BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gozzi A, Colavito V, Seke Etet PF, Montanari D, Fiorini S, Tambalo S, Bifone A, Zucconi GG, Bentivoglio M. Modulation of fronto-cortical activity by modafinil: a functional imaging and fos study in the rat. Neuropsychopharmacology 2012;37:822-37. [PMID: 22048464 DOI: 10.1038/npp.2011.260] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Scoriels L, Jones PB, Sahakian BJ. Modafinil effects on cognition and emotion in schizophrenia and its neurochemical modulation in the brain. Neuropharmacology 2013;64:168-84. [PMID: 22820555 DOI: 10.1016/j.neuropharm.2012.07.011] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 5.2] [Reference Citation Analysis]
2 González B, Torres OV, Jayanthi S, Gomez N, Sosa MH, Bernardi A, Urbano FJ, García-Rill E, Cadet JL, Bisagno V. The effects of single-dose injections of modafinil and methamphetamine on epigenetic and functional markers in the mouse medial prefrontal cortex: potential role of dopamine receptors. Prog Neuropsychopharmacol Biol Psychiatry 2019;88:222-34. [PMID: 30056065 DOI: 10.1016/j.pnpbp.2018.07.019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
3 Chen CR, Yang SR, Liu YY, Qu WM, Urade Y, Huang ZL. Roles of adrenergic α1 and dopamine D1 and D2 receptors in the mediation of the desynchronization effects of modafinil in a mouse EEG synchronization model. PLoS One 2013;8:e76102. [PMID: 24116090 DOI: 10.1371/journal.pone.0076102] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
4 Raineri M, González B, Rivero-Echeto C, Muñiz JA, Gutiérrez ML, Ghanem CI, Cadet JL, García-Rill E, Urbano FJ, Bisagno V. Differential effects of environment-induced changes in body temperature on modafinil's actions against methamphetamine-induced striatal toxicity in mice. Neurotox Res 2015;27:71-83. [PMID: 25261212 DOI: 10.1007/s12640-014-9493-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
5 Minzenberg MJ, Gomes GC, Yoon JH, Watrous AJ, Geng J, Firl AJ, Carter CS. Modafinil augments oscillatory power in middle frequencies during rule selection. Psychophysiology 2014;51:510-9. [PMID: 24611660 DOI: 10.1111/psyp.12201] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
6 Giorgi A, Migliarini S, Galbusera A, Maddaloni G, Mereu M, Margiani G, Gritti M, Landi S, Trovato F, Bertozzi SM, Armirotti A, Ratto GM, De Luca MA, Tonini R, Gozzi A, Pasqualetti M. Brain-wide Mapping of Endogenous Serotonergic Transmission via Chemogenetic fMRI. Cell Reports 2017;21:910-8. [DOI: 10.1016/j.celrep.2017.09.087] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 9.4] [Reference Citation Analysis]
7 Bisagno V, González B, Urbano FJ. Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits. Pharmacol Res 2016;109:108-18. [PMID: 26826399 DOI: 10.1016/j.phrs.2016.01.013] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
8 Turner C, Belyavin AJ, Nicholson AN. Duration of activity and mode of action of modafinil: Studies on sleep and wakefulness in humans. J Psychopharmacol 2014;28:643-54. [PMID: 24306135 DOI: 10.1177/0269881113508173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
9 Gozzi A, Lepore S, Vicentini E, Merlo-Pich E, Bifone A. Differential effect of orexin-1 and CRF-1 antagonism on stress circuits: a fMRI study in the rat with the pharmacological stressor Yohimbine. Neuropsychopharmacology 2013;38:2120-30. [PMID: 23736277 DOI: 10.1038/npp.2013.109] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
10 [DOI: 10.1101/393389] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Galbusera A, De Felice A, Girardi S, Bassetto G, Maschietto M, Nishimori K, Chini B, Papaleo F, Vassanelli S, Gozzi A. Intranasal Oxytocin and Vasopressin Modulate Divergent Brainwide Functional Substrates. Neuropsychopharmacology 2017;42:1420-34. [PMID: 27995932 DOI: 10.1038/npp.2016.283] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
