BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boldescu V, Behnam MAM, Vasilakis N, Klein CD. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov 2017;16:565-86. [PMID: 28473729 DOI: 10.1038/nrd.2017.33] [Cited by in Crossref: 147] [Cited by in F6Publishing: 122] [Article Influence: 29.4] [Reference Citation Analysis]
Number Citing Articles
1 Troost B, Smit JM. Recent advances in antiviral drug development towards dengue virus. Curr Opin Virol 2020;43:9-21. [PMID: 32795907 DOI: 10.1016/j.coviro.2020.07.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
2 Osuna-Ramos JF, Reyes-Ruiz JM, Del Ángel RM. The Role of Host Cholesterol During Flavivirus Infection. Front Cell Infect Microbiol 2018;8:388. [PMID: 30450339 DOI: 10.3389/fcimb.2018.00388] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
3 Noske GD, Gawriljuk VO, Fernandes RS, Furtado ND, Bonaldo MC, Oliva G, Godoy AS. Structural characterization and polymorphism analysis of the NS2B-NS3 protease from the 2017 Brazilian circulating strain of Yellow Fever virus. Biochimica et Biophysica Acta (BBA) - General Subjects 2020;1864:129521. [DOI: 10.1016/j.bbagen.2020.129521] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Sharma N, Prosser O, Kumar P, Tuplin A, Giri R. Small molecule inhibitors possibly targeting the rearrangement of Zika virus envelope protein. Antiviral Res 2020;182:104876. [PMID: 32783901 DOI: 10.1016/j.antiviral.2020.104876] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
5 Scroggs SLP, Andrade CC, Chinnasamy R, Azar SR, Schirtzinger EE, Garcia EI, Arterburn JB, Hanley KA, Rossi SL. Old Drugs with New Tricks: Efficacy of Fluoroquinolones to Suppress Replication of Flaviviruses. Viruses 2020;12:E1022. [PMID: 32933138 DOI: 10.3390/v12091022] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Sardari S, Rafieian-Kopaei M, Malekmohammad K, Sewell RDE. Review of Phytochemical Compounds as Antiviral Agents Against Arboviruses from the Genera Flavivirus and Alphavirus. Curr Drug Discov Technol 2020;17:484-97. [PMID: 31969106 DOI: 10.2174/1570163817666200122102443] [Reference Citation Analysis]
7 Sardar A, Lahiri A, Kamble M, Mallick AI, Tarafdar PK. Translation of Mycobacterium Survival Strategy to Develop a Lipo-peptide based Fusion Inhibitor*. Angew Chem Int Ed Engl 2021;60:6101-6. [PMID: 33241871 DOI: 10.1002/anie.202013848] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Liu Q, Gupta A, Okesli-Armlovich A, Qiao W, Fischer CR, Smith M, Carette JE, Bassik MC, Khosla C. Enhancing the Antiviral Efficacy of RNA-Dependent RNA Polymerase Inhibition by Combination with Modulators of Pyrimidine Metabolism. Cell Chem Biol 2020;27:668-677.e9. [PMID: 32442424 DOI: 10.1016/j.chembiol.2020.05.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
9 Dinesh DC, Tamilarasan S, Rajaram K, Bouřa E. Antiviral Drug Targets of Single-Stranded RNA Viruses Causing Chronic Human Diseases. Curr Drug Targets 2020;21:105-24. [PMID: 31538891 DOI: 10.2174/1389450119666190920153247] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 10.0] [Reference Citation Analysis]
10 Jiménez de Oya N, Blázquez AB, Casas J, Saiz JC, Martín-Acebes MA. Direct Activation of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by PF-06409577 Inhibits Flavivirus Infection through Modification of Host Cell Lipid Metabolism. Antimicrob Agents Chemother 2018;62:e00360-18. [PMID: 29712653 DOI: 10.1128/AAC.00360-18] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
11 Mahawaththa MC, Pearce BJ, Szabo M, Graham B, Klein CD, Nitsche C, Otting G. Solution conformations of a linked construct of the Zika virus NS2B-NS3 protease. Antiviral Research 2017;142:141-7. [DOI: 10.1016/j.antiviral.2017.03.011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
12 De Rycker M, Baragaña B, Duce SL, Gilbert IH. Challenges and recent progress in drug discovery for tropical diseases. Nature 2018;559:498-506. [PMID: 30046073 DOI: 10.1038/s41586-018-0327-4] [Cited by in Crossref: 73] [Cited by in F6Publishing: 63] [Article Influence: 18.3] [Reference Citation Analysis]
13 Rothan HA, Zhong Y, Sanborn MA, Teoh TC, Ruan J, Yusof R, Hang J, Henderson MJ, Fang S. Small molecule grp94 inhibitors block dengue and Zika virus replication. Antiviral Res 2019;171:104590. [PMID: 31421166 DOI: 10.1016/j.antiviral.2019.104590] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
14 Wewer CR, Khandelia H. Different footprints of the Zika and dengue surface proteins on viral membranes. Soft Matter 2018;14:5615-21. [PMID: 29932192 DOI: 10.1039/c8sm00223a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
15 Shimu MSS, Mahmud S, Tallei TE, Sami SA, Adam AA, Acharjee UK, Paul GK, Emran TB, Zaman S, Uddin MS, Saleh MA, Alshehri S, Ghoneim MM, Alruwali M, Obaidullah AJ, Jui NR, Kim J, Kim B. Phytochemical Compound Screening to Identify Novel Small Molecules against Dengue Virus: A Docking and Dynamics Study. Molecules 2022;27:653. [DOI: 10.3390/molecules27030653] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Behnam MA, Klein CD. Conformational selection in the flaviviral NS2B-NS3 protease. Biochimie 2020;174:117-25. [DOI: 10.1016/j.biochi.2020.04.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
17 Britt WJ. Adverse outcomes of pregnancy-associated Zika virus infection. Semin Perinatol 2018;42:155-67. [PMID: 29523447 DOI: 10.1053/j.semperi.2018.02.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
18 Gawriljuk VO, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS, Oliva G, Ekins S. Development of Machine Learning Models and the Discovery of a New Antiviral Compound against Yellow Fever Virus. J Chem Inf Model 2021;61:3804-13. [PMID: 34286575 DOI: 10.1021/acs.jcim.1c00460] [Reference Citation Analysis]
