BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Laird DW, Lampe PD. Therapeutic strategies targeting connexins. Nat Rev Drug Discov 2018;17:905-21. [PMID: 30310236 DOI: 10.1038/nrd.2018.138] [Cited by in Crossref: 81] [Cited by in F6Publishing: 74] [Article Influence: 20.3] [Reference Citation Analysis]
Number Citing Articles
1 Ai X, Yan J, Pogwizd SM. Serine-threonine protein phosphatase regulation of Cx43 dephosphorylation in arrhythmogenic disorders. Cell Signal 2021;86:110070. [PMID: 34217833 DOI: 10.1016/j.cellsig.2021.110070] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Subedi YP, Altenberg GA, Chang CT. Advances in the development of connexin hemichannel inhibitors selective toward Cx43. Future Med Chem 2021;13:379-92. [PMID: 33399487 DOI: 10.4155/fmc-2020-0291] [Reference Citation Analysis]
3 Fernandez-flores A, Varela-vazquez A, Suárez Peñaranda JM, Mayan MD, Fonseca E. Expression of Connexin 43 in 32 Cases of Merkel Cell Carcinoma. The American Journal of Dermatopathology 2020;42:178-85. [DOI: 10.1097/dad.0000000000001591] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Aasen T, Leithe E, Graham SV, Kameritsch P, Mayán MD, Mesnil M, Pogoda K, Tabernero A. Connexins in cancer: bridging the gap to the clinic. Oncogene 2019;38:4429-51. [PMID: 30814684 DOI: 10.1038/s41388-019-0741-6] [Cited by in Crossref: 68] [Cited by in F6Publishing: 62] [Article Influence: 22.7] [Reference Citation Analysis]
5 Nunes B, Pópulo H, Lopes JM, Reis M, Nascimento G, Nascimento AG, Fernandes J, Faria M, de Carvalho DP, Soares P, Miranda-alves L. Connexin Expression in Pituitary Adenomas and the Effects of Overexpression of Connexin 43 in Pituitary Tumor Cell Lines. Genes 2022;13:674. [DOI: 10.3390/genes13040674] [Reference Citation Analysis]
6 Novielli-Kuntz NM, Press ER, Barr K, Prado MAM, Laird DW. Mutant Cx30-A88V mice exhibit hydrocephaly and sex-dependent behavioral abnormalities, implicating a functional role for Cx30 in the brain. Dis Model Mech 2021;14:dmm046235. [PMID: 33735099 DOI: 10.1242/dmm.046235] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020;10:E1225. [PMID: 32842488 DOI: 10.3390/biom10091225] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
8 Jaraíz-Rodríguez M, Talaverón R, García-Vicente L, Pelaz SG, Domínguez-Prieto M, Álvarez-Vázquez A, Flores-Hernández R, Sin WC, Bechberger J, Medina JM, Naus CC, Tabernero A. Connexin43 peptide, TAT-Cx43266-283, selectively targets glioma cells, impairs malignant growth, and enhances survival in mouse models in vivo. Neuro Oncol 2020;22:493-504. [PMID: 31883012 DOI: 10.1093/neuonc/noz243] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
9 Squecco R, Chellini F, Idrizaj E, Tani A, Garella R, Pancani S, Pavan P, Bambi F, Zecchi-Orlandini S, Sassoli C. Platelet-Rich Plasma Modulates Gap Junction Functionality and Connexin 43 and 26 Expression During TGF-β1-Induced Fibroblast to Myofibroblast Transition: Clues for Counteracting Fibrosis. Cells 2020;9:E1199. [PMID: 32408529 DOI: 10.3390/cells9051199] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
10 Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front Oncol 2018;8:646. [PMID: 30622930 DOI: 10.3389/fonc.2018.00646] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
11 García-Rodríguez C, Bravo-Tobar ID, Duarte Y, Barrio LC, Sáez JC. Contribution of non-selective membrane channels and receptors in epilepsy. Pharmacol Ther 2021;:107980. [PMID: 34481811 DOI: 10.1016/j.pharmthera.2021.107980] [Reference Citation Analysis]