12 Sagheddu C, Pintori N, Kalaba P, Dragačević V, Piras G, Lubec J, Simola N, De Luca MA, Lubec G, Pistis M. Neurophysiological and Neurochemical Effects of the Putative Cognitive Enhancer (S)-CE-123 on Mesocorticolimbic Dopamine System. Biomolecules 2020;10:E779. [PMID: 32443397 DOI: 10.3390/biom10050779] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Schrantee A, Reneman L. Pharmacological imaging as a tool to visualise dopaminergic neurotoxicity. Neuropharmacology 2014;84:159-69. [PMID: 23851258 DOI: 10.1016/j.neuropharm.2013.06.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
14 González B, Raineri M, Cadet JL, García-Rill E, Urbano FJ, Bisagno V. Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice. Neuropharmacology 2014;87:188-97. [PMID: 24530829 DOI: 10.1016/j.neuropharm.2014.02.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 5.0] [Reference Citation Analysis]
15 Dodd GT, Worth AA, Hodkinson DJ, Srivastava RK, Lutz B, Williams SR, Luckman SM. Central functional response to the novel peptide cannabinoid, hemopressin. Neuropharmacology 2013;71:27-36. [PMID: 23542442 DOI: 10.1016/j.neuropharm.2013.03.007] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
16 Steiner H, Van Waes V. Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants. Prog Neurobiol 2013;100:60-80. [PMID: 23085425 DOI: 10.1016/j.pneurobio.2012.10.001] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 2.8] [Reference Citation Analysis]
17 Colavito V, Tesoriero C, Wirtu AT, Grassi-zucconi G, Bentivoglio M. Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neuroscience & Biobehavioral Reviews 2015;54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 7.0] [Reference Citation Analysis]
18 Pagani M, De Felice A, Montani C, Galbusera A, Papaleo F, Gozzi A. Acute and Repeated Intranasal Oxytocin Differentially Modulate Brain-wide Functional Connectivity. Neuroscience 2020;445:83-94. [PMID: 31917352 DOI: 10.1016/j.neuroscience.2019.12.036] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
19 Susta M, Nemcova V, Bizik G, Sonka K. Emotion stimulus processing in narcolepsy with cataplexy. J Sleep Res 2017;26:30-7. [DOI: 10.1111/jsr.12444] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
20 Nakajima M, Schmitt LI, Feng G, Halassa MM. Combinatorial Targeting of Distributed Forebrain Networks Reverses Noise Hypersensitivity in a Model of Autism Spectrum Disorder. Neuron 2019;104:488-500.e11. [PMID: 31648899 DOI: 10.1016/j.neuron.2019.09.040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
21 Lepelletier FX, Tauber C, Nicolas C, Solinas M, Castelnau P, Belzung C, Emond P, Cortese S, Faraone SV, Chalon S, Galineau L. Prenatal exposure to methylphenidate affects the dopamine system and the reactivity to natural reward in adulthood in rats. Int J Neuropsychopharmacol 2014;18:pyu044. [PMID: 25522388 DOI: 10.1093/ijnp/pyu044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
22 Luo T, Wang Y, Qin J, Liu ZG, Liu M. Histamine H3 Receptor Antagonist Prevents Memory Deficits and Synaptic Plasticity Disruption Following Isoflurane Exposure. CNS Neurosci Ther 2017;23:301-9. [PMID: 28168839 DOI: 10.1111/cns.12675] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
23 Vodovar D, Duchêne A, Wimberley C, Leroy C, Pottier G, Dauvilliers Y, Giaume C, Lin JS, Mouthon F, Tournier N, Charvériat M. Cortico-Amygdala-Striatal Activation by Modafinil/Flecainide Combination. Int J Neuropsychopharmacol 2018;21:687-96. [PMID: 29635319 DOI: 10.1093/ijnp/pyy027] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