19 Saivish MV, Gomes da Costa V, de Lima Menezes G, Alves da Silva R, Dutra da Silva GC, Moreli ML, Sacchetto L, Pacca CC, Vasilakis N, Nogueira ML. Rocio Virus: An Updated View on an Elusive Flavivirus. Viruses 2021;13:2293. [PMID: 34835099 DOI: 10.3390/v13112293] [Reference Citation Analysis]
20 Mayburd A. A public-private partnership for the express development of antiviral leads: a perspective view. Expert Opin Drug Discov 2021;16:23-38. [PMID: 32877233 DOI: 10.1080/17460441.2020.1811676] [Reference Citation Analysis]
21 Ke PY. The Multifaceted Roles of Autophagy in Flavivirus-Host Interactions. Int J Mol Sci 2018;19:E3940. [PMID: 30544615 DOI: 10.3390/ijms19123940] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
22 Qadir A, Riaz M, Saeed M, Shahzad-Ul-Hussan S. Potential targets for therapeutic intervention and structure based vaccine design against Zika virus. Eur J Med Chem 2018;156:444-60. [PMID: 30015077 DOI: 10.1016/j.ejmech.2018.07.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
23 Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 2018;19:206-24. [PMID: 29282215 DOI: 10.15252/embr.201745302] [Cited by in Crossref: 110] [Cited by in F6Publishing: 96] [Article Influence: 22.0] [Reference Citation Analysis]
24 Behnam MAM. Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Biochimie 2021;182:177-84. [PMID: 33484784 DOI: 10.1016/j.biochi.2021.01.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
25 Gopala Reddy SB, Chin WX, Shivananju NS. Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem Pharmacol 2018;154:54-63. [PMID: 29674002 DOI: 10.1016/j.bcp.2018.04.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
26 Martín-Acebes MA, Saiz JC. The Scientific Response to Zika Virus. J Clin Med 2019;8:E369. [PMID: 30884762 DOI: 10.3390/jcm8030369] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Song G, Lee EM, Pan J, Xu M, Rho HS, Cheng Y, Whitt N, Yang S, Kouznetsova J, Klumpp-Thomas C, Michael SG, Moore C, Yoon KJ, Christian KM, Simeonov A, Huang W, Xia M, Huang R, Lal-Nag M, Tang H, Zheng W, Qian J, Song H, Ming GL, Zhu H. An Integrated Systems Biology Approach Identifies the Proteasome as A Critical Host Machinery for ZIKV and DENV Replication. Genomics Proteomics Bioinformatics 2021;19:108-22. [PMID: 33610792 DOI: 10.1016/j.gpb.2020.06.016] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Dragoni F, Boccuto A, Picarazzi F, Giannini A, Giammarino F, Saladini F, Mori M, Mastrangelo E, Zazzi M, Vicenti I. Evaluation of sofosbuvir activity and resistance profile against West Nile virus in vitro. Antiviral Res 2020;175:104708. [PMID: 31931104 DOI: 10.1016/j.antiviral.2020.104708] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
29 Rajter JC, Sherman MS, Fatteh N, Vogel F, Sacks J, Rajter JJ. Use of Ivermectin Is Associated With Lower Mortality in Hospitalized Patients With Coronavirus Disease 2019: The Ivermectin in COVID Nineteen Study. Chest 2021;159:85-92. [PMID: 33065103 DOI: 10.1016/j.chest.2020.10.009] [Cited by in Crossref: 58] [Cited by in F6Publishing: 66] [Article Influence: 29.0] [Reference Citation Analysis]
30 Han Y, Mesplède T. Investigational drugs for the treatment of Zika virus infection: a preclinical and clinical update. Expert Opin Investig Drugs 2018;27:951-62. [PMID: 30430882 DOI: 10.1080/13543784.2018.1548609] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
31 Jakob AK, Sundermann TR, Klein CD. Backbone modifications in peptidic inhibitors of flaviviral proteases. Bioorganic & Medicinal Chemistry Letters 2019;29:1913-7. [DOI: 10.1016/j.bmcl.2019.05.054] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Yang Y, Cao L, Gao H, Wu Y, Wang Y, Fang F, Lan T, Lou Z, Rao Y. Discovery, Optimization, and Target Identification of Novel Potent Broad-Spectrum Antiviral Inhibitors. J Med Chem 2019;62:4056-73. [DOI: 10.1021/acs.jmedchem.9b00091] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
33 Marim FM, Teixeira DC, Queiroz-Junior CM, Valiate BVS, Alves-Filho JC, Cunha TM, Dantzer R, Teixeira MM, Teixeira AL, Costa VV. Inhibition of Tryptophan Catabolism Is Associated With Neuroprotection During Zika Virus Infection. Front Immunol 2021;12:702048. [PMID: 34335614 DOI: 10.3389/fimmu.2021.702048] [Reference Citation Analysis]
34 Yu Y, Li Z, Guo R, Qian J, Zhang H, Zhang J, Zhao X, Wang S, Wang Y. Ononin, sec-O-β-d-glucosylhamaudol and astragaloside I: antiviral lead compounds identified via high throughput screening and biological validation from traditional Chinese medicine Zhongjing formulary. Pharmacological Research 2019;145:104248. [DOI: 10.1016/j.phrs.2019.04.032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
35 Wang X, Zheng B, Ashraf U, Zhang H, Cao C, Li Q, Chen Z, Imran M, Chen H, Cao S, Ye J. Artemisinin inhibits the replication of flaviviruses by promoting the type I interferon production. Antiviral Res 2020;179:104810. [PMID: 32360948 DOI: 10.1016/j.antiviral.2020.104810] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
36 Sinigaglia A, Peta E, Riccetti S, Barzon L. New avenues for therapeutic discovery against West Nile virus. Expert Opinion on Drug Discovery 2020;15:333-48. [DOI: 10.1080/17460441.2020.1714586] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
37 Nunes DAF, Santos FRDS, da Fonseca STD, de Lima WG, Nizer WSDC, Ferreira JMS, de Magalhães JC. NS2B-NS3 protease inhibitors as promising compounds in the development of antivirals against Zika virus: A systematic review. J Med Virol 2022;94:442-53. [PMID: 34636434 DOI: 10.1002/jmv.27386] [Reference Citation Analysis]