12 Won DH, Hwang DB, Shin YS, Kim SY, Kim C, Hong IS, Kang BC, Che JH, Yun JW. Cellular signaling crosstalk between Wnt signaling and gap junctions inbenzo[a]pyrene toxicity. Cell Biol Toxicol 2021. [PMID: 34283317 DOI: 10.1007/s10565-021-09630-z] [Reference Citation Analysis]
13 Simon Á, Magyar C, Héja L, Kardos J. Peptide Binding Sites of Connexin Proteins. Chemistry 2020;2:662-73. [DOI: 10.3390/chemistry2030042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Rodjakovic D, Salm L, Beldi G. Function of Connexin-43 in Macrophages. Int J Mol Sci 2021;22:1412. [PMID: 33573367 DOI: 10.3390/ijms22031412] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Garcia-Vega L, O'Shaughnessy EM, Albuloushi A, Martin PE. Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. Biology (Basel) 2021;10:59. [PMID: 33466954 DOI: 10.3390/biology10010059] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
16 Zhang K, Guan QW, Zhou XY, Xia QX, Yin XX, Zhou HH, Mao XY. The mutual interplay of redox signaling and connexins. J Mol Med (Berl) 2021;99:933-41. [PMID: 33928434 DOI: 10.1007/s00109-021-02084-0] [Reference Citation Analysis]
17 Au A, Shao Q, White KK, Lucaciu SA, Esseltine JL, Barr K, Laird DW. Comparative Analysis of Cx31 and Cx43 in Differentiation-Competent Rodent Keratinocytes. Biomolecules 2020;10:E1443. [PMID: 33066499 DOI: 10.3390/biom10101443] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Mikalsen SO, Í Kongsstovu S, Tausen M. Connexins during 500 Million Years-From Cyclostomes to Mammals. Int J Mol Sci 2021;22:1584. [PMID: 33557313 DOI: 10.3390/ijms22041584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Martins-Marques T, Ribeiro-Rodrigues T, Batista-Almeida D, Aasen T, Kwak BR, Girao H. Biological Functions of Connexin43 Beyond Intercellular Communication. Trends Cell Biol 2019;29:835-47. [PMID: 31358412 DOI: 10.1016/j.tcb.2019.07.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
20 Sato A, da Fonseca IIM, Nagamine MK, de Toledo GF, Olio R, Hernandez-Blazquez FJ, Yano T, Yeh ES, Dagli MLZ. Effects of Alpha-Connexin Carboxyl-Terminal Peptide (aCT1) and Bowman-Birk Protease Inhibitor (BBI) on Canine Oral Mucosal Melanoma (OMM) Cells. Front Vet Sci 2021;8:670451. [PMID: 34179163 DOI: 10.3389/fvets.2021.670451] [Reference Citation Analysis]
21 Strauss RE, Mezache L, Veeraraghavan R, Gourdie RG. The Cx43 Carboxyl-Terminal Mimetic Peptide αCT1 Protects Endothelial Barrier Function in a ZO1 Binding-Competent Manner. Biomolecules 2021;11:1192. [PMID: 34439858 DOI: 10.3390/biom11081192] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Peng B, Xu C, Wang S, Zhang Y, Li W. The Role of Connexin Hemichannels in Inflammatory Diseases. Biology (Basel) 2022;11:237. [PMID: 35205103 DOI: 10.3390/biology11020237] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Albuloushi A, Lovgren ML, Steel A, Yeoh Y, Waters A, Zamiri M, Martin PE. A heterozygous mutation in GJB2 (Cx26F142L) associated with deafness and recurrent skin rashes results in connexin assembly deficiencies. Exp Dermatol 2020;29:970-9. [PMID: 32866991 DOI: 10.1111/exd.14187] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Georgikou C, Yin L, Gladkich J, Xiao X, Sticht C, Torre CDL, Gretz N, Gross W, Schäfer M, Karakhanova S, Herr I. Inhibition of miR30a-3p by sulforaphane enhances gap junction intercellular communication in pancreatic cancer. Cancer Letters 2020;469:238-45. [DOI: 10.1016/j.canlet.2019.10.042] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
