BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ong ZY, Liu JJ, Pang ZP, Grill HJ. Paraventricular Thalamic Control of Food Intake and Reward: Role of Glucagon-Like Peptide-1 Receptor Signaling. Neuropsychopharmacology 2017;42:2387-97. [PMID: 28811669 DOI: 10.1038/npp.2017.150] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 9.6] [Reference Citation Analysis]
Number Citing Articles
1 Araujo-Silva VC, Santos-Silva A, Lourenço AS, Barros-Barbosa CM, Moraes-Souza RQ, Soares TS, Karki B, Paula VG, Sinzato YK, Damasceno DC, Volpato GT. Congenital Anomalies Programmed by Maternal Diabetes and Obesity on Offspring of Rats. Front Physiol 2021;12:701767. [PMID: 34447317 DOI: 10.3389/fphys.2021.701767] [Reference Citation Analysis]
2 Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019;30:72-130. [PMID: 31767182 DOI: 10.1016/j.molmet.2019.09.010] [Cited by in Crossref: 212] [Cited by in F6Publishing: 204] [Article Influence: 70.7] [Reference Citation Analysis]
3 Card JP, Johnson AL, Llewellyn-Smith IJ, Zheng H, Anand R, Brierley DI, Trapp S, Rinaman L. GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. J Comp Neurol 2018;526:2149-64. [PMID: 30019398 DOI: 10.1002/cne.24482] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
4 Drucker DJ. GLP-1 physiology informs the pharmacotherapy of obesity. Mol Metab 2021;:101351. [PMID: 34626851 DOI: 10.1016/j.molmet.2021.101351] [Reference Citation Analysis]
5 Grill HJ. A Role for GLP-1 in Treating Hyperphagia and Obesity. Endocrinology 2020;161:bqaa093. [PMID: 32516384 DOI: 10.1210/endocr/bqaa093] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
6 Gargiulo AT, Badve PS, Curtis GR, Prino BE, Barson JR. Inactivation of the thalamic paraventricular nucleus promotes place preference and sucrose seeking in male rats. Psychopharmacology (Berl) 2022. [PMID: 35524009 DOI: 10.1007/s00213-022-06160-2] [Reference Citation Analysis]
7 De Luca SN, Miller AA, Sominsky L, Spencer SJ. Microglial regulation of satiety and cognition. J Neuroendocrinol 2020;32. [DOI: 10.1111/jne.12838] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Williams DL. The diverse effects of brain glucagon-like peptide 1 receptors on ingestive behaviour. Br J Pharmacol 2021. [PMID: 33990944 DOI: 10.1111/bph.15535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The Physiological Control of Eating: Signals, Neurons, and Networks. Physiol Rev 2021. [PMID: 34486393 DOI: 10.1152/physrev.00028.2020] [Reference Citation Analysis]
10 Xu W, Dahlke SP, Emery AC, Sung M, Chepurny OG, Holz GG, Eiden LE. Cyclic AMP-dependent activation of ERK via GLP-1 receptor signalling requires the neuroendocrine cell-specific guanine nucleotide exchanger NCS-RapGEF2. J Neuroendocrinol 2021;33:e12974. [PMID: 33960038 DOI: 10.1111/jne.12974] [Reference Citation Analysis]
11 Zhou K, Zhu L, Hou G, Chen X, Chen B, Yang C, Zhu Y. The Contribution of Thalamic Nuclei in Salience Processing. Front Behav Neurosci 2021;15:634618. [PMID: 33664657 DOI: 10.3389/fnbeh.2021.634618] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Wang Q, Zhang X, Leng H, Luan X, Guo F, Sun X, Gao S, Liu X, Qin H, Xu L. Zona incerta projection neurons and GABAergic and GLP-1 mechanisms in the nucleus accumbens are involved in the control of gastric function and food intake. Neuropeptides 2020;80:102018. [PMID: 32000986 DOI: 10.1016/j.npep.2020.102018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Chen XY, Chen L, Yang W, Xie AM. GLP-1 Suppresses Feeding Behaviors and Modulates Neuronal Electrophysiological Properties in Multiple Brain Regions. Front Mol Neurosci 2021;14:793004. [PMID: 34975402 DOI: 10.3389/fnmol.2021.793004] [Reference Citation Analysis]
14 Dumont C, Li G, Castel J, Luquet S, Gangarossa G. Hindbrain catecholaminergic inputs to the paraventricular thalamus scale feeding and metabolic efficiency in stress-related contexts. J Physiol 2022. [PMID: 35648134 DOI: 10.1113/JP282996] [Reference Citation Analysis]