38 Mottin M, Borba JVVB, Braga RC, Torres PHM, Martini MC, Proenca-Modena JL, Judice CC, Costa FTM, Ekins S, Perryman AL, Horta Andrade C. The A-Z of Zika drug discovery. Drug Discov Today 2018;23:1833-47. [PMID: 29935345 DOI: 10.1016/j.drudis.2018.06.014] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
39 Wang C, Yang SNY, Smith K, Forwood JK, Jans DA. Nuclear import inhibitor N-(4-hydroxyphenyl) retinamide targets Zika virus (ZIKV) nonstructural protein 5 to inhibit ZIKV infection. Biochem Biophys Res Commun 2017;493:1555-9. [PMID: 28988109 DOI: 10.1016/j.bbrc.2017.10.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
40 Soto-Acosta R, Jung E, Qiu L, Wilson DJ, Geraghty RJ, Chen L. 4,7-Disubstituted 7H-Pyrrolo[2,3-d]pyrimidines and Their Analogs as Antiviral Agents against Zika Virus. Molecules 2021;26:3779. [PMID: 34206327 DOI: 10.3390/molecules26133779] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Sundermann TR, Benzin CV, Dražić T, Klein CD. Synthesis and structure-activity relationships of small-molecular di-basic esters, amides and carbamates as flaviviral protease inhibitors. European Journal of Medicinal Chemistry 2019;176:187-94. [DOI: 10.1016/j.ejmech.2019.05.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
42 Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M, On Behalf Of The Oemonom. Plant-Derived Antimicrobial Peptides as Potential Antiviral Agents in Systemic Viral Infections. Pharmaceuticals (Basel) 2021;14:774. [PMID: 34451871 DOI: 10.3390/ph14080774] [Reference Citation Analysis]
43 Ruan J, Rothan HA, Zhong Y, Yan W, Henderson MJ, Chen F, Fang S. A small molecule inhibitor of ER-to-cytosol protein dislocation exhibits anti-dengue and anti-Zika virus activity. Sci Rep 2019;9:10901. [PMID: 31358863 DOI: 10.1038/s41598-019-47532-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
44 Voss S, Nitsche C. Targeting the protease of West Nile virus. RSC Med Chem 2021;12:1262-72. [PMID: 34458734 DOI: 10.1039/d1md00080b] [Reference Citation Analysis]
45 Anasir MI, Ramanathan B, Poh CL. Structure-Based Design of Antivirals against Envelope Glycoprotein of Dengue Virus. Viruses 2020;12:E367. [PMID: 32225021 DOI: 10.3390/v12040367] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
46 Jackman JA, Shi PY, Cho NJ. Targeting the Achilles Heel of Mosquito-Borne Viruses for Antiviral Therapy. ACS Infect Dis 2019;5:4-8. [PMID: 30387343 DOI: 10.1021/acsinfecdis.8b00286] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
47 Fernandes PO, Chagas MA, Rocha WR, Moraes AH. Non-structural protein 5 (NS5) as a target for antiviral development against established and emergent flaviviruses. Curr Opin Virol 2021;50:30-9. [PMID: 34340199 DOI: 10.1016/j.coviro.2021.07.001] [Reference Citation Analysis]
48 Pant S, Bhattacharya G, Jena NR. Structures and dynamics of peptide and peptidomimetic inhibitors bound to the NS2B-NS3 protease of the ZIKA virus. J Biomol Struct Dyn 2022;:1-13. [PMID: 35238272 DOI: 10.1080/07391102.2022.2045223] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Huang S, Gu J, Ye J, Fang B, Wan S, Wang C, Ashraf U, Li Q, Wang X, Shao L, Song Y, Zheng X, Cao F, Cao S. Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid Interface Sci 2019;542:198-206. [PMID: 30739009 DOI: 10.1016/j.jcis.2019.02.010] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 14.7] [Reference Citation Analysis]
50 Saiz JC, Oya NJ, Blázquez AB, Escribano-Romero E, Martín-Acebes MA. Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses 2018;10:E453. [PMID: 30149598 DOI: 10.3390/v10090453] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
51 Desantis J, Felicetti T, Cannalire R. An overview on small molecules acting as broad spectrum-agents for yellow fever infection. Expert Opin Drug Discov 2022. [PMID: 35638299 DOI: 10.1080/17460441.2022.2084529] [Reference Citation Analysis]
52 Schroeder B, Demirel P, Fischer C, Masri E, Kallis S, Redl L, Rudolf T, Bergemann S, Arkona C, Nitsche C, Bartenschlager R, Rademann J. Nanoparticular Inhibitors of Flavivirus Proteases from Zika, West Nile and Dengue Virus Are Cell-Permeable Antivirals. ACS Med Chem Lett 2021;12:1955-61. [PMID: 34917260 DOI: 10.1021/acsmedchemlett.1c00515] [Reference Citation Analysis]
53 Jackman JA, Costa VV, Park S, Real ALCV, Park JH, Cardozo PL, Ferhan AR, Olmo IG, Moreira TP, Bambirra JL, Queiroz VF, Queiroz-junior CM, Foureaux G, Souza DG, Ribeiro FM, Yoon BK, Wynendaele E, De Spiegeleer B, Teixeira MM, Cho N. Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nature Mater 2018;17:971-7. [DOI: 10.1038/s41563-018-0194-2] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 10.3] [Reference Citation Analysis]
54 Qian X, Qi Z. Mosquito-Borne Flaviviruses and Current Therapeutic Advances. Viruses 2022;14:1226. [DOI: 10.3390/v14061226] [Reference Citation Analysis]
55 Yang CF, Gopula B, Liang JJ, Li JK, Chen SY, Lee YL, Chen CS, Lin YL. Novel AR-12 derivatives, P12-23 and P12-34, inhibit flavivirus replication by blocking host de novo pyrimidine biosynthesis. Emerg Microbes Infect 2018;7:187. [PMID: 30459406 DOI: 10.1038/s41426-018-0191-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
56 Ponciano CS, Ávila EP, Grazul RM, de Oliveira Mendes LA, de Almeida MV. Natural products and their derivatives as anti-flavivirus drug candidates. Med Chem Res 2021;30:1056-73. [DOI: 10.1007/s00044-021-02718-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Yang X, Qi J, Peng R, Dai L, Gould EA, Gao GF, Tien P. Molecular Basis of a Protective/Neutralizing Monoclonal Antibody Targeting Envelope Proteins of both Tick-Borne Encephalitis Virus and Louping Ill Virus. J Virol 2019;93:e02132-18. [PMID: 30760569 DOI: 10.1128/JVI.02132-18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