25 Feng J, Thangaveloo M, Ong YS, Chong SJ, Joethy JV, Becker DL. Connexin 43 upregulation in burns promotes burn conversion through spread of apoptotic death signals. Burns 2020;46:1389-97. [PMID: 32362363 DOI: 10.1016/j.burns.2020.03.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Gros-Désormeaux F, Caffin F, Igert A, Guatto N, Piérard C. Is CEES a good analog of sulfur mustard? Macroscopic aspect, histology, and molecular biology comparisons between sulfur mustard and CEES-induced skin lesions. Toxicol Lett 2022:S0378-4274(22)00066-2. [PMID: 35341927 DOI: 10.1016/j.toxlet.2022.03.008] [Reference Citation Analysis]
27 Harris AL. Electrical coupling and its channels. J Gen Physiol 2018;150:1606-39. [PMID: 30389716 DOI: 10.1085/jgp.201812203] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
28 Tishchenko A, Azorín DD, Vidal-Brime L, Muñoz MJ, Arenas PJ, Pearce C, Girao H, Ramón Y Cajal S, Aasen T. Cx43 and Associated Cell Signaling Pathways Regulate Tunneling Nanotubes in Breast Cancer Cells. Cancers (Basel) 2020;12:E2798. [PMID: 33003486 DOI: 10.3390/cancers12102798] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
29 Cabahug-zuckerman P, Liu C, Castillo AB. Cells Involved in Mechanotransduction Including Mesenchymal Stem Cells. Encyclopedia of Bone Biology. Elsevier; 2020. pp. 311-32. [DOI: 10.1016/b978-0-12-801238-3.11209-7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Oleaga C, Jalilvand G, Legters G, Martin C, Ekman G, McAleer CW, Long CJ, Hickman JJ. A human in vitro platform for the evaluation of pharmacology strategies in cardiac ischemia. APL Bioeng 2019;3:036103. [PMID: 31431939 DOI: 10.1063/1.5089237] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
31 Zhang J, Green CR, Mugisho OO. Cell transdifferentiation in ocular disease: Potential role for connexin channels. Exp Cell Res 2021;407:112823. [PMID: 34506760 DOI: 10.1016/j.yexcr.2021.112823] [Reference Citation Analysis]
32 Ziraldo G, Buratto D, Kuang Y, Xu L, Carrer A, Nardin C, Chiani F, Salvatore AM, Paludetti G, Lerner RA, Yang G, Zonta F, Mammano F. A Human-Derived Monoclonal Antibody Targeting Extracellular Connexin Domain Selectively Modulates Hemichannel Function. Front Physiol 2019;10:392. [PMID: 31263420 DOI: 10.3389/fphys.2019.00392] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
33 Buratto D, Donati V, Zonta F, Mammano F. Harnessing the therapeutic potential of antibodies targeting connexin hemichannels. Biochim Biophys Acta Mol Basis Dis 2021;1867:166047. [PMID: 33418036 DOI: 10.1016/j.bbadis.2020.166047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020;77:573-91. [PMID: 31501970 DOI: 10.1007/s00018-019-03285-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
35 Soleilhac E, Comte M, da Costa A, Barette C, Picoli C, Mortier M, Aubry L, Mouthon F, Fauvarque MO, Charvériat M. Quantitative Automated Assays in Living Cells to Screen for Inhibitors of Hemichannel Function. SLAS Discov 2021;26:420-7. [PMID: 32914684 DOI: 10.1177/2472555220954388] [Reference Citation Analysis]
36 Lastwika KJ, Dunn CA, Solan JL, Lampe PD. Phosphorylation of connexin 43 at MAPK, PKC or CK1 sites each distinctly alter the kinetics of epidermal wound repair. J Cell Sci 2019;132:jcs234633. [PMID: 31427427 DOI: 10.1242/jcs.234633] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