24 Cruces-Solis H, Nissen W, Ferger B, Arban R. Whole-brain signatures of functional connectivity after bidirectional modulation of the dopaminergic system in mice. Neuropharmacology 2020;178:108246. [PMID: 32771528 DOI: 10.1016/j.neuropharm.2020.108246] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Sforazzini F, Schwarz AJ, Galbusera A, Bifone A, Gozzi A. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain. NeuroImage 2014;87:403-15. [DOI: 10.1016/j.neuroimage.2013.09.050] [Cited by in Crossref: 136] [Cited by in F6Publishing: 114] [Article Influence: 17.0] [Reference Citation Analysis]
26 Martins D, Brodmann K, Veronese M, Dipasquale O, Mazibuko N, Schuschnig U, Zelaya F, Fotopoulou A, Paloyelis Y. "Less is more": a dose-response account of intranasal oxytocin pharmacodynamics in the human brain. Prog Neurobiol 2022;:102239. [PMID: 35122880 DOI: 10.1016/j.pneurobio.2022.102239] [Reference Citation Analysis]
27 Duchêne A, Perier M, Zhao Y, Liu X, Thomasson J, Chauveau F, Piérard C, Lagarde D, Picoli C, Jeanson T, Mouthon F, Dauvilliers Y, Giaume C, Lin JS, Charvériat M. Impact of Astroglial Connexins on Modafinil Pharmacological Properties. Sleep 2016;39:1283-92. [PMID: 27091533 DOI: 10.5665/sleep.5854] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 5.8] [Reference Citation Analysis]
28 Mar AC, Nilsson SRO, Gamallo-Lana B, Lei M, Dourado T, Alsiö J, Saksida LM, Bussey TJ, Robbins TW. MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology (Berl) 2017;234:2837-57. [PMID: 28744563 DOI: 10.1007/s00213-017-4679-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
29 Ortiz-Orendain J, Covarrubias-Castillo SA, Vazquez-Alvarez AO, Castiello-de Obeso S, Arias Quiñones GE, Seegers M, Colunga-Lozano LE. Modafinil for people with schizophrenia or related disorders. Cochrane Database Syst Rev 2019;12:CD008661. [PMID: 31828767 DOI: 10.1002/14651858.CD008661.pub2] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Heyer-Osorno R, Juárez J. Modafinil reduces choice impulsivity while increasing motor activity in preadolescent rats treated prenatally with alcohol. Pharmacol Biochem Behav 2020;194:172936. [PMID: 32360693 DOI: 10.1016/j.pbb.2020.172936] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Bifone A, Gozzi A, Cippitelli A, Matzeu A, Domi E, Li H, Scuppa G, Cannella N, Ubaldi M, Weiss F, Ciccocioppo R. phMRI, neurochemical and behavioral responses to psychostimulants distinguishing genetically selected alcohol-preferring from genetically heterogenous rats. Addict Biol 2019;24:981-93. [PMID: 30328656 DOI: 10.1111/adb.12671] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
32 Mereu M, Bonci A, Newman AH, Tanda G. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology (Berl) 2013;229:415-34. [PMID: 23934211 DOI: 10.1007/s00213-013-3232-4] [Cited by in Crossref: 88] [Cited by in F6Publishing: 68] [Article Influence: 9.8] [Reference Citation Analysis]
33 González B, Jayanthi S, Gomez N, Torres OV, Sosa MH, Bernardi A, Urbano FJ, García-Rill E, Cadet JL, Bisagno V. Repeated methamphetamine and modafinil induce differential cognitive effects and specific histone acetylation and DNA methylation profiles in the mouse medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2018;82:1-11. [PMID: 29247759 DOI: 10.1016/j.pnpbp.2017.12.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
34 Gozzi A, Agosta F, Massi M, Ciccocioppo R, Bifone A. Reduced limbic metabolism and fronto-cortical volume in rats vulnerable to alcohol addiction. Neuroimage 2013;69:112-9. [PMID: 23261637 DOI: 10.1016/j.neuroimage.2012.12.015] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
35 Hooker B, Tobon G, Baker S, Zhu C, Hesterman J, Schmidt K, Rajagovindan R, Chandran P, Joshi S, Bannon A, Hoppin J, Beaver J, Fox G, Day M, Upadhyay J. Gabapentin-induced pharmacodynamic effects in the spinal nerve ligation model of neuropathic pain: Gabapentin-induced pharmacodynamic effects in brain. EJP 2014;18:223-37. [DOI: 10.1002/j.1532-2149.2013.00364.x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]