58 Santos FRS, Lima WG, Maia EHB, Assis LC, Davyt D, Taranto AG, Ferreira JMS. Identification of a Potential Zika Virus Inhibitor Targeting NS5 Methyltransferase Using Virtual Screening and Molecular Dynamics Simulations. J Chem Inf Model 2020;60:562-8. [PMID: 31985225 DOI: 10.1021/acs.jcim.9b00809] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
59 Li K, Ji Q, Jiang S, Zhang N. Advancement in the Development of Therapeutics Against Zika Virus Infection. Front Cell Infect Microbiol 2022;12:946957. [DOI: 10.3389/fcimb.2022.946957] [Reference Citation Analysis]
60 Orlov AA, Zherebker A, Eletskaya AA, Chernikov VS, Kozlovskaya LI, Zhernov YV, Kostyukevich Y, Palyulin VA, Nikolaev EN, Osolodkin DI, Perminova IV. Examination of molecular space and feasible structures of bioactive components of humic substances by FTICR MS data mining in ChEMBL database. Sci Rep 2019;9:12066. [PMID: 31427609 DOI: 10.1038/s41598-019-48000-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
61 Zuwala K, Riber CF, Løvschall KB, Andersen AHF, Sørensen L, Gajda P, Tolstrup M, Zelikin AN. Macromolecular prodrugs of ribavirin: Polymer backbone defines blood safety, drug release, and efficacy of anti-inflammatory effects. J Control Release 2018;275:53-66. [PMID: 29432822 DOI: 10.1016/j.jconrel.2018.02.012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
62 Balingit JC, Phu Ly MH, Matsuda M, Suzuki R, Hasebe F, Morita K, Moi ML. A Simple and High-Throughput ELISA-Based Neutralization Assay for the Determination of Anti-Flavivirus Neutralizing Antibodies. Vaccines (Basel) 2020;8:E297. [PMID: 32532141 DOI: 10.3390/vaccines8020297] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
63 Pach S, Sarter TM, Yousef R, Schaller D, Bergemann S, Arkona C, Rademann J, Nitsche C, Wolber G. Catching a Moving Target: Comparative Modeling of Flaviviral NS2B-NS3 Reveals Small Molecule Zika Protease Inhibitors. ACS Med Chem Lett 2020;11:514-20. [PMID: 32292558 DOI: 10.1021/acsmedchemlett.9b00629] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
64 de Oliveira LC, Ribeiro AM, Albarnaz JD, Torres AA, Guimarães LFZ, Pinto AK, Parker S, Doronin K, Brien JD, Buller MR, Bonjardim CA. The small molecule AZD6244 inhibits dengue virus replication in vitro and protects against lethal challenge in a mouse model. Arch Virol 2020;165:671-81. [PMID: 31942645 DOI: 10.1007/s00705-020-04524-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
65 Yao X, Guo S, Wu W, Wang J, Wu S, He S, Wan Y, Nandakumar KS, Chen X, Sun N, Zhu Q, Liu S. Q63, a novel DENV2 RdRp non-nucleoside inhibitor, inhibited DENV2 replication and infection. J Pharmacol Sci 2018;138:247-56. [PMID: 30518482 DOI: 10.1016/j.jphs.2018.06.012] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
66 Phoo WW, El Sahili A, Zhang Z, Chen MW, Liew CW, Lescar J, Vasudevan SG, Luo D. Crystal structures of full length DENV4 NS2B-NS3 reveal the dynamic interaction between NS2B and NS3. Antiviral Res 2020;182:104900. [PMID: 32763315 DOI: 10.1016/j.antiviral.2020.104900] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
67 Zhang J, Lan Y, Sanyal S. Modulation of Lipid Droplet Metabolism-A Potential Target for Therapeutic Intervention in Flaviviridae Infections. Front Microbiol 2017;8:2286. [PMID: 29234310 DOI: 10.3389/fmicb.2017.02286] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
68 Jiménez de Oya N, Esler WP, Huard K, El-Kattan AF, Karamanlidis G, Blázquez AB, Ramos-Ibeas P, Escribano-Romero E, Louloudes-Lázaro A, Casas J, Sobrino F, Hoehn K, James DE, Gutiérrez-Adán A, Saiz JC, Martín-Acebes MA. Targeting host metabolism by inhibition of acetyl-Coenzyme A carboxylase reduces flavivirus infection in mouse models. Emerg Microbes Infect 2019;8:624-36. [PMID: 30999821 DOI: 10.1080/22221751.2019.1604084] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
69 Lei J, Hilgenfeld R. RNA-virus proteases counteracting host innate immunity. FEBS Lett 2017;591:3190-210. [PMID: 28850669 DOI: 10.1002/1873-3468.12827] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
70 Kumar N, Sarma H, Sastry GN. Repurposing of approved drug molecules for viral infectious diseases: a molecular modelling approach. J Biomol Struct Dyn 2021;:1-17. [PMID: 33810775 DOI: 10.1080/07391102.2021.1905558] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Wang B, Thurmond S, Hai R, Song J. Structure and function of Zika virus NS5 protein: perspectives for drug design. Cell Mol Life Sci 2018;75:1723-36. [PMID: 29423529 DOI: 10.1007/s00018-018-2751-x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 7.8] [Reference Citation Analysis]
72 Thirumoorthy G, Tarachand SP, Nagella P, Veerappa Lakshmaiah V. Identification of potential ZIKV NS2B-NS3 protease inhibitors from Andrographis paniculata: An insilico approach. J Biomol Struct Dyn 2021;:1-13. [PMID: 34319220 DOI: 10.1080/07391102.2021.1956592] [Reference Citation Analysis]
73 Prochnow H, Rox K, Birudukota NVS, Weichert L, Hotop SK, Klahn P, Mohr K, Franz S, Banda DH, Blockus S, Schreiber J, Haid S, Oeyen M, Martinez JP, Süssmuth RD, Wink J, Meyerhans A, Goffinet C, Messerle M, Schulz TF, Kröger A, Schols D, Pietschmann T, Brönstrup M. Labyrinthopeptins Exert Broad-Spectrum Antiviral Activity through Lipid-Binding-Mediated Virolysis. J Virol 2020;94:e01471-19. [PMID: 31666384 DOI: 10.1128/JVI.01471-19] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