37 Fernandez-Flores A, Varela-Vazquez A, Mayan MD, Fonseca E. Expression of connexin 43 by atypical fibroxanthoma. J Cutan Pathol 2021;48:247-54. [PMID: 32851695 DOI: 10.1111/cup.13856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Cliff CL, Williams BM, Chadjichristos CE, Mouritzen U, Squires PE, Hills CE. Connexin 43: A Target for the Treatment of Inflammation in Secondary Complications of the Kidney and Eye in Diabetes. Int J Mol Sci 2022;23:600. [PMID: 35054783 DOI: 10.3390/ijms23020600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Himelman E, Lillo MA, Nouet J, Gonzalez JP, Zhao Q, Xie LH, Li H, Liu T, Wehrens XH, Lampe PD, Fishman GI, Shirokova N, Contreras JE, Fraidenraich D. Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy. J Clin Invest 2020;130:1713-27. [PMID: 31910160 DOI: 10.1172/JCI128190] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
40 Héja L, Simon Á, Szabó Z, Kardos J. Connexons Coupling to Gap Junction Channel: Potential Role for Extracellular Protein Stabilization Centers. Biomolecules 2022;12:49. [DOI: 10.3390/biom12010049] [Reference Citation Analysis]
41 Katturajan R, Evan Prince S. A role of connexin 43 on the drug-induced liver, kidney, and gastrointestinal tract toxicity with associated signaling pathways. Life Sci 2021;280:119629. [PMID: 34004253 DOI: 10.1016/j.lfs.2021.119629] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Wang H, Stahl F, Scheper T, Steffens M, Warnecke A, Zeilinger C. Microarray-based screening system identifies temperature-controlled activity of Connexin 26 that is distorted by mutations. Sci Rep 2019;9:13543. [PMID: 31537823 DOI: 10.1038/s41598-019-49423-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
43 Chen CX, Luo KJ, Yang JP, Huang YC, Cardenas ER, Nicholson BJ, Jiang JX. Connexins and cAMP Cross-Talk in Cancer Progression and Metastasis. Cancers (Basel) 2020;13:E58. [PMID: 33379194 DOI: 10.3390/cancers13010058] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Dydowiczová A, Brózman O, Babica P, Sovadinová I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci Rep 2020;10:730. [PMID: 31959888 DOI: 10.1038/s41598-020-57536-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
45 Montgomery J, Richardson WJ, Marsh S, Rhett JM, Bustos F, Degen K, Ghatnekar GS, Grek CL, Jourdan LJ, Holmes JW, Gourdie RG. The connexin 43 carboxyl terminal mimetic peptide αCT1 prompts differentiation of a collagen scar matrix in humans resembling unwounded skin. FASEB J 2021;35:e21762. [PMID: 34246197 DOI: 10.1096/fj.202001881R] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Sun X, Xiao H, Li S, Chen R, Lin Z, Yang Y, Chen Z, Deng L, Huang H. Connexin32 ameliorates epithelial-to-mesenchymal-transition in diabetic renal tubular via inhibiting NOX4. Pharmacol Res 2022;176:106084. [PMID: 35051590 DOI: 10.1016/j.phrs.2022.106084] [Reference Citation Analysis]
47 Nalewajska M, Marchelek-Myśliwiec M, Opara-Bajerowicz M, Dziedziejko V, Pawlik A. Connexins-Therapeutic Targets in Cancers. Int J Mol Sci 2020;21:E9119. [PMID: 33266154 DOI: 10.3390/ijms21239119] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
48 Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020;394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
49 De Meulenaere V, Bonte E, Verhoeven J, Kalala Okito JP, Pieters L, Vral A, De Wever O, Leybaert L, Goethals I, Vanhove C, Descamps B, Deblaere K. Adjuvant therapeutic potential of tonabersat in the standard treatment of glioblastoma: A preclinical F98 glioblastoma rat model study. PLoS One 2019;14:e0224130. [PMID: 31634381 DOI: 10.1371/journal.pone.0224130] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