15 Hua R, Wang X, Chen X, Wang X, Huang P, Li P, Mei W, Li H. Calretinin Neurons in the Midline Thalamus Modulate Starvation-Induced Arousal. Current Biology 2018;28:3948-3959.e4. [DOI: 10.1016/j.cub.2018.11.020] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
16 Vestlund J, Jerlhag E. The glucagon-like peptide-1 receptor agonist, exendin-4, reduces sexual interaction behaviors in a brain site-specific manner in sexually naïve male mice. Horm Behav 2020;124:104778. [PMID: 32450068 DOI: 10.1016/j.yhbeh.2020.104778] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 van Galen KA, Booij J, Schrantee A, Adriaanse SM, Unmehopa UA, Fliers E, Schwartz GJ, DiLeone RJ, Ter Horst KW, la Fleur SE, Serlie MJ. The response to prolonged fasting in hypothalamic serotonin transporter availability is blunted in obesity. Metabolism 2021;123:154839. [PMID: 34331964 DOI: 10.1016/j.metabol.2021.154839] [Reference Citation Analysis]
18 Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, Buckley ST, Farkas E, Fekete C, Frederiksen KS, Helms HCC, Jeppesen JF, John LM, Pyke C, Nøhr J, Lu TT, Polex-Wolf J, Prevot V, Raun K, Simonsen L, Sun G, Szilvásy-Szabó A, Willenbrock H, Secher A, Knudsen LB, Hogendorf WFJ. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020;5:133429. [PMID: 32213703 DOI: 10.1172/jci.insight.133429] [Cited by in Crossref: 57] [Cited by in F6Publishing: 43] [Article Influence: 28.5] [Reference Citation Analysis]
19 Decarie-Spain L, Kanoski SE. Ghrelin and Glucagon-Like Peptide-1: A Gut-Brain Axis Battle for Food Reward. Nutrients 2021;13:977. [PMID: 33803053 DOI: 10.3390/nu13030977] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Northeast RC, Vyazovskiy VV, Bechtold DA. Eat, sleep, repeat: the role of the circadian system in balancing sleep-wake control with metabolic need. Curr Opin Physiol 2020;15:183-91. [PMID: 32617440 DOI: 10.1016/j.cophys.2020.02.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
21 Ye Q, Nunez J, Zhang X. Oxytocin Receptor-Expressing Neurons in the Paraventricular Thalamus Regulate Feeding Motivation through Excitatory Projections to the Nucleus Accumbens Core. J Neurosci 2022;42:3949-64. [PMID: 35387870 DOI: 10.1523/JNEUROSCI.2042-21.2022] [Reference Citation Analysis]
22 Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020;12:E3304. [PMID: 33126672 DOI: 10.3390/nu12113304] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
23 McNally GP. Motivational competition and the paraventricular thalamus. Neurosci Biobehav Rev 2021;125:193-207. [PMID: 33609570 DOI: 10.1016/j.neubiorev.2021.02.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
24 Zheng H, Reiner DJ, Hayes MR, Rinaman L. Chronic Suppression of Glucagon-Like Peptide-1 Receptor (GLP1R) mRNA Translation in the Rat Bed Nucleus of the Stria Terminalis Reduces Anxiety-Like Behavior and Stress-Induced Hypophagia, But Prolongs Stress-Induced Elevation of Plasma Corticosterone. J Neurosci 2019;39:2649-63. [PMID: 30683681 DOI: 10.1523/JNEUROSCI.2180-18.2019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
25 Kuhn BN, Klumpner MS, Covelo IR, Campus P, Flagel SB. Transient inactivation of the paraventricular nucleus of the thalamus enhances cue-induced reinstatement in goal-trackers, but not sign-trackers. Psychopharmacology (Berl) 2018;235:999-1014. [PMID: 29285634 DOI: 10.1007/s00213-017-4816-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
26 Hansen HH, Perens J, Roostalu U, Skytte JL, Salinas CG, Barkholt P, Thorbek DD, Rigbolt KTG, Vrang N, Jelsing J, Hecksher-Sørensen J. Whole-brain activation signatures of weight-lowering drugs. Mol Metab 2021;47:101171. [PMID: 33529728 DOI: 10.1016/j.molmet.2021.101171] [Reference Citation Analysis]