74 [DOI: 10.1101/2020.06.06.20124461] [Cited by in Crossref: 30] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
75 Felicetti T, Manfroni G, Cecchetti V, Cannalire R. Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020;15:2391-419. [PMID: 32961008 DOI: 10.1002/cmdc.202000464] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
76 Nebigil CG, Moog C, Vagner S, Benkirane-Jessel N, Smith DR, Désaubry L. Flavaglines as natural products targeting eIF4A and prohibitins: From traditional Chinese medicine to antiviral activity against coronaviruses. Eur J Med Chem 2020;203:112653. [PMID: 32693294 DOI: 10.1016/j.ejmech.2020.112653] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
77 Richter M, Leuthold MM, Graf D, Bartenschlager R, Klein CD. Prodrug Activation by a Viral Protease: Evaluating Combretastatin Peptide Hybrids To Selectively Target Infected Cells. ACS Med Chem Lett 2019;10:1115-21. [PMID: 31413794 DOI: 10.1021/acsmedchemlett.9b00058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
78 Santos FRS, Nunes DAF, Lima WG, Davyt D, Santos LL, Taranto AG, M. S. Ferreira J. Identification of Zika Virus NS2B-NS3 Protease Inhibitors by Structure-Based Virtual Screening and Drug Repurposing Approaches. J Chem Inf Model 2020;60:731-7. [DOI: 10.1021/acs.jcim.9b00933] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
79 Samrat SK, Xu J, Li Z, Zhou J, Li H. Antiviral Agents against Flavivirus Protease: Prospect and Future Direction. Pathogens 2022;11:293. [DOI: 10.3390/pathogens11030293] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
80 Shah S, Chougule MB, Kotha AK, Kashikar R, Godugu C, Raghuvanshi RS, Singh SB, Srivastava S. Nanomedicine based approaches for combating viral infections. J Control Release 2021;338:80-104. [PMID: 34375690 DOI: 10.1016/j.jconrel.2021.08.011] [Reference Citation Analysis]
81 Farelo MA, Korrou-karava D, Brooks KF, Russell TA, Maringer K, Mayerhofer PU. Dengue and Zika Virus Capsid Proteins Contain a Common PEX19-Binding Motif. Viruses 2022;14:253. [DOI: 10.3390/v14020253] [Reference Citation Analysis]
82 Silva NM, Santos NC, Martins IC. Dengue and Zika Viruses: Epidemiological History, Potential Therapies, and Promising Vaccines. Trop Med Infect Dis 2020;5:E150. [PMID: 32977703 DOI: 10.3390/tropicalmed5040150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
83 Eyer L, Kondo H, Zouharova D, Hirano M, Valdés JJ, Muto M, Kastl T, Kobayashi S, Haviernik J, Igarashi M, Kariwa H, Vaculovicova M, Cerny J, Kizek R, Kröger A, Lienenklaus S, Dejmek M, Nencka R, Palus M, Salat J, De Clercq E, Yoshii K, Ruzek D. Escape of Tick-Borne Flavivirus from 2'-C-Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. J Virol 2017;91:e01028-17. [PMID: 28814513 DOI: 10.1128/JVI.01028-17] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]
84 Sinigaglia A, Riccetti S, Trevisan M, Barzon L. In silico approaches to Zika virus drug discovery. Expert Opin Drug Discov 2018;13:825-35. [PMID: 30160181 DOI: 10.1080/17460441.2018.1515909] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
85 Cui X, Qian P, Rao T, Wei Y, Zhao F, Zhang H, Chen H, Li X. Cellular Interleukin Enhancer-Binding Factor 2, ILF2, Inhibits Japanese Encephalitis Virus Replication In Vitro. Viruses 2019;11:E559. [PMID: 31212927 DOI: 10.3390/v11060559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
86 Sevvana M, Kuhn RJ. Mapping the diverse structural landscape of the flavivirus antibody repertoire. Curr Opin Virol 2020;45:51-64. [PMID: 32801077 DOI: 10.1016/j.coviro.2020.07.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
87 de Castro Barbosa E, Alves TMA, Kohlhoff M, Jangola STG, Pires DEV, Figueiredo ACC, Alves ÉAR, Calzavara-Silva CE, Sobral M, Kroon EG, Rosa LH, Zani CL, de Oliveira JG. Searching for plant-derived antivirals against dengue virus and Zika virus. Virol J 2022;19:31. [PMID: 35193667 DOI: 10.1186/s12985-022-01751-z] [Reference Citation Analysis]
88 Rajput A, Thakur A, Rastogi A, Choudhury S, Kumar M. Computational identification of repurposed drugs against viruses causing epidemics and pandemics via drug-target network analysis. Comput Biol Med 2021;136:104677. [PMID: 34332351 DOI: 10.1016/j.compbiomed.2021.104677] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
89 Roa Linares VC, Gallego Gómez JC. La pérdida de función de la quinasa dependiente de ciclina 5 (CDK5) altera el citoesqueleto y reduce la infección in vitro por el virus del dengue 2. Acta biol Colomb 2019;24:474-85. [DOI: 10.15446/abc.v24n3.79347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
90 Pitts J, Hsia CY, Lian W, Wang J, Pfeil MP, Kwiatkowski N, Li Z, Jang J, Gray NS, Yang PL. Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Res 2019;164:147-53. [PMID: 30771406 DOI: 10.1016/j.antiviral.2019.02.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
91 Lu L, Su S, Yang H, Jiang S. Antivirals with common targets against highly pathogenic viruses. Cell 2021;184:1604-20. [PMID: 33740455 DOI: 10.1016/j.cell.2021.02.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
92 Barzon L, Palù G. Recent developments in vaccines and biological therapies against Japanese encephalitis virus. Expert Opinion on Biological Therapy 2018;18:851-64. [DOI: 10.1080/14712598.2018.1499721] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