50 Papaefthymiou A, Doukatas A, Galanopoulos M. Pancreatic cancer and oligonucleotide therapy: exploring novel therapeutic options and targeting chemoresistance. Clinics and Research in Hepatology and Gastroenterology 2022. [DOI: 10.1016/j.clinre.2022.101911] [Reference Citation Analysis]
51 Beach R, Abitbol JM, Allman BL, Esseltine JL, Shao Q, Laird DW. GJB2 Mutations Linked to Hearing Loss Exhibit Differential Trafficking and Functional Defects as Revealed in Cochlear-Relevant Cells. Front Cell Dev Biol 2020;8:215. [PMID: 32300592 DOI: 10.3389/fcell.2020.00215] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
52 Natha CM, Vemulapalli V, Fiori MC, Chang CT, Altenberg GA. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim Biophys Acta Mol Basis Dis 2021;1867:166115. [PMID: 33711451 DOI: 10.1016/j.bbadis.2021.166115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Singh AK, Cancelas JA. Gap Junctions in the Bone Marrow Lympho-Hematopoietic Stem Cell Niche, Leukemia Progression, and Chemoresistance. Int J Mol Sci 2020;21:E796. [PMID: 31991829 DOI: 10.3390/ijms21030796] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
54 George SA, Hoeker G, Calhoun PJ, Entz M 2nd, Raisch TB, King DR, Khan M, Baker C, Gourdie RG, Smyth JW, Nielsen MS, Poelzing S. Modulating cardiac conduction during metabolic ischemia with perfusate sodium and calcium in guinea pig hearts. Am J Physiol Heart Circ Physiol 2019;316:H849-61. [PMID: 30707595 DOI: 10.1152/ajpheart.00083.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
55 Price GW, Potter JA, Williams BM, Cliff CL, Squires PE, Hills CE. Connexin-mediated cell communication in the kidney: A potential therapeutic target for future intervention of diabetic kidney disease?: Joan Mott Prize Lecture. Exp Physiol 2020;105:219-29. [PMID: 31785013 DOI: 10.1113/EP087770] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
56 Qin S, Jiang J, Lu Y, Nice EC, Huang C, Zhang J, He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther 2020;5:228. [PMID: 33028808 DOI: 10.1038/s41392-020-00313-5] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
57 Zhu Y. Gap Junction-Dependent and -Independent Functions of Connexin43 in Biology. Biology (Basel) 2022;11:283. [PMID: 35205149 DOI: 10.3390/biology11020283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Wu X, Zhang W, Li Y, Lin X. Structure and Function of Cochlear Gap Junctions and Implications for the Translation of Cochlear Gene Therapies. Front Cell Neurosci 2019;13:529. [PMID: 31827424 DOI: 10.3389/fncel.2019.00529] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
59 Kaushik T, Mishra R, Singh RK, Bajpai S. Role of connexins in female reproductive system and endometriosis. J Gynecol Obstet Hum Reprod 2020;49:101705. [PMID: 32018041 DOI: 10.1016/j.jogoh.2020.101705] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
60 Jiang J, Hoagland D, Palatinus JA, He H, Iyyathurai J, Jourdan LJ, Bultynck G, Wang Z, Zhang Z, Schey K, Poelzing S, McGowan FX, Gourdie RG. Interaction of α Carboxyl Terminus 1 Peptide With the Connexin 43 Carboxyl Terminus Preserves Left Ventricular Function After Ischemia-Reperfusion Injury. J Am Heart Assoc 2019;8:e012385. [PMID: 31422747 DOI: 10.1161/JAHA.119.012385] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