27 Almaguer-Mederos LE, Pérez-Ávila I, Aguilera-Rodríguez R, Velázquez-Garcés M, Almaguer-Gotay D, Hechavarría-Pupo R, Rodríguez-Estupiñán A, Auburger G. Body Mass Index Is Significantly Associated With Disease Severity in Spinocerebellar Ataxia Type 2 Patients. Mov Disord 2021;36:1372-80. [PMID: 33548146 DOI: 10.1002/mds.28498] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Yuan XS, Wei HH, Xu W, Wang L, Qu WM, Li RX, Huang ZL. Whole-Brain Monosynaptic Afferent Projections to the Cholecystokinin Neurons of the Suprachiasmatic Nucleus. Front Neurosci 2018;12:807. [PMID: 30455627 DOI: 10.3389/fnins.2018.00807] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
29 Borner T, Wald HS, Ghidewon MY, Zhang B, Wu Z, De Jonghe BC, Breen D, Grill HJ. GDF15 Induces an Aversive Visceral Malaise State that Drives Anorexia and Weight Loss. Cell Rep 2020;31:107543. [PMID: 32320650 DOI: 10.1016/j.celrep.2020.107543] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
30 Yang L. Neuronal cAMP/PKA Signaling and Energy Homeostasis. Adv Exp Med Biol 2018;1090:31-48. [PMID: 30390284 DOI: 10.1007/978-981-13-1286-1_3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
31 Olivo G, Zhukovsky C, Salonen-Ros H, Larsson EM, Brooks S, Schiöth HB. Functional connectivity underlying hedonic response to food in female adolescents with atypical AN: the role of somatosensory and salience networks. Transl Psychiatry 2019;9:276. [PMID: 31699967 DOI: 10.1038/s41398-019-0617-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
32 Penzo MA, Gao C. The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci 2021;44:538-49. [PMID: 33775435 DOI: 10.1016/j.tins.2021.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
33 Alonso-Caraballo Y, Guha SK, Chartoff EH. The neurobiology of abstinence-induced reward-seeking in males and females. Pharmacol Biochem Behav 2021;200:173088. [PMID: 33333134 DOI: 10.1016/j.pbb.2020.173088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Novelle MG, Diéguez C. Unravelling the role and mechanism of adipokine and gastrointestinal signals in animal models in the nonhomeostatic control of energy homeostasis: Implications for binge eating disorder. Eur Eat Disorders Rev 2018;26:551-68. [DOI: 10.1002/erv.2641] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
35 Petrovich GD. The Function of Paraventricular Thalamic Circuitry in Adaptive Control of Feeding Behavior. Front Behav Neurosci 2021;15:671096. [PMID: 33986649 DOI: 10.3389/fnbeh.2021.671096] [Reference Citation Analysis]
36 Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021;11:1679-730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Keller BN, Hajnal A, Browning KN, Arnold AC, Silberman Y. Involvement of the Dorsal Vagal Complex in Alcohol-Related Behaviors. Front Behav Neurosci 2022;16:801825. [DOI: 10.3389/fnbeh.2022.801825] [Reference Citation Analysis]
38 Dixon TN, McNally GP, Ong ZY. Glucagon-Like Peptide-1 Receptor Signaling in the Ventral Tegmental Area Reduces Alcohol Self-Administration in Male Rats. Alcohol Clin Exp Res 2020;44:2118-29. [PMID: 33043520 DOI: 10.1111/acer.14437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
39 Ye Q, Zhang X. Serotonin activates paraventricular thalamic neurons through direct depolarization and indirect disinhibition from zona incerta. J Physiol 2021;599:4883-900. [PMID: 34510418 DOI: 10.1113/JP282088] [Reference Citation Analysis]
40 Jerlhag E. Alcohol-mediated behaviours and the gut-brain axis; with focus on glucagon-like peptide-1. Brain Research 2020;1727:146562. [DOI: 10.1016/j.brainres.2019.146562] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
41 Spann MN, Scheinost D, Feng T, Barbato K, Lee S, Monk C, Peterson BS. Association of Maternal Prepregnancy Body Mass Index With Fetal Growth and Neonatal Thalamic Brain Connectivity Among Adolescent and Young Women. JAMA Netw Open 2020;3:e2024661. [PMID: 33141162 DOI: 10.1001/jamanetworkopen.2020.24661] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