93 Ianevski A, Zusinaite E, Kuivanen S, Strand M, Lysvand H, Teppor M, Kakkola L, Paavilainen H, Laajala M, Kallio-Kokko H, Valkonen M, Kantele A, Telling K, Lutsar I, Letjuka P, Metelitsa N, Oksenych V, Bjørås M, Nordbø SA, Dumpis U, Vitkauskiene A, Öhrmalm C, Bondeson K, Bergqvist A, Aittokallio T, Cox RJ, Evander M, Hukkanen V, Marjomaki V, Julkunen I, Vapalahti O, Tenson T, Merits A, Kainov D. Novel activities of safe-in-human broad-spectrum antiviral agents. Antiviral Res 2018;154:174-82. [PMID: 29698664 DOI: 10.1016/j.antiviral.2018.04.016] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
94 Bernatchez JA, Yang Z, Coste M, Li J, Beck S, Liu Y, Clark AE, Zhu Z, Luna LA, Sohl CD, Purse BW, Li R, Siqueira-Neto JL. Development and Validation of a Phenotypic High-Content Imaging Assay for Assessing the Antiviral Activity of Small-Molecule Inhibitors Targeting Zika Virus. Antimicrob Agents Chemother 2018;62:e00725-18. [PMID: 30061280 DOI: 10.1128/AAC.00725-18] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
95 Obi JO, Gutiérrez-Barbosa H, Chua JV, Deredge DJ. Current Trends and Limitations in Dengue Antiviral Research. Trop Med Infect Dis 2021;6:180. [PMID: 34698303 DOI: 10.3390/tropicalmed6040180] [Reference Citation Analysis]
96 Joe S, Salam AAA, Neogi U, N NB, Mudgal PP. Antiviral drug research for Japanese encephalitis: an updated review. Pharmacol Rep 2022. [PMID: 35182390 DOI: 10.1007/s43440-022-00355-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Becker W, Adams LA, Graham B, Wagner GE, Zangger K, Otting G, Nitsche C. Trimethylsilyl tag for probing protein–ligand interactions by NMR. J Biomol NMR 2018;70:211-8. [DOI: 10.1007/s10858-018-0173-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
98 Chávez-Fumagalli MA, Lage DP, Tavares GSV, Mendonça DVC, Dias DS, Ribeiro PAF, Ludolf F, Costa LE, Coelho VTS, Coelho EAF. In silico Leishmania proteome mining applied to identify drug target potential to be used to treat against visceral and tegumentary leishmaniasis. J Mol Graph Model 2019;87:89-97. [PMID: 30522092 DOI: 10.1016/j.jmgm.2018.11.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
99 Pérez-Pérez MJ, Saiz JC, Priego EM, Martín-Acebes MA. Antivirals against (Re)emerging Flaviviruses: Should We Target the Virus or the Host? ACS Med Chem Lett 2022;13:5-10. [PMID: 35059112 DOI: 10.1021/acsmedchemlett.1c00617] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
100 Wan YH, Wu WY, Guo SX, He SJ, Tang XD, Wu XY, Nandakumar KS, Zou M, Li L, Chen XG, Liu SW, Yao XG. [1,2,4]Triazolo[1,5-a]pyrimidine derivative (Mol-5) is a new NS5-RdRp inhibitor of DENV2 proliferation and DENV2-induced inflammation. Acta Pharmacol Sin 2020;41:706-18. [PMID: 31729469 DOI: 10.1038/s41401-019-0316-7] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
101 de Godoy AS, Sachetto Fernandes R, Campos Aguiar AC, Vieira Bueno R, de Moraes Roso Mesquita NC, Carvalho Guido RV, Oliva G. Structural and mechanistic insight from antiviral and antiparasitic enzyme drug targets for tropical infectious diseases. Curr Opin Struct Biol 2019;59:65-72. [PMID: 30954758 DOI: 10.1016/j.sbi.2019.02.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
102 Shin H, Park SJ, Kim J, Lee JS, Min DH. A graphene oxide-based fluorescent nanosensor to identify antiviral agents via a drug repurposing screen. Biosens Bioelectron 2021;183:113208. [PMID: 33839535 DOI: 10.1016/j.bios.2021.113208] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
103 Okamoto K, Shoji T, Tsutsui M, Shida N, Chiba K. Synthesis of Ribo-Azanucleosides by Anodic Oxidation: Reactivity Control of Intermediate for Efficient Access to Pharmacophores. Chemistry 2018;24:17902-5. [PMID: 30216580 DOI: 10.1002/chem.201804285] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
104 Noreen, Ali R, Badshah SL, Faheem M, Abbasi SW, Ullah R, Bari A, Jamal SB, Mahmood HM, Haider A, Haider S. Identification of potential inhibitors of Zika virus NS5 RNA-dependent RNA polymerase through virtual screening and molecular dynamic simulations. Saudi Pharm J 2020;28:1580-91. [PMID: 33424251 DOI: 10.1016/j.jsps.2020.10.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
105 Vincetti P, Kaptein SJF, Costantino G, Neyts J, Radi M. Scaffold Morphing Approach To Expand the Toolbox of Broad-Spectrum Antivirals Blocking Dengue/Zika Replication. ACS Med Chem Lett 2019;10:558-63. [PMID: 30996796 DOI: 10.1021/acsmedchemlett.8b00583] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
106 Dražić T, Kopf S, Corridan J, Leuthold MM, Bertoša B, Klein CD. Peptide-β-lactam Inhibitors of Dengue and West Nile Virus NS2B-NS3 Protease Display Two Distinct Binding Modes. J Med Chem 2020;63:140-56. [DOI: 10.1021/acs.jmedchem.9b00759] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
107 Verma J, Subbarao N, Rajala MS. Envelope proteins as antiviral drug target. Journal of Drug Targeting 2020;28:1046-52. [DOI: 10.1080/1061186x.2020.1792916] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Kumar V, Patiyal S, Dhall A, Sharma N, Raghava GPS. B3Pred: A Random-Forest-Based Method for Predicting and Designing Blood-Brain Barrier Penetrating Peptides. Pharmaceutics 2021;13:1237. [PMID: 34452198 DOI: 10.3390/pharmaceutics13081237] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
109 Dai S, Zhang Y, Zhang T, Zhang B, Wang H, Deng F. Establishment of Baculovirus-Expressed VLPs Induced Syncytial Formation Assay for Flavivirus Antiviral Screening. Viruses 2018;10:E365. [PMID: 29997331 DOI: 10.3390/v10070365] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
110 Evans DeWald L, Starr C, Butters T, Treston A, Warfield KL. Iminosugars: A host-targeted approach to combat Flaviviridae infections. Antiviral Res 2020;184:104881. [PMID: 32768411 DOI: 10.1016/j.antiviral.2020.104881] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