61 Marsh SR, Williams ZJ, Pridham KJ, Gourdie RG. Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine. J Cardiovasc Dev Dis 2021;8:52. [PMID: 34063001 DOI: 10.3390/jcdd8050052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Kuang Y, Zorzi V, Buratto D, Ziraldo G, Mazzarda F, Peres C, Nardin C, Salvatore AM, Chiani F, Scavizzi F, Raspa M, Qiang M, Chu Y, Shi X, Li Y, Liu L, Shi Y, Zonta F, Yang G, Lerner RA, Mammano F. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine 2020;57:102825. [PMID: 32553574 DOI: 10.1016/j.ebiom.2020.102825] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
63 Ahmadian E, Eftekhari A, Samiei M, Maleki Dizaj S, Vinken M. The role and therapeutic potential of connexins, pannexins and their channels in Parkinson's disease. Cellular Signalling 2019;58:111-8. [DOI: 10.1016/j.cellsig.2019.03.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
64 Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochim Biophys Acta Mol Basis Dis 2021;1867:166258. [PMID: 34450245 DOI: 10.1016/j.bbadis.2021.166258] [Reference Citation Analysis]
65 Shao Q, Esseltine JL, Huang T, Novielli-Kuntz N, Ching JE, Sampson J, Laird DW. Connexin43 is Dispensable for Early Stage Human Mesenchymal Stem Cell Adipogenic Differentiation But is Protective against Cell Senescence. Biomolecules. 2019;9. [PMID: 31514306 DOI: 10.3390/biom9090474] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
66 Unal YC, Yavuz B, Ozcivici E, Mese G. The role of connexins in breast cancer: from misregulated cell communication to aberrant intracellular signaling. Tissue Barriers 2021;:1962698. [PMID: 34355641 DOI: 10.1080/21688370.2021.1962698] [Reference Citation Analysis]
67 Acosta ML, Mat Nor MN, Guo CX, Mugisho OO, Coutinho FP, Rupenthal ID, Green CR. Connexin therapeutics: blocking connexin hemichannel pores is distinct from blocking pannexin channels or gap junctions. Neural Regen Res 2021;16:482-8. [PMID: 32985469 DOI: 10.4103/1673-5374.290097] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
68 Hoeker GS, James CC, Tegge AN, Gourdie RG, Smyth JW, Poelzing S. Attenuating loss of cardiac conduction during no-flow ischemia through changes in perfusate sodium and calcium. Am J Physiol Heart Circ Physiol 2020;319:H396-409. [PMID: 32678707 DOI: 10.1152/ajpheart.00112.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
69 Hastings ML, Brigande JV. Fetal gene therapy and pharmacotherapy to treat congenital hearing loss and vestibular dysfunction. Hear Res 2020;394:107931. [PMID: 32173115 DOI: 10.1016/j.heares.2020.107931] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
70 Lillo MA, Himelman E, Shirokova N, Xie LH, Fraidenraich D, Contreras JE. S-nitrosylation of connexin43 hemichannels elicits cardiac stress-induced arrhythmias in Duchenne muscular dystrophy mice. JCI Insight 2019;4:130091. [PMID: 31751316 DOI: 10.1172/jci.insight.130091] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
71 Price GW, Chadjichristos CE, Kavvadas P, Tang SCW, Yiu WH, Green CR, Potter JA, Siamantouras E, Squires PE, Hills CE. Blocking Connexin-43 mediated hemichannel activity protects against early tubular injury in experimental chronic kidney disease. Cell Commun Signal 2020;18:79. [PMID: 32450899 DOI: 10.1186/s12964-020-00558-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
72 Picoli C, Soleilhac E, Journet A, Barette C, Comte M, Giaume C, Mouthon F, Fauvarque MO, Charvériat M. High-Content Screening Identifies New Inhibitors of Connexin 43 Gap Junctions. Assay Drug Dev Technol 2019;17:240-8. [PMID: 31314551 DOI: 10.1089/adt.2019.927] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