42 Ma J, du Hoffmann J, Kindel M, Beas BS, Chudasama Y, Penzo MA. Divergent projections of the paraventricular nucleus of the thalamus mediate the selection of passive and active defensive behaviors. Nat Neurosci 2021;24:1429-40. [PMID: 34413514 DOI: 10.1038/s41593-021-00912-7] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Povysheva N, Zheng H, Rinaman L. Glucagon-like peptide 1 receptor-mediated stimulation of a GABAergic projection from the bed nucleus of the stria terminalis to the hypothalamic paraventricular nucleus. Neurobiol Stress 2021;15:100363. [PMID: 34277897 DOI: 10.1016/j.ynstr.2021.100363] [Reference Citation Analysis]
44 Woodward ORM, Gribble FM, Reimann F, Lewis JE. Gut peptide regulation of food intake - evidence for the modulation of hedonic feeding. J Physiol 2021. [PMID: 34152020 DOI: 10.1113/JP280581] [Reference Citation Analysis]
45 Williams DL, Lilly NA, Edwards IJ, Yao P, Richards JE, Trapp S. GLP-1 action in the mouse bed nucleus of the stria terminalis. Neuropharmacology 2018;131:83-95. [PMID: 29221794 DOI: 10.1016/j.neuropharm.2017.12.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
46 Choi EA, Jean-Richard-Dit-Bressel P, Clifford CWG, McNally GP. Paraventricular Thalamus Controls Behavior during Motivational Conflict. J Neurosci 2019;39:4945-58. [PMID: 30979815 DOI: 10.1523/JNEUROSCI.2480-18.2019] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 12.0] [Reference Citation Analysis]
47 Christoffel DJ, Walsh JJ, Heifets BD, Hoerbelt P, Neuner S, Sun G, Ravikumar VK, Wu H, Halpern CH, Malenka RC. Input-specific modulation of murine nucleus accumbens differentially regulates hedonic feeding. Nat Commun 2021;12:2135. [PMID: 33837200 DOI: 10.1038/s41467-021-22430-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
48 Harris RBS. Loss of leptin receptor-expressing cells in the hindbrain decreases forebrain leptin sensitivity. Am J Physiol Endocrinol Metab 2020;318:E806-16. [PMID: 32228323 DOI: 10.1152/ajpendo.00020.2020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
49 Meffre J, Sicre M, Diarra M, Marchessaux F, Paleressompoulle D, Ambroggi F. Orexin in the Posterior Paraventricular Thalamus Mediates Hunger-Related Signals in the Nucleus Accumbens Core. Current Biology 2019;29:3298-3306.e4. [DOI: 10.1016/j.cub.2019.07.069] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
50 Sofia Beas B, Gu X, Leng Y, Koita O, Rodriguez-Gonzalez S, Kindel M, Matikainen-Ankney BA, Larsen RS, Kravitz AV, Hoon MA, Penzo MA. A ventrolateral medulla-midline thalamic circuit for hypoglycemic feeding. Nat Commun 2020;11:6218. [PMID: 33277492 DOI: 10.1038/s41467-020-19980-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
51 Barrett LR, Nunez J, Zhang X. Oxytocin activation of paraventricular thalamic neurons promotes feeding motivation to attenuate stress-induced hypophagia. Neuropsychopharmacology 2021;46:1045-56. [PMID: 33495546 DOI: 10.1038/s41386-021-00961-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
52 Wald HS, Chandra A, Kalluri A, Ong ZY, Hayes MR, Grill HJ. NTS and VTA oxytocin reduces food motivation and food seeking. Am J Physiol Regul Integr Comp Physiol 2020;319:R673-83. [PMID: 33026822 DOI: 10.1152/ajpregu.00201.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
53 Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2020;14:614884. [PMID: 33536884 DOI: 10.3389/fnbeh.2020.614884] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Millan EZ, Ong Z, Mcnally GP. Paraventricular thalamus: Gateway to feeding, appetitive motivation, and drug addiction. Brain Research in Addiction. Elsevier; 2017. pp. 113-37. [DOI: 10.1016/bs.pbr.2017.07.006] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 12.0] [Reference Citation Analysis]
55 De Luca SN, Sominsky L, Soch A, Wang H, Ziko I, Rank MM, Spencer SJ. Conditional microglial depletion in rats leads to reversible anorexia and weight loss by disrupting gustatory circuitry. Brain Behav Immun 2019;77:77-91. [PMID: 30578932 DOI: 10.1016/j.bbi.2018.12.008] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]