111 Saiz JC. Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019;12:E127. [PMID: 31480297 DOI: 10.3390/ph12030127] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
112 Farfan-Morales CN, Cordero-Rivera CD, Reyes-Ruiz JM, Hurtado-Monzón AM, Osuna-Ramos JF, González-González AM, De Jesús-González LA, Palacios-Rápalo SN, Del Ángel RM. Anti-flavivirus Properties of Lipid-Lowering Drugs. Front Physiol 2021;12:749770. [PMID: 34690817 DOI: 10.3389/fphys.2021.749770] [Reference Citation Analysis]
113 Sun Y, Gong L, Yin Y, Zhang L, Sun Q, Feng K, Cui Y, Zhang Q, Zhang X, Deng X, You F, Lu D, Lin Z. A Gradient pH-Sensitive Polymer-Based Antiviral Strategy via Viroporin-Induced Membrane Acidification. Adv Mater 2022;34:e2109580. [PMID: 35229371 DOI: 10.1002/adma.202109580] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Ozer M, Goksu SY, Conception R, Ulker E, Balderas RM, Mahdi M, Manning Z, To K, Effendi M, Anandakrishnan R, Whitman M, Gugnani M. Effectiveness and safety of Ivermectin in COVID-19 patients: A prospective study at a safety-net hospital. J Med Virol 2021. [PMID: 34811753 DOI: 10.1002/jmv.27469] [Reference Citation Analysis]
115 Altay O, Mohammadi E, Lam S, Turkez H, Boren J, Nielsen J, Uhlen M, Mardinoglu A. Current Status of COVID-19 Therapies and Drug Repositioning Applications. iScience 2020;23:101303. [PMID: 32622261 DOI: 10.1016/j.isci.2020.101303] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 19.0] [Reference Citation Analysis]
116 Ma J, Zhang X, Soloveva V, Warren T, Guo F, Wu S, Lu H, Guo J, Su Q, Shen H, Solon E, Comunale MA, Mehta A, Guo JT, Bavari S, Du Y, Block TM, Chang J. Enhancing the antiviral potency of ER α-glucosidase inhibitor IHVR-19029 against hemorrhagic fever viruses in vitro and in vivo. Antiviral Res 2018;150:112-22. [PMID: 29253498 DOI: 10.1016/j.antiviral.2017.12.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
117 Yao X, Ling Y, Guo S, Wu W, He S, Zhang Q, Zou M, Nandakumar KS, Chen X, Liu S. Tatanan A from the Acorus calamus L. root inhibited dengue virus proliferation and infections. Phytomedicine 2018;42:258-67. [PMID: 29655694 DOI: 10.1016/j.phymed.2018.03.018] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
118 Scroggs SLP, Gass JT, Chinnasamy R, Widen SG, Azar SR, Rossi SL, Arterburn JB, Vasilakis N, Hanley KA. Evolution of resistance to fluoroquinolones by dengue virus serotype 4 provides insight into mechanism of action and consequences for viral fitness. Virology 2021;552:94-106. [PMID: 33120225 DOI: 10.1016/j.virol.2020.09.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Martín-Acebes MA, Jiménez de Oya N, Saiz JC. Lipid Metabolism as a Source of Druggable Targets for Antiviral Discovery against Zika and Other Flaviviruses. Pharmaceuticals (Basel) 2019;12:E97. [PMID: 31234348 DOI: 10.3390/ph12020097] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
120 Boccuto A, Dragoni F, Picarazzi F, Lai A, Della Ventura C, Veo C, Giammarino F, Saladini F, Zehender G, Zazzi M, Mori M, Vicenti I. Sofosbuvir Selects for Drug-Resistant Amino Acid Variants in the Zika Virus RNA-Dependent RNA-Polymerase Complex In Vitro. Int J Mol Sci 2021;22:2670. [PMID: 33800884 DOI: 10.3390/ijms22052670] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
121 Li Q, Kang C. Structure and Dynamics of Zika Virus Protease and Its Insights into Inhibitor Design. Biomedicines 2021;9:1044. [PMID: 34440248 DOI: 10.3390/biomedicines9081044] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Spizzichino S, Mattedi G, Lauder K, Valle C, Aouadi W, Canard B, Decroly E, Kaptein SJF, Neyts J, Graham C, Sule Z, Barlow DJ, Silvestri R, Castagnolo D. Design, Synthesis and Discovery of N,N'-Carbazoyl-aryl-urea Inhibitors of Zika NS5 Methyltransferase and Virus Replication. ChemMedChem 2020;15:385-90. [PMID: 31805205 DOI: 10.1002/cmdc.201900533] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
123 Richter M, Boldescu V, Graf D, Streicher F, Dimoglo A, Bartenschlager R, Klein CD. Synthesis, Biological Evaluation, and Molecular Docking of Combretastatin and Colchicine Derivatives and their hCE1-Activated Prodrugs as Antiviral Agents. ChemMedChem 2019;14:469-83. [PMID: 30605241 DOI: 10.1002/cmdc.201800641] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 7.3] [Reference Citation Analysis]
124 Giovannoni F, Bosch I, Polonio CM, Torti MF, Wheeler MA, Li Z, Romorini L, Rodriguez Varela MS, Rothhammer V, Barroso A, Tjon EC, Sanmarco LM, Takenaka MC, Modaresi SMS, Gutiérrez-Vázquez C, Zanluqui NG, Dos Santos NB, Munhoz CD, Wang Z, Damonte EB, Sherr D, Gehrke L, Peron JPS, Garcia CC, Quintana FJ. AHR is a Zika virus host factor and a candidate target for antiviral therapy. Nat Neurosci 2020;23:939-51. [PMID: 32690969 DOI: 10.1038/s41593-020-0664-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
125 Hu Y, Sun L. Systematic Analysis of Structure Similarity between Zika Virus and Other Flaviviruses. ACS Infect Dis 2019;5:1070-80. [PMID: 31038920 DOI: 10.1021/acsinfecdis.9b00047] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
126 Felicetti T, Burali MS, Gwee CP, Ki Chan KW, Alonso S, Massari S, Sabatini S, Tabarrini O, Barreca ML, Cecchetti V, Vasudevan SG, Manfroni G. Sustainable, three-component, one-pot procedure to obtain active anti-flavivirus agents. Eur J Med Chem 2021;210:112992. [PMID: 33208235 DOI: 10.1016/j.ejmech.2020.112992] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