73 Dere D, Zlomuzica A, Dere E. Channels to consciousness: a possible role of gap junctions in consciousness. Rev Neurosci 2020:/j/revneuro. [PMID: 32853172 DOI: 10.1515/revneuro-2020-0012] [Reference Citation Analysis]
74 Varela-Vázquez A, Guitián-Caamaño A, Carpintero-Fernandez P, Fonseca E, Sayedyahossein S, Aasen T, Penuela S, Mayán MD. Emerging functions and clinical prospects of connexins and pannexins in melanoma. Biochim Biophys Acta Rev Cancer 2020;1874:188380. [PMID: 32461135 DOI: 10.1016/j.bbcan.2020.188380] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
75 Bruzzone R, White TW. Connexin hemichannel inhibition improves skin pathology in Clouston syndrome mice. EBioMedicine 2020;57:102856. [PMID: 32629388 DOI: 10.1016/j.ebiom.2020.102856] [Reference Citation Analysis]
76 Liu W, Cui Y, Wei J, Sun J, Zheng L, Xie J. Gap junction-mediated cell-to-cell communication in oral development and oral diseases: a concise review of research progress. Int J Oral Sci 2020;12:17. [PMID: 32532966 DOI: 10.1038/s41368-020-0086-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
77 Tachikawa M, Kaneko Y, Ohtsuki S, Uchida Y, Watanabe M, Ohtsuka H, Terasaki T. Targeted Proteomics-Based Quantitative Protein Atlas of Pannexin and Connexin Subtypes in Mouse and Human Tissues and Cancer Cell Lines. Journal of Pharmaceutical Sciences 2020;109:1161-8. [DOI: 10.1016/j.xphs.2019.09.024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
78 Hautefort A, Pfenniger A, Kwak BR. Endothelial connexins in vascular function. Vasc Biol 2019;1:H117-24. [PMID: 32923963 DOI: 10.1530/VB-19-0015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
79 Sellitto C, Li L, White TW. Connexin hemichannel inhibition ameliorates epidermal pathology in a mouse model of keratitis ichthyosis deafness syndrome. Sci Rep 2021;11. [DOI: 10.1038/s41598-021-03627-8] [Reference Citation Analysis]
80 Rathjen FG. The CAR group of Ig cell adhesion proteins–Regulators of gap junctions? BioEssays 2020;42:2000031. [DOI: 10.1002/bies.202000031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
81 Freitas-Andrade M, Bechberger J, Wang J, Yeung KKC, Whitehead SN, Hansen RS, Naus CC. Danegaptide Enhances Astrocyte Gap Junctional Coupling and Reduces Ischemic Reperfusion Brain Injury in Mice. Biomolecules 2020;10:E353. [PMID: 32110860 DOI: 10.3390/biom10030353] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
82 Talbot J, Dupuy M, Morice S, Rédini F, Verrecchia F. Antagonistic Functions of Connexin 43 during the Development of Primary or Secondary Bone Tumors. Biomolecules 2020;10:E1240. [PMID: 32859065 DOI: 10.3390/biom10091240] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
83 Khan AK, Jagielnicki M, Mcintire WE, Purdy MD, Dharmarajan V, Griffin PR, Yeager M. A Steric “Ball-and-Chain” Mechanism for pH-Mediated Regulation of Gap Junction Channels. Cell Reports 2020;31:107482. [DOI: 10.1016/j.celrep.2020.03.046] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
84 Wang T, Li Y, Cornel EJ, Li C, Du J. Combined Antioxidant-Antibiotic Treatment for Effectively Healing Infected Diabetic Wounds Based on Polymer Vesicles. ACS Nano 2021;15:9027-38. [PMID: 33881831 DOI: 10.1021/acsnano.1c02102] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 22.0] [Reference Citation Analysis]
85 Gong K, Hong Q, Wu H, Wang F, Zhong L, Shen L, Xu P, Zhang W, Cao H, Zhan Y, Hu T, Hong X. Gap junctions mediate glucose transfer to promote colon cancer growth in three-dimensional spheroid culture. Cancer Letters 2022. [DOI: 10.1016/j.canlet.2022.01.023] [Reference Citation Analysis]