 10.1016/j.jns.2021.117412] [Reference Citation Analysis]
422 Lopez A, Gorb A, Palha N, Fleming A, Rubinsztein DC. A New Zebrafish Model to Measure Neuronal α-Synuclein Clearance In Vivo. Genes 2022;13:868. [DOI: 10.3390/genes13050868] [Reference Citation Analysis]
423 Asadi A, Madadi Asl M, Vahabie AH, Valizadeh A. The Origin of Abnormal Beta Oscillations in the Parkinsonian Corticobasal Ganglia Circuits. Parkinsons Dis 2022;2022:7524066. [PMID: 35251590 DOI: 10.1155/2022/7524066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
424 Hinkle JT, Pontone GM. Visual Hallucinations in Neurodegenerative Diseases: Focus on Selective Tissue Vulnerability. Am J Geriatr Psychiatry 2017;25:605-6. [PMID: 28285770 DOI: 10.1016/j.jagp.2017.02.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
425 Li P, Li X, Yao L, Wu Y, Li B. Soybean isoflavones prevent atrazine-induced neurodegenerative damage by inducing autophagy. Ecotoxicol Environ Saf 2020;190:110065. [PMID: 31869719 DOI: 10.1016/j.ecoenv.2019.110065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
426 Boros FA, Vécsei L, Klivényi P. NEAT1 on the Field of Parkinson's Disease: Offense, Defense, or a Player on the Bench? J Parkinsons Dis 2021;11:123-38. [PMID: 33325399 DOI: 10.3233/JPD-202374] [Reference Citation Analysis]
427 Follett J, Farrer MJ. LRRK2; a dynamic regulator of cellular trafficking. Brain Res 2021;1761:147394. [PMID: 33662339 DOI: 10.1016/j.brainres.2021.147394] [Reference Citation Analysis]
428 Rajput C, Sarkar A, Singh MP. Involvement of Peroxiredoxin-3, Thioredoxin-2, and Protein Deglycase-1 in Cypermethrin-Induced Parkinsonism. Mol Neurobiol 2021. [PMID: 34173170 DOI: 10.1007/s12035-021-02456-0] [Reference Citation Analysis]
429 Mazurskyy A, Howitt J. Initiation and Transmission of α-Synuclein Pathology in Parkinson's Disease. Neurochem Res 2019. [PMID: 31713092 DOI: 10.1007/s11064-019-02896-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
430 Costa-Rodrigues C, Couceiro J, Moreno E. Cell competition from development to neurodegeneration. Dis Model Mech 2021;14:dmm048926. [PMID: 34190316 DOI: 10.1242/dmm.048926] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
431 Niethammer M, Eidelberg D. Network Imaging in Parkinsonian and Other Movement Disorders: Network Dysfunction and Clinical Correlates. Imaging in Movement Disorders: Imaging in Non-Parkinsonian Movement Disorders and Dementias, Part 2. Elsevier; 2019. pp. 143-84. [DOI: 10.1016/bs.irn.2018.10.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
432 Diederich NJ, Uchihara T, Grillner S, Goetz CG. The Evolution-Driven Signature of Parkinson's Disease. Trends Neurosci 2020;43:475-92. [PMID: 32499047 DOI: 10.1016/j.tins.2020.05.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
433 Steinkellner T, Conrad WS, Kovacs I, Rissman RA, Lee EB, Trojanowski JQ, Freyberg Z, Roy S, Luk KC, Lee VM, Hnasko TS. Dopamine neurons exhibit emergent glutamatergic identity in Parkinson's disease. Brain 2021:awab373. [PMID: 35258081 DOI: 10.1093/brain/awab373] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
434 Cardoso T, Lévesque M. Toward Generating Subtype-Specific Mesencephalic Dopaminergic Neurons in vitro. Front Cell Dev Biol 2020;8:443. [PMID: 32626706 DOI: 10.3389/fcell.2020.00443] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
435 Song S, Jiang L, Oyarzabal EA, Wilson B, Li Z, Shih YI, Wang Q, Hong JS. Loss of Brain Norepinephrine Elicits Neuroinflammation-Mediated Oxidative Injury and Selective Caudo-Rostral Neurodegeneration. Mol Neurobiol 2019;56:2653-69. [PMID: 30051353 DOI: 10.1007/s12035-018-1235-1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