127 Bernatchez JA, Tran LT, Li J, Luan Y, Siqueira-Neto JL, Li R. Drugs for the Treatment of Zika Virus Infection. J Med Chem 2020;63:470-89. [PMID: 31549836 DOI: 10.1021/acs.jmedchem.9b00775] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 7.7] [Reference Citation Analysis]
128 Vicenti I, Dragoni F, Giannini A, Giammarino F, Spinicci M, Saladini F, Boccuto A, Zazzi M. Development of a Cell-Based Immunodetection Assay for Simultaneous Screening of Antiviral Compounds Inhibiting Zika and Dengue Virus Replication. SLAS Discov 2020;25:506-14. [PMID: 32186426 DOI: 10.1177/2472555220911456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
129 Behnam MAM, Klein CD. Corona versus Dengue: Distinct Mechanisms for Inhibition of Polyprotein Processing by Antiviral Drugs. ACS Pharmacol Transl Sci . [DOI: 10.1021/acsptsci.2c00105] [Reference Citation Analysis]
130 Kovaleva KS, Zubkov FI, Bormotov NI, Novikov RA, Dorovatovskii PV, Khrustalev VN, Gatilov YV, Zarubaev VV, Yarovaya OI, Shishkina LN, Salakhutdinov NF. Synthesis of d-(+)-camphor-based N-acylhydrazones and their antiviral activity. Medchemcomm 2018;9:2072-82. [PMID: 30746065 DOI: 10.1039/c8md00442k] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
131 Rocha RF, Del Sarto JL, Marques RE, Costa VV, Teixeira MM. Host target-based approaches against arboviral diseases. Biol Chem 2018;399:203-17. [PMID: 29145171 DOI: 10.1515/hsz-2017-0236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
132 Kaptein SJF, Vincetti P, Crespan E, Rivera JIA, Costantino G, Maga G, Neyts J, Radi M. Identification of Broad-Spectrum Dengue/Zika Virus Replication Inhibitors by Functionalization of Quinoline and 2,6-Diaminopurine Scaffolds. ChemMedChem 2018;13:1371-6. [DOI: 10.1002/cmdc.201800178] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
133 Yao X, Ling Y, Guo S, He S, Wang J, Zhang Q, Wu W, Zou M, Zhang T, Nandakumar KS, Chen X, Liu S. Inhibition of dengue viral infection by diasarone-I is associated with 2'O methyltransferase of NS5. European Journal of Pharmacology 2018;821:11-20. [DOI: 10.1016/j.ejphar.2017.12.029] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
134 Blázquez AB, Vázquez-Calvo Á, Martín-Acebes MA, Saiz JC. Pharmacological Inhibition of Protein Kinase C Reduces West Nile Virus Replication. Viruses 2018;10:E91. [PMID: 29473907 DOI: 10.3390/v10020091] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
135 Nitsche C. Proteases from dengue, West Nile and Zika viruses as drug targets. Biophys Rev 2019;11:157-65. [PMID: 30806881 DOI: 10.1007/s12551-019-00508-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
136 Powie Y, Strydom M, Aucamp M, Schellack N, Steenkamp V, Smith C. Zebrafish behavioral response to ivermectin: insights into potential neurological risk. Medicine in Drug Discovery 2022. [DOI: 10.1016/j.medidd.2022.100141] [Reference Citation Analysis]
137 Eyer L, Nencka R, de Clercq E, Seley-Radtke K, Růžek D. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother 2018;26:2040206618761299. [PMID: 29534608 DOI: 10.1177/2040206618761299] [Cited by in Crossref: 53] [Cited by in F6Publishing: 44] [Article Influence: 17.7] [Reference Citation Analysis]
138 Fink SL, Vojtech L, Wagoner J, Slivinski NSJ, Jackson KJ, Wang R, Khadka S, Luthra P, Basler CF, Polyak SJ. The Antiviral Drug Arbidol Inhibits Zika Virus. Sci Rep 2018;8:8989. [PMID: 29895962 DOI: 10.1038/s41598-018-27224-4] [Cited by in Crossref: 43] [Cited by in F6Publishing: 33] [Article Influence: 10.8] [Reference Citation Analysis]
139 Cao YQ, Yuan L, Zhao Q, Yuan JL, Miao C, Chang YF, Wen XT, Wu R, Huang XB, Wen YP, Yan QG, Huang Y, Han XF, Ma XP, Cao SJ. Hsp40 Protein DNAJB6 Interacts with Viral NS3 and Inhibits the Replication of the Japanese Encephalitis Virus. Int J Mol Sci 2019;20:E5719. [PMID: 31739611 DOI: 10.3390/ijms20225719] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
140 Hwang J, Jiang A, Fikrig E. A potent prolyl tRNA synthetase inhibitor antagonizes Chikungunya and Dengue viruses. Antiviral Res 2019;161:163-8. [PMID: 30521835 DOI: 10.1016/j.antiviral.2018.11.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
141 Cannalire R, Tarantino D, Piorkowski G, Carletti T, Massari S, Felicetti T, Barreca ML, Sabatini S, Tabarrini O, Marcello A, Milani M, Cecchetti V, Mastrangelo E, Manfroni G, Querat G. Broad spectrum anti-flavivirus pyridobenzothiazolones leading to less infective virions. Antiviral Research 2019;167:6-12. [DOI: 10.1016/j.antiviral.2019.03.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
142 Ruzek D, Avšič Županc T, Borde J, Chrdle A, Eyer L, Karganova G, Kholodilov I, Knap N, Kozlovskaya L, Matveev A, Miller AD, Osolodkin DI, Överby AK, Tikunova N, Tkachev S, Zajkowska J. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019;164:23-51. [PMID: 30710567 DOI: 10.1016/j.antiviral.2019.01.014] [Cited by in Crossref: 90] [Cited by in F6Publishing: 73] [Article Influence: 30.0] [Reference Citation Analysis]
143 Segura Guerrero NA, Sharma S, Neyts J, Kaptein SJF. Favipiravir inhibits in vitro Usutu virus replication and delays disease progression in an infection model in mice. Antiviral Res 2018;160:137-42. [PMID: 30385306 DOI: 10.1016/j.antiviral.2018.10.026] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
144 Voss S, Nitsche C. Inhibitors of the Zika virus protease NS2B-NS3. Bioorg Med Chem Lett 2020;30:126965. [PMID: 31980339 DOI: 10.1016/j.bmcl.2020.126965] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
145 Cuartas-lópez AM, Hernández-cuellar CE, Gallego-gómez JC. Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Research 2018;256:153-65. [DOI: 10.1016/j.virusres.2018.08.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]