BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 2016;19:1356-66. [PMID: 27595385 DOI: 10.1038/nn.4377] [Cited by in Crossref: 228] [Cited by in F6Publishing: 196] [Article Influence: 38.0] [Reference Citation Analysis]
Number Citing Articles
1 Yanagihara S, Ikebuchi M, Mori C, Tachibana RO, Okanoya K. Neural correlates of vocal initiation in the VTA/SNc of juvenile male zebra finches. Sci Rep 2021;11:22388. [PMID: 34789831 DOI: 10.1038/s41598-021-01955-3] [Reference Citation Analysis]
2 Jiang-Xie LF, Yin L, Zhao S, Prevosto V, Han BX, Dzirasa K, Wang F. A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep. Neuron 2019;102:1053-1065.e4. [PMID: 31006556 DOI: 10.1016/j.neuron.2019.03.033] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 13.3] [Reference Citation Analysis]
3 Jones JR, Simon T, Lones L, Herzog ED. SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System. J Neurosci 2018;38:7986-95. [PMID: 30082421 DOI: 10.1523/JNEUROSCI.1322-18.2018] [Cited by in Crossref: 45] [Cited by in F6Publishing: 24] [Article Influence: 11.3] [Reference Citation Analysis]
4 Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017;9:a027730. [PMID: 28432135 DOI: 10.1101/cshperspect.a027730] [Cited by in Crossref: 69] [Cited by in F6Publishing: 49] [Article Influence: 13.8] [Reference Citation Analysis]
5 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
6 Bian T, Meng W, Qiu M, Zhong Z, Lin Z, Zou J, Wang Y, Huang X, Xu L, Yuan T, Huang Z, Niu L, Meng L, Zheng H. Noninvasive Ultrasound Stimulation of Ventral Tegmental Area Induces Reanimation from General Anaesthesia in Mice. Research (Wash D C) 2021;2021:2674692. [PMID: 33954291 DOI: 10.34133/2021/2674692] [Reference Citation Analysis]
7 Vrajová M, Šlamberová R, Hoschl C, Ovsepian SV. Methamphetamine and sleep impairments: neurobehavioral correlates and molecular mechanisms. Sleep 2021;44:zsab001. [PMID: 33406259 DOI: 10.1093/sleep/zsab001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Eban-Rothschild A, Giardino WJ, de Lecea L. To sleep or not to sleep: neuronal and ecological insights. Curr Opin Neurobiol 2017;44:132-8. [PMID: 28500869 DOI: 10.1016/j.conb.2017.04.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 8.4] [Reference Citation Analysis]
9 Zhang LB, Zhang J, Sun MJ, Chen H, Yan J, Luo FL, Yao ZX, Wu YM, Hu B. Neuronal Activity in the Cerebellum During the Sleep-Wakefulness Transition in Mice. Neurosci Bull 2020;36:919-31. [PMID: 32430873 DOI: 10.1007/s12264-020-00511-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Topilko T, Diaz SL, Pacheco CM, Verny F, Rousseau CV, Kirst C, Deleuze C, Gaspar P, Renier N. Edinger-Westphal peptidergic neurons enable maternal preparatory nesting. Neuron 2022. [DOI: 10.1016/j.neuron.2022.01.012] [Reference Citation Analysis]
11 Yu X, Ma Y, Harding EC, Yustos R, Vyssotski AL, Franks NP, Wisden W. Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness. Sleep 2019;42:zsz031. [PMID: 30722053 DOI: 10.1093/sleep/zsz031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 2019;22:106-19. [PMID: 30559475 DOI: 10.1038/s41593-018-0288-9] [Cited by in Crossref: 73] [Cited by in F6Publishing: 64] [Article Influence: 18.3] [Reference Citation Analysis]
13 Yang B, Ao Y, Liu Y, Zhang X, Li Y, Tang F, Xu H. Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 2021;46:1487-501. [PMID: 33710536 DOI: 10.1007/s11064-021-03291-4] [Reference Citation Analysis]
14 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
15 Eban-Rothschild A, Borniger JC, Rothschild G, Giardino WJ, Morrow JG, de Lecea L. Arousal State-Dependent Alterations in VTA-GABAergic Neuronal Activity. eNeuro 2020;7:ENEURO. [PMID: 32054621 DOI: 10.1523/ENEURO.0356-19.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
16 Melonakos ED, Moody OA, Nikolaeva K, Kato R, Nehs CJ, Solt K. Manipulating Neural Circuits in Anesthesia Research. Anesthesiology 2020;133:19-30. [PMID: 32349073 DOI: 10.1097/ALN.0000000000003279] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
17 Mizrahi-Kliger AD, Feldmann LK, Kühn AA, Bergman H. Etiologies of insomnia in Parkinson's disease - Lessons from human studies and animal models. Exp Neurol 2022;350:113976. [PMID: 35026228 DOI: 10.1016/j.expneurol.2022.113976] [Reference Citation Analysis]
18 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
19 Fujii S, Kaushik MK, Zhou X, Korkutata M, Lazarus M. Acute Social Defeat Stress Increases Sleep in Mice. Front Neurosci 2019;13:322. [PMID: 31001080 DOI: 10.3389/fnins.2019.00322] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
20 Shahveisi K, Abdoli N, Farnia V, Khazaie H, Hosseini M, Ghazvini H, Khodamoradi M. REM sleep deprivation before extinction or reinstatement alters methamphetamine reward memory via D1-like dopamine receptors. Pharmacol Biochem Behav 2022;213:173319. [PMID: 34990706 DOI: 10.1016/j.pbb.2021.173319] [Reference Citation Analysis]
21 Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, Sun X, Li X, Jiang Q, Yao J, Qin H, Wang G, Liao X, Gao D, Xia J, Zhang J, Hu B, Yan J, Wang Y, Xu M, Han Y, Tang X, Chen X, He C, Hu Z. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 2018;362:429-34. [DOI: 10.1126/science.aat2512] [Cited by in Crossref: 90] [Cited by in F6Publishing: 78] [Article Influence: 22.5] [Reference Citation Analysis]
22 Berke JD. What does dopamine mean? Nat Neurosci 2018;21:787-93. [PMID: 29760524 DOI: 10.1038/s41593-018-0152-y] [Cited by in Crossref: 259] [Cited by in F6Publishing: 192] [Article Influence: 64.8] [Reference Citation Analysis]
23 Holst SC, Müller T, Valomon A, Seebauer B, Berger W, Landolt HP. Functional Polymorphisms in Dopaminergic Genes Modulate Neurobehavioral and Neurophysiological Consequences of Sleep Deprivation. Sci Rep 2017;7:45982. [PMID: 28393838 DOI: 10.1038/srep45982] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
24 Han ME, Park SY, Oh SO. Large-scale functional brain networks for consciousness. Anat Cell Biol 2021;54:152-64. [PMID: 33967030 DOI: 10.5115/acb.20.305] [Reference Citation Analysis]
25 Ballester P, Richdale AL, Baker EK, Peiró AM. Sleep in autism: A biomolecular approach to aetiology and treatment. Sleep Med Rev 2020;54:101357. [PMID: 32759030 DOI: 10.1016/j.smrv.2020.101357] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
26 Vanderheyden WM, Fang B, Flores CC, Jager J, Gerstner JR. The transcriptional repressor Rev-erbα regulates circadian expression of the astrocyte Fabp7 mRNA. Curr Res Neurobiol 2021;2:100009. [PMID: 34056625 DOI: 10.1016/j.crneur.2021.100009] [Reference Citation Analysis]
27 Satpute AB, Kragel PA, Barrett LF, Wager TD, Bianciardi M. Deconstructing arousal into wakeful, autonomic and affective varieties. Neurosci Lett 2019;693:19-28. [PMID: 29378297 DOI: 10.1016/j.neulet.2018.01.042] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
28 Venner A, Todd WD, Fraigne J, Bowrey H, Eban-Rothschild A, Kaur S, Anaclet C. Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep 2019;42:zsz023. [PMID: 30722061 DOI: 10.1093/sleep/zsz023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
29 Shi HY, Xu W, Guo H, Dong H, Qu WM, Huang ZL. Lesion of intergeniculate leaflet GABAergic neurons attenuates sleep in mice exposed to light. Sleep 2020;43:zsz212. [PMID: 31552427 DOI: 10.1093/sleep/zsz212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
30 Yu X, Ba W, Zhao G, Ma Y, Harding EC, Yin L, Wang D, Li H, Zhang P, Shi Y, Yustos R, Vyssotski AL, Dong H, Franks NP, Wisden W. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry 2020. [PMID: 32555422 DOI: 10.1038/s41380-020-0810-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Jhou TC, Vento PJ. Bidirectional regulation of reward, punishment, and arousal by dopamine, the lateral habenula and the rostromedial tegmentum (RMTg). Current Opinion in Behavioral Sciences 2019;26:90-6. [DOI: 10.1016/j.cobeha.2018.11.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
32 Sotelo MI, Tyan J, Markunas C, Sulaman BA, Horwitz L, Lee H, Morrow JG, Rothschild G, Duan B, Eban-Rothschild A. Lateral hypothalamic neuronal ensembles regulate pre-sleep nest-building behavior. Curr Biol 2022:S0960-9822(21)01740-1. [PMID: 35051354 DOI: 10.1016/j.cub.2021.12.053] [Reference Citation Analysis]
33 Wisor JP. Dopamine and Wakefulness: Pharmacology, Genetics, and Circuitry. In: Landolt H, Dijk D, editors. Sleep-Wake Neurobiology and Pharmacology. Cham: Springer International Publishing; 2019. pp. 321-35. [DOI: 10.1007/164_2018_95] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
34 Arrigoni E, Fuller PM. The Circuit, Cellular, and Synaptic Bases of Sleep-Wake Regulation. Handbook of Sleep Research. Elsevier; 2019. pp. 65-88. [DOI: 10.1016/b978-0-12-813743-7.00005-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, Luo YJ, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Urade Y, Qu WM, Huang ZL, Lazarus M. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 2017;8:734. [PMID: 28963505 DOI: 10.1038/s41467-017-00781-4] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 16.6] [Reference Citation Analysis]
36 Kashiwagi M, Hayashi Y. The existence of two states of sleep as a common trait in various animals and its molecular and neuronal mechanisms. Current Opinion in Physiology 2020;15:197-202. [DOI: 10.1016/j.cophys.2020.03.007] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li S, Franken P, Vassalli A. Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice. Sci Rep 2018;8:15474. [PMID: 30341359 DOI: 10.1038/s41598-018-33069-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
38 Borniger JC, Don RF, Zhang N, Boyd RT, Nelson RJ. Enduring effects of perinatal nicotine exposure on murine sleep in adulthood. Am J Physiol Regul Integr Comp Physiol 2017;313:R280-9. [PMID: 28637659 DOI: 10.1152/ajpregu.00156.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
39 Hansen N. The Longevity of Hippocampus-Dependent Memory Is Orchestrated by the Locus Coeruleus-Noradrenergic System. Neural Plast 2017;2017:2727602. [PMID: 28695015 DOI: 10.1155/2017/2727602] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
40 Vlasov K, Pei J, Nehs CJ, Guidera JA, Zhang ER, Kenny JD, Houle TT, Brenner GJ, Taylor NE, Solt K. Activation of GABAergic Neurons in the Rostromedial Tegmental Nucleus and Other Brainstem Regions Promotes Sedation and Facilitates Sevoflurane Anesthesia in Mice. Anesth Analg 2021;132:e50-5. [PMID: 33560660 DOI: 10.1213/ANE.0000000000005387] [Reference Citation Analysis]
41 Beeler JA, Kisbye Dreyer J. Synchronicity: The Role of Midbrain Dopamine in Whole-Brain Coordination. eNeuro 2019;6:ENEURO. [PMID: 31053604 DOI: 10.1523/ENEURO.0345-18.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
42 Li J, Curley WH, Guerin B, Dougherty DD, Dalca AV, Fischl B, Horn A, Edlow BL. Mapping the subcortical connectivity of the human default mode network. Neuroimage 2021;245:118758. [PMID: 34838949 DOI: 10.1016/j.neuroimage.2021.118758] [Reference Citation Analysis]
43 Zhang Z, Beier C, Weil T, Hattar S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat Commun 2021;12:5115. [PMID: 34433830 DOI: 10.1038/s41467-021-25378-w] [Reference Citation Analysis]
44 Harding EC, Franks NP, Wisden W. Sleep and thermoregulation. Curr Opin Physiol 2020;15:7-13. [PMID: 32617439 DOI: 10.1016/j.cophys.2019.11.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
45 Winkelman JW, Lecea L. Sleep and neuropsychiatric illness. Neuropsychopharmacology 2020;45:1-2. [PMID: 31486776 DOI: 10.1038/s41386-019-0514-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
46 Radwan B, Liu H, Chaudhury D. The role of dopamine in mood disorders and the associated changes in circadian rhythms and sleep-wake cycle. Brain Research 2019;1713:42-51. [DOI: 10.1016/j.brainres.2018.11.031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
47 Dong H, Wang J, Yang YF, Shen Y, Qu WM, Huang ZL. Dorsal Striatum Dopamine Levels Fluctuate Across the Sleep-Wake Cycle and Respond to Salient Stimuli in Mice. Front Neurosci 2019;13:242. [PMID: 30949023 DOI: 10.3389/fnins.2019.00242] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 7.7] [Reference Citation Analysis]
48 Bjorness TE, Greene RW. Interaction between cocaine use and sleep behavior: A comprehensive review of cocaine's disrupting influence on sleep behavior and sleep disruptions influence on reward seeking. Pharmacol Biochem Behav 2021;206:173194. [PMID: 33940055 DOI: 10.1016/j.pbb.2021.173194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
49 Lin CY, Yu RL, Wu RM, Tan CH. Effect of ALDH2 on Sleep Disturbances in Patients with Parkinson's Disease. Sci Rep 2019;9:18950. [PMID: 31831791 DOI: 10.1038/s41598-019-55427-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
50 Adamantidis A, Lüthi A. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handb Exp Pharmacol 2019;253:125-51. [PMID: 29687163 DOI: 10.1007/164_2018_94] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
51 Nevárez N, de Lecea L. Hypocretin and the Regulation of Sleep-Wake Transitions. Handbook of Sleep Research. Elsevier; 2019. pp. 89-99. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
52 Giardino WJ, Pomrenze MB. Extended Amygdala Neuropeptide Circuitry of Emotional Arousal: Waking Up on the Wrong Side of the Bed Nuclei of Stria Terminalis. Front Behav Neurosci 2021;15:613025. [PMID: 33633549 DOI: 10.3389/fnbeh.2021.613025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
53 Grippo RM, Purohit AM, Zhang Q, Zweifel LS, Güler AD. Direct Midbrain Dopamine Input to the Suprachiasmatic Nucleus Accelerates Circadian Entrainment. Curr Biol 2017;27:2465-2475.e3. [PMID: 28781050 DOI: 10.1016/j.cub.2017.06.084] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 8.2] [Reference Citation Analysis]
54 García-García F, Priego-Fernández S, López-Muciño LA, Acosta-Hernández ME, Peña-Escudero C. Increased alcohol consumption in sleep-restricted rats is mediated by delta FosB induction. Alcohol 2021;93:63-70. [PMID: 33662520 DOI: 10.1016/j.alcohol.2021.02.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
55 Yang SR, Hu ZZ, Luo YJ, Zhao YN, Sun HX, Yin D, Wang CY, Yan YD, Wang DR, Yuan XS, Ye CB, Guo W, Qu WM, Cherasse Y, Lazarus M, Ding YQ, Huang ZL. The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep. PLoS Biol 2018;16:e2002909. [PMID: 29652889 DOI: 10.1371/journal.pbio.2002909] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
56 Vassalli A, Franken P. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc Natl Acad Sci U S A 2017;114:E5464-73. [PMID: 28630298 DOI: 10.1073/pnas.1700983114] [Cited by in Crossref: 52] [Cited by in F6Publishing: 37] [Article Influence: 10.4] [Reference Citation Analysis]
57 Xia Y, Kou L, Zhang G, Han C, Hu J, Wan F, Yin S, Sun Y, Wu J, Li Y, Zhang Z, Huang J, Xiong N, Wang T. Investigation on sleep and mental health of patients with Parkinson's disease during the Coronavirus disease 2019 pandemic. Sleep Med 2020;75:428-33. [PMID: 32980664 DOI: 10.1016/j.sleep.2020.09.011] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
58 Canto CB, Onuki Y, Bruinsma B, van der Werf YD, De Zeeuw CI. The Sleeping Cerebellum. Trends Neurosci 2017;40:309-23. [PMID: 28431742 DOI: 10.1016/j.tins.2017.03.001] [Cited by in Crossref: 46] [Cited by in F6Publishing: 34] [Article Influence: 9.2] [Reference Citation Analysis]
59 Arrigoni E, Fuller PM. Addicted to dreaming. Science 2022;375:972-3. [PMID: 35239395 DOI: 10.1126/science.abo1987] [Reference Citation Analysis]
60 Yamaguchi H, Hopf FW, Li SB, de Lecea L. In vivo cell type-specific CRISPR knockdown of dopamine beta hydroxylase reduces locus coeruleus evoked wakefulness. Nat Commun 2018;9:5211. [PMID: 30523254 DOI: 10.1038/s41467-018-07566-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
61 McCullough KM, Missig G, Robble MA, Foilb AR, Wells AM, Hartmann J, Anderson KJ, Neve RL, Nestler EJ, Ressler KJ, Carlezon WA Jr. Nucleus Accumbens Medium Spiny Neuron Subtypes Differentially Regulate Stress-Associated Alterations in Sleep Architecture. Biol Psychiatry 2021;89:1138-49. [PMID: 33715826 DOI: 10.1016/j.biopsych.2020.12.030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Yousaf T, Pagano G, Niccolini F, Politis M. Excessive daytime sleepiness may be associated with caudate denervation in Parkinson disease. J Neurol Sci 2018;387:220-7. [PMID: 29571867 DOI: 10.1016/j.jns.2018.02.032] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
63 He S, Brooks AT, Kampman KM, Chakravorty S. The Relationship between Alcohol Craving and Insomnia Symptoms in Alcohol-Dependent Individuals. Alcohol Alcohol 2019;54:287-94. [PMID: 31087085 DOI: 10.1093/alcalc/agz029] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
64 Bian WJ, Brewer CL, Kauer JA, de Lecea L. Adolescent sleep shapes social novelty preference in mice. Nat Neurosci 2022. [PMID: 35618950 DOI: 10.1038/s41593-022-01076-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F. Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. Int J Mol Sci 2021;22:12366. [PMID: 34830246 DOI: 10.3390/ijms222212366] [Reference Citation Analysis]
66 Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science 2022;375:994-1000. [PMID: 35239361 DOI: 10.1126/science.abl6618] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Edlow BL. Dopaminergic modulation of human consciousness via default mode network connectivity. Proc Natl Acad Sci U S A 2021;118:e2111268118. [PMID: 34330840 DOI: 10.1073/pnas.2111268118] [Reference Citation Analysis]
68 Mchenry JA. Adolescent sleep molds adult social preferences. Nat Neurosci. [DOI: 10.1038/s41593-022-01103-8] [Reference Citation Analysis]
69 Szabo ST, Thorpy MJ, Mayer G, Peever JH, Kilduff TS. Neurobiological and immunogenetic aspects of narcolepsy: Implications for pharmacotherapy. Sleep Med Rev 2019;43:23-36. [PMID: 30503715 DOI: 10.1016/j.smrv.2018.09.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
70 Giardino WJ, Eban-Rothschild A, Christoffel DJ, Li SB, Malenka RC, de Lecea L. Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states. Nat Neurosci 2018;21:1084-95. [PMID: 30038273 DOI: 10.1038/s41593-018-0198-x] [Cited by in Crossref: 84] [Cited by in F6Publishing: 73] [Article Influence: 21.0] [Reference Citation Analysis]
71 Ahrens AM, Ahmed OJ. Neural circuits linking sleep and addiction: Animal models to understand why select individuals are more vulnerable to substance use disorders after sleep deprivation. Neurosci Biobehav Rev 2020;108:435-44. [PMID: 31756346 DOI: 10.1016/j.neubiorev.2019.11.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
72 Li Y, Zeng J, Zhang J, Yue C, Zhong W, Liu Z, Feng Q, Luo M. Hypothalamic Circuits for Predation and Evasion. Neuron 2018;97:911-924.e5. [DOI: 10.1016/j.neuron.2018.01.005] [Cited by in Crossref: 90] [Cited by in F6Publishing: 74] [Article Influence: 22.5] [Reference Citation Analysis]
73 Machado DR, Afonso DJ, Kenny AR, Öztu Rk-Çolak A, Moscato EH, Mainwaring B, Kayser M, Koh K. Identification of octopaminergic neurons that modulate sleep suppression by male sex drive. Elife 2017;6:e23130. [PMID: 28510528 DOI: 10.7554/eLife.23130] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 6.6] [Reference Citation Analysis]
74 Nasser HM, Calu DJ, Schoenbaum G, Sharpe MJ. The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning. Front Psychol 2017;8:244. [PMID: 28275359 DOI: 10.3389/fpsyg.2017.00244] [Cited by in Crossref: 35] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
75 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
76 Valomon A, Holst SC, Borrello A, Weigend S, Müller T, Berger W, Sommerauer M, Baumann CR, Landolt HP. Effects of COMT genotype and tolcapone on lapses of sustained attention after sleep deprivation in healthy young men. Neuropsychopharmacology 2018;43:1599-607. [PMID: 29472644 DOI: 10.1038/s41386-018-0018-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
77 Eban-Rothschild A, de Lecea L. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 2017;6:212. [PMID: 28357049 DOI: 10.12688/f1000research.9677.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
78 Hayat H, Regev N, Matosevich N, Sales A, Paredes-Rodriguez E, Krom AJ, Bergman L, Li Y, Lavigne M, Kremer EJ, Yizhar O, Pickering AE, Nir Y. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci Adv 2020;6:eaaz4232. [PMID: 32285002 DOI: 10.1126/sciadv.aaz4232] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
79 Lazarus M, Oishi Y, Bjorness TE, Greene RW. Gating and the Need for Sleep: Dissociable Effects of Adenosine A1 and A2A Receptors. Front Neurosci 2019;13:740. [PMID: 31379490 DOI: 10.3389/fnins.2019.00740] [Cited by in Crossref: 20] [Cited by in F6Publishing: 11] [Article Influence: 6.7] [Reference Citation Analysis]
80 Luca G, Peris L. Sleep Quality and Sleep Disturbance Perception in Dual Disorder Patients. J Clin Med 2020;9:E2015. [PMID: 32604951 DOI: 10.3390/jcm9062015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
81 Xu YX, Liu GY, Jiang Q, Bi HQ, Wang SC, Zhang PP, Gao CB, Chen GH, Cheng WH, Chen GJ, Zhu DF, Zhong MK, Xu Q. Effect of Restricted Feeding on Metabolic Health and Sleep-Wake Rhythms in Aging Mice. Front Neurosci 2021;15:745227. [PMID: 34557073 DOI: 10.3389/fnins.2021.745227] [Reference Citation Analysis]
82 Sharma VD, Sengupta S, Chitnis S, Amara AW. Deep Brain Stimulation and Sleep-Wake Disturbances in Parkinson Disease: A Review. Front Neurol 2018;9:697. [PMID: 30210429 DOI: 10.3389/fneur.2018.00697] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
83 Hill E, Dale N, Wall MJ. Moderate Changes in CO2 Modulate the Firing of Neurons in the VTA and Substantia Nigra. iScience 2020;23:101343. [PMID: 32683315 DOI: 10.1016/j.isci.2020.101343] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
84 Li YD, Luo YJ, Xu W, Ge J, Cherasse Y, Wang YQ, Lazarus M, Qu WM, Huang ZL. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol Psychiatry 2021;26:2912-28. [PMID: 33057171 DOI: 10.1038/s41380-020-00906-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
85 Yamaguchi H, de Lecea L. In vivo cell type-specific CRISPR gene editing for sleep research. J Neurosci Methods 2019;316:99-102. [PMID: 30439390 DOI: 10.1016/j.jneumeth.2018.10.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
86 Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR, Greenbaum A, Gradinaru V. Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli. Neuron 2017;94:1205-1219.e8. [PMID: 28602690 DOI: 10.1016/j.neuron.2017.05.020] [Cited by in Crossref: 112] [Cited by in F6Publishing: 107] [Article Influence: 22.4] [Reference Citation Analysis]
87 Dorsey A, de Lecea L, Jennings KJ. Neurobiological and Hormonal Mechanisms Regulating Women's Sleep. Front Neurosci 2020;14:625397. [PMID: 33519372 DOI: 10.3389/fnins.2020.625397] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
88 Lin R, Liang J, Luo M. The Raphe Dopamine System: Roles in Salience Encoding, Memory Expression, and Addiction. Trends Neurosci 2021;44:366-77. [PMID: 33568331 DOI: 10.1016/j.tins.2021.01.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Chen CR, Zhong YH, Jiang S, Xu W, Xiao L, Wang Z, Qu WM, Huang ZL. Dysfunctions of the paraventricular hypothalamic nucleus induce hypersomnia in mice. Elife 2021;10:e69909. [PMID: 34787078 DOI: 10.7554/eLife.69909] [Reference Citation Analysis]
90 Harding EC, Franks NP, Wisden W. The Temperature Dependence of Sleep. Front Neurosci 2019;13:336. [PMID: 31105512 DOI: 10.3389/fnins.2019.00336] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
91 Wisden W, Franks NP. The stillness of sleep. Science 2020;367:366-7. [PMID: 31974235 DOI: 10.1126/science.aba4485] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 [DOI: 10.1101/539502] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
93 Ma C, Zhong P, Liu D, Barger ZK, Zhou L, Chang WC, Kim B, Dan Y. Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit. Neuron 2019;103:323-334.e7. [PMID: 31178114 DOI: 10.1016/j.neuron.2019.05.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
94 Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2021. [PMID: 34908236 DOI: 10.1111/febs.16320] [Reference Citation Analysis]
95 Oikonomou G, Altermatt M, Zhang RW, Coughlin GM, Montz C, Gradinaru V, Prober DA. The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. Neuron 2019;103:686-701.e8. [PMID: 31248729 DOI: 10.1016/j.neuron.2019.05.038] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 18.7] [Reference Citation Analysis]
96 D'Amelio M, Puglisi-Allegra S, Mercuri N. The role of dopaminergic midbrain in Alzheimer's disease: Translating basic science into clinical practice. Pharmacol Res 2018;130:414-9. [PMID: 29391234 DOI: 10.1016/j.phrs.2018.01.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
97 Shen G, Shi WX. Amphetamine Promotes Cortical Up State in Part Via Dopamine Receptors. Front Pharmacol 2021;12:728729. [PMID: 34489713 DOI: 10.3389/fphar.2021.728729] [Reference Citation Analysis]
98 Serra L, D'amelio M, Di Domenico C, Dipasquale O, Marra C, Mercuri NB, Caltagirone C, Cercignani M, Bozzali M. In vivo mapping of brainstem nuclei functional connectivity disruption in Alzheimer's disease. Neurobiology of Aging 2018;72:72-82. [DOI: 10.1016/j.neurobiolaging.2018.08.012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 6.8] [Reference Citation Analysis]
99 Wu Y, Wang L, Yang F, Xi W. Neural Circuits for Sleep-Wake Regulation. Adv Exp Med Biol 2020;1284:91-112. [PMID: 32852742 DOI: 10.1007/978-981-15-7086-5_8] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
100 Covey DP, Hernandez E, Luján MÁ, Cheer JF. Chronic Augmentation of Endocannabinoid Levels Persistently Increases Dopaminergic Encoding of Reward Cost and Motivation. J Neurosci 2021;41:6946-53. [PMID: 34230105 DOI: 10.1523/JNEUROSCI.0285-21.2021] [Reference Citation Analysis]
101 Zhao Y, Zhang Y, Tao S, Huang Z, Qu W, Yang S. Whole-Brain Monosynaptic Afferents to Rostromedial Tegmental Nucleus Gamma-Aminobutyric Acid-Releasing Neurons in Mice. Front Neurosci 2022;16:914300. [DOI: 10.3389/fnins.2022.914300] [Reference Citation Analysis]
102 Zhang X, Liu Y, Yang B, Xu H. Inactivation of the Ventral Pallidum by GABAA Receptor Agonist Promotes Non-rapid Eye Movement Sleep in Rats. Neurochem Res 2020;45:1791-801. [DOI: 10.1007/s11064-020-03040-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
103 Lew CH, Petersen C, Neylan TC, Grinberg LT. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. Sleep Med Rev 2021;60:101541. [PMID: 34500400 DOI: 10.1016/j.smrv.2021.101541] [Reference Citation Analysis]
104 Horner RL, Peever JH. Brain Circuitry Controlling Sleep and Wakefulness. Continuum (Minneap Minn) 2017;23:955-72. [PMID: 28777170 DOI: 10.1212/CON.0000000000000495] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
105 Varin C, Bonnavion P. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. Handb Exp Pharmacol 2019;253:153-206. [PMID: 30689084 DOI: 10.1007/164_2018_183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
106 Vringer M, Kornum BR. Emerging therapeutic targets for narcolepsy. Expert Opin Ther Targets 2021;:1-14. [PMID: 34402358 DOI: 10.1080/14728222.2021.1969361] [Reference Citation Analysis]
107 Zhong P, Zhang Z, Barger Z, Ma C, Liu D, Ding X, Dan Y. Control of Non-REM Sleep by Midbrain Neurotensinergic Neurons. Neuron 2019;104:795-809.e6. [PMID: 31582313 DOI: 10.1016/j.neuron.2019.08.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
108 Bouarab C, Thompson B, Polter AM. VTA GABA Neurons at the Interface of Stress and Reward. Front Neural Circuits 2019;13:78. [PMID: 31866835 DOI: 10.3389/fncir.2019.00078] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 8.0] [Reference Citation Analysis]
109 Rial RV, Canellas F, Gamundí A, Akaârir M, Nicolau MC. Pleasure: The missing link in the regulation of sleep. Neurosci Biobehav Rev 2018;88:141-54. [PMID: 29548930 DOI: 10.1016/j.neubiorev.2018.03.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
110 Lőrincz ML, Adamantidis AR. Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 2017;151:237-53. [PMID: 27634227 DOI: 10.1016/j.pneurobio.2016.09.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
111 Wang H, Yu L, Qin YJ, Chen M, Wang X, Luo HQ, Cong PL, Wang XL, Cai HM, Zhang AL, Juan-Guo, Sun XH, Li Z, Xue M, Sun N, Wang QX, Hu J. Restoring VTA DA neurons excitability accelerates emergence from sevoflurane general anesthesia of anxiety state. Biochem Biophys Res Commun 2021;565:21-8. [PMID: 34090206 DOI: 10.1016/j.bbrc.2021.05.079] [Reference Citation Analysis]
112 Hindman J, Bowren MD, Bruss J, Wright B, Geerling JC, Boes AD. Thalamic strokes that severely impair arousal extend into the brainstem. Ann Neurol 2018;84:926-30. [PMID: 30421457 DOI: 10.1002/ana.25377] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
113 Alnefeesi Y, Tamura JK, Lui LMW, Jawad MY, Ceban F, Ling S, Nasri F, Rosenblat JD, McIntyre RS. Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci Biobehav Rev 2021;131:192-210. [PMID: 34537265 DOI: 10.1016/j.neubiorev.2021.09.020] [Reference Citation Analysis]
114 Torrisi SA, Leggio GM, Drago F, Salomone S. Therapeutic Challenges of Post-traumatic Stress Disorder: Focus on the Dopaminergic System. Front Pharmacol 2019;10:404. [PMID: 31057408 DOI: 10.3389/fphar.2019.00404] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
115 Liu C, Zhou X, Zhu Q, Fu B, Cao S, Zhang Y, Zhang L, Zhang Y, Yu T. Dopamine neurons in the ventral periaqueductal gray modulate isoflurane anesthesia in rats. CNS Neurosci Ther 2020;26:1121-33. [PMID: 32881314 DOI: 10.1111/cns.13447] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
116 Otabi H, Okayama T, Toyoda A. Assessment of nest building and social interaction behavior in mice exposed to acute social defeat stress using a three-dimensional depth camera. Anim Sci J 2020;91:e13447. [PMID: 32902039 DOI: 10.1111/asj.13447] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
117 Chen L, Cai P, Wang R, Lu Y, Chen H, Guo Y, Huang S, Hu L, Chen J, Zheng Z, He P, Zhang B, Liu J, Wang W, Li H, Yu C. Glutamatergic lateral hypothalamus promotes defensive behaviors. Neuropharmacology 2020;178:108239. [DOI: 10.1016/j.neuropharm.2020.108239] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
118 Li Y, Liu Z, Guo Q, Luo M. Long-term Fiber Photometry for Neuroscience Studies. Neurosci Bull 2019;35:425-33. [PMID: 31062336 DOI: 10.1007/s12264-019-00379-4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
119 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
120 Grippo RM, Tang Q, Zhang Q, Chadwick SR, Gao Y, Altherr EB, Sipe L, Purohit AM, Purohit NM, Sunkara MD, Cios KJ, Sidikpramana M, Spano AJ, Campbell JN, Steele AD, Hirsh J, Deppmann CD, Wu M, Scott MM, Güler AD. Dopamine Signaling in the Suprachiasmatic Nucleus Enables Weight Gain Associated with Hedonic Feeding. Curr Biol 2020;30:196-208.e8. [PMID: 31902720 DOI: 10.1016/j.cub.2019.11.029] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
121 Kanda T, Ohyama K, Muramoto H, Kitajima N, Sekiya H. Promising techniques to illuminate neuromodulatory control of the cerebral cortex in sleeping and waking states. Neurosci Res 2017;118:92-103. [PMID: 28434992 DOI: 10.1016/j.neures.2017.04.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
122 Medeiros DC, Lopes Aguiar C, Moraes MFD, Fisone G. Sleep Disorders in Rodent Models of Parkinson's Disease. Front Pharmacol 2019;10:1414. [PMID: 31827439 DOI: 10.3389/fphar.2019.01414] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
123 Hill E, Dale N, Wall MJ. CO2-Sensitive Connexin Hemichannels in Neurons and Glia: Three Different Modes of Signalling? Int J Mol Sci 2021;22:7254. [PMID: 34298872 DOI: 10.3390/ijms22147254] [Reference Citation Analysis]
124 Lin R, Liang J, Wang R, Yan T, Zhou Y, Liu Y, Feng Q, Sun F, Li Y, Li A, Gong H, Luo M. The Raphe Dopamine System Controls the Expression of Incentive Memory. Neuron 2020;106:498-514.e8. [PMID: 32145184 DOI: 10.1016/j.neuron.2020.02.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
125 Sotelo MI, Tyan J, Dzera J, Eban-rothschild A. Sleep and motivated behaviors, from physiology to pathology. Current Opinion in Physiology 2020;15:159-66. [DOI: 10.1016/j.cophys.2020.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
126 Gradinaru V. Overriding sleep. Science 2017;358:457. [PMID: 29074759 DOI: 10.1126/science.aap9535] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
127 Jiang X, Pan Y. Neural Control of Action Selection Among Innate Behaviors. Neurosci Bull 2022. [PMID: 35633465 DOI: 10.1007/s12264-022-00886-x] [Reference Citation Analysis]
128 Eacret D, Veasey SC, Blendy JA. Bidirectional Relationship between Opioids and Disrupted Sleep: Putative Mechanisms. Mol Pharmacol 2020;98:445-53. [PMID: 32198209 DOI: 10.1124/mol.119.119107] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
129 Beny-Shefer Y, Zilkha N, Lavi-Avnon Y, Bezalel N, Rogachev I, Brandis A, Dayan M, Kimchi T. Nucleus Accumbens Dopamine Signaling Regulates Sexual Preference for Females in Male Mice. Cell Rep 2017;21:3079-88. [PMID: 29241537 DOI: 10.1016/j.celrep.2017.11.062] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
130 Mu P, Huang YH. Cholinergic system in sleep regulation of emotion and motivation. Pharmacol Res 2019;143:113-8. [PMID: 30894329 DOI: 10.1016/j.phrs.2019.03.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
131 Bourdon AK, Spano GM, Marshall W, Bellesi M, Tononi G, Serra PA, Baghdoyan HA, Lydic R, Campagna SR, Cirelli C. Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep. Sci Rep 2018;8:11225. [PMID: 30046159 DOI: 10.1038/s41598-018-29511-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
132 Takata Y, Oishi Y, Zhou XZ, Hasegawa E, Takahashi K, Cherasse Y, Sakurai T, Lazarus M. Sleep and Wakefulness Are Controlled by Ventral Medial Midbrain/Pons GABAergic Neurons in Mice. J Neurosci 2018;38:10080-92. [PMID: 30282729 DOI: 10.1523/JNEUROSCI.0598-18.2018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
133 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Edlow BL, Sanz LRD, Polizzotto L, Pouratian N, Rolston JD, Snider SB, Thibaut A, Stevens RD, Gosseries O; Curing Coma Campaign and its contributing members. Therapies to Restore Consciousness in Patients with Severe Brain Injuries: A Gap Analysis and Future Directions. Neurocrit Care 2021;35:68-85. [PMID: 34236624 DOI: 10.1007/s12028-021-01227-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
135 Harding EC, Yu X, Miao A, Andrews N, Ma Y, Ye Z, Lignos L, Miracca G, Ba W, Yustos R, Vyssotski AL, Wisden W, Franks NP. A Neuronal Hub Binding Sleep Initiation and Body Cooling in Response to a Warm External Stimulus. Curr Biol 2018;28:2263-2273.e4. [PMID: 30017485 DOI: 10.1016/j.cub.2018.05.054] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 11.8] [Reference Citation Analysis]
136 Honjoh S, Sasai S, Schiereck SS, Nagai H, Tononi G, Cirelli C. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat Commun 2018;9:2100. [PMID: 29844415 DOI: 10.1038/s41467-018-04497-x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 20] [Article Influence: 8.8] [Reference Citation Analysis]
137 Runegaard AH, Fitzpatrick CM, Woldbye DPD, Andreasen JT, Sørensen AT, Gether U. Modulating Dopamine Signaling and Behavior with Chemogenetics: Concepts, Progress, and Challenges. Pharmacol Rev 2019;71:123-56. [PMID: 30814274 DOI: 10.1124/pr.117.013995] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 6.3] [Reference Citation Analysis]
138 Li SB, Nevárez N, Giardino WJ, de Lecea L. Optical probing of orexin/hypocretin receptor antagonists. Sleep 2018;41. [PMID: 30060151 DOI: 10.1093/sleep/zsy141] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
139 Iwasaki K, Komiya H, Kakizaki M, Miyoshi C, Abe M, Sakimura K, Funato H, Yanagisawa M. Ablation of Central Serotonergic Neurons Decreased REM Sleep and Attenuated Arousal Response. Front Neurosci 2018;12:535. [PMID: 30131671 DOI: 10.3389/fnins.2018.00535] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
140 Xie C, Wang J, Zhao N, Yang W, Gao X, Liu Z, Chen X, Fang C, Fu C, Chen Y, Yu X. Effects of Electroacupuncture on Sleep via the Dopamine System of the HPA Axis in Rats after Cage Change. Evid Based Complement Alternat Med 2021;2021:5527060. [PMID: 34306138 DOI: 10.1155/2021/5527060] [Reference Citation Analysis]
141 Ingiosi AM, Hayworth CR, Harvey DO, Singletary KG, Rempe MJ, Wisor JP, Frank MG. A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation. Curr Biol 2020;30:4373-4383.e7. [PMID: 32976809 DOI: 10.1016/j.cub.2020.08.052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
142 Porter-Stransky KA, Centanni SW, Karne SL, Odil LM, Fekir S, Wong JC, Jerome C, Mitchell HA, Escayg A, Pedersen NP, Winder DG, Mitrano DA, Weinshenker D. Noradrenergic Transmission at Alpha1-Adrenergic Receptors in the Ventral Periaqueductal Gray Modulates Arousal. Biol Psychiatry 2019;85:237-47. [PMID: 30269865 DOI: 10.1016/j.biopsych.2018.07.027] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
143 Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front Neurosci 2020;14:636. [PMID: 32655359 DOI: 10.3389/fnins.2020.00636] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
144 Wang F, Zhang J, Yuan Y, Chen M, Gao Z, Zhan S, Fan C, Sun W, Hu J. Salience processing by glutamatergic neurons in the ventral pallidum. Science Bulletin 2020;65:389-401. [DOI: 10.1016/j.scib.2019.11.029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
145 Qiu G, Wu Y, Yang Z, Li L, Zhu X, Wang Y, Sun W, Dong H, Li Y, Hu J. Dexmedetomidine Activation of Dopamine Neurons in the Ventral Tegmental Area Attenuates the Depth of Sedation in Mice. Anesthesiology 2020;133:377-92. [DOI: 10.1097/aln.0000000000003347] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
146 Honda T, Takata Y, Cherasse Y, Mizuno S, Sugiyama F, Takahashi S, Funato H, Yanagisawa M, Lazarus M, Oishi Y. Ablation of Ventral Midbrain/Pons GABA Neurons Induces Mania-like Behaviors with Altered Sleep Homeostasis and Dopamine D2R-mediated Sleep Reduction. iScience 2020;23:101240. [PMID: 32563157 DOI: 10.1016/j.isci.2020.101240] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
147 Wang T, Xiong B, Xu W, Wei H, Qu W, Hong Z, Huang Z. Activation of Parabrachial Nucleus Glutamatergic Neurons Accelerates Reanimation from Sevoflurane Anesthesia in Mice. Anesthesiology 2019;130:106-18. [DOI: 10.1097/aln.0000000000002475] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
148 Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opinion on Therapeutic Targets 2018;22:513-26. [DOI: 10.1080/14728222.2018.1480723] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
149 Cai P, Chen H, Tang W, Hu Y, Chen S, Lu J, Lin Z, Huang S, Hu L, Su W, Li Q, Lin Z, Kang T, Yan X, Liu P, Chen L, Yin D, Wu S, Li H, Yu C. A glutamatergic basal forebrain to midbrain circuit mediates wakefulness and defensive behavior. Neuropharmacology 2022. [DOI: 10.1016/j.neuropharm.2022.108979] [Reference Citation Analysis]
150 Palada V, Gilron I, Canlon B, Svensson CI, Kalso E. The circadian clock at the intercept of sleep and pain. Pain 2020;161:894-900. [DOI: 10.1097/j.pain.0000000000001786] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
151 Kashiwagi M, Kanuka M, Tanaka K, Fujita M, Nakai A, Tatsuzawa C, Kobayashi K, Ikeda K, Hayashi Y. Impaired wakefulness and rapid eye movement sleep in dopamine-deficient mice. Mol Brain 2021;14:170. [PMID: 34794460 DOI: 10.1186/s13041-021-00879-3] [Reference Citation Analysis]
152 Ao Y, Yang B, Zhang C, Wu B, Zhang X, Xing D, Xu H. Locus Coeruleus to Paraventricular Thalamus Projections Facilitate Emergence From Isoflurane Anesthesia in Mice. Front Pharmacol 2021;12:643172. [PMID: 33986675 DOI: 10.3389/fphar.2021.643172] [Reference Citation Analysis]
153 Xiao Y, Yang J, Ji W, He Q, Mao L, Shu Y. A- and D-type potassium currents regulate axonal action potential repolarization in midbrain dopamine neurons. Neuropharmacology 2021;185:108399. [PMID: 33400937 DOI: 10.1016/j.neuropharm.2020.108399] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Nakamoto C, Goto Y, Tomizawa Y, Fukata Y, Fukata M, Harpsøe K, Gloriam DE, Aoki K, Takeuchi T. A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Mol Brain 2021;14:173. [PMID: 34872607 DOI: 10.1186/s13041-021-00882-8] [Reference Citation Analysis]
155 Qiu MH, Zhong ZG, Chen MC, Lu J. Nigrostriatal and mesolimbic control of sleep-wake behavior in rat. Brain Struct Funct 2019;224:2525-35. [PMID: 31324969 DOI: 10.1007/s00429-019-01921-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
156 Iyer M, Essner RA, Klingenberg B, Carter ME. Identification of discrete, intermingled hypocretin neuronal populations. J Comp Neurol 2018;526:2937-54. [PMID: 30019757 DOI: 10.1002/cne.24490] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
157 Zhang Z, Liu WY, Diao YP, Xu W, Zhong YH, Zhang JY, Lazarus M, Liu YY, Qu WM, Huang ZL. Superior Colliculus GABAergic Neurons Are Essential for Acute Dark Induction of Wakefulness in Mice. Curr Biol 2019;29:637-644.e3. [PMID: 30713103 DOI: 10.1016/j.cub.2018.12.031] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
158 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
159 Jiang Y, Liu B, Wu C