436 Bandres-Ciga S, Saez-Atienzar S, Bonet-Ponce L, Billingsley K, Vitale D, Blauwendraat C, Gibbs JR, Pihlstrøm L, Gan-Or Z, Cookson MR, Nalls MA, Singleton AB; International Parkinson's Disease Genomics Consortium (IPDGC). The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Mov Disord 2019;34:460-8. [PMID: 30675927 DOI: 10.1002/mds.27614] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 11.7] [Reference Citation Analysis]
437 Wang S, Cortes CJ. Interactions with PDZ proteins diversify voltage-gated calcium channel signaling. J Neurosci Res 2021;99:332-48. [PMID: 32476168 DOI: 10.1002/jnr.24650] [Reference Citation Analysis]
438 Li P, Yao LY, Jiang YJ, Wang DD, Wang T, Wu YP, Li BX, Li XT. Soybean isoflavones protect SH-SY5Y neurons from atrazine-induced toxicity by activating mitophagy through stimulation of the BEX2/BNIP3/NIX pathway. Ecotoxicol Environ Saf 2021;227:112886. [PMID: 34673406 DOI: 10.1016/j.ecoenv.2021.112886] [Reference Citation Analysis]
439 Pan PY, Sheehan P, Wang Q, Zhu X, Zhang Y, Choi I, Li X, Saenz J, Zhu J, Wang J, El Gaamouch F, Zhu L, Cai D, Yue Z. Synj1 haploinsufficiency causes dopamine neuron vulnerability and alpha-synuclein accumulation in mice. Hum Mol Genet 2020;29:2300-12. [PMID: 32356558 DOI: 10.1093/hmg/ddaa080] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
440 Fan Y, Xiao S. Progression Rate Associated Peripheral Blood Biomarkers of Parkinson's Disease. J Mol Neurosci 2018;65:312-8. [PMID: 29936662 DOI: 10.1007/s12031-018-1102-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
441 Wainstein G, Müller EJ, Taylor N, Munn B, Shine JM. The role of the locus coeruleus in shaping adaptive cortical melodies. Trends in Cognitive Sciences 2022. [DOI: 10.1016/j.tics.2022.03.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
442 Joutsa J, Horn A, Hsu J, Fox MD. Localizing parkinsonism based on focal brain lesions. Brain 2018;141:2445-56. [PMID: 29982424 DOI: 10.1093/brain/awy161] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 17.3] [Reference Citation Analysis]
443 Farassat N, Costa KM, Stojanovic S, Albert S, Kovacheva L, Shin J, Egger R, Somayaji M, Duvarci S, Schneider G, Roeper J. In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. Elife 2019;8:e48408. [PMID: 31580257 DOI: 10.7554/eLife.48408] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 6.3] [Reference Citation Analysis]
444 Davis S, Scott C, Ansorge O, Fischer R. Development of a Sensitive, Scalable Method for Spatial, Cell-Type-Resolved Proteomics of the Human Brain. J Proteome Res 2019;18:1787-95. [PMID: 30768908 DOI: 10.1021/acs.jproteome.8b00981] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
445 Banwinkler M, Dzialas V, Hoenig MC, van Eimeren T; Parkinson's Progression Markers Initiative. Gray Matter Volume Loss in Proposed Brain-First and Body-First Parkinson's Disease Subtypes. Mov Disord 2022. [PMID: 35943058 DOI: 10.1002/mds.29172] [Reference Citation Analysis]
446 Benkert J, Hess S, Roy S, Beccano-Kelly D, Wiederspohn N, Duda J, Simons C, Patil K, Gaifullina A, Mannal N, Dragicevic E, Spaich D, Müller S, Nemeth J, Hollmann H, Deuter N, Mousba Y, Kubisch C, Poetschke C, Striessnig J, Pongs O, Schneider T, Wade-Martins R, Patel S, Parlato R, Frank T, Kloppenburg P, Liss B. Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson's disease. Nat Commun 2019;10:5094. [PMID: 31704946 DOI: 10.1038/s41467-019-12834-x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
447 Lestón Pinilla L, Ugun-Klusek A, Rutella S, De Girolamo LA. Hypoxia Signaling in Parkinson's Disease: There Is Use in Asking "What HIF?". Biology (Basel) 2021;10:723. [PMID: 34439955 DOI: 10.3390/biology10080723] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
448 Ruitenberg MFL, van Wouwe NC, Wylie SA, Abrahamse EL. The role of dopamine in action control: Insights from medication effects in Parkinson's disease. Neurosci Biobehav Rev 2021;127:158-70. [PMID: 33905788 DOI: 10.1016/j.neubiorev.2021.04.023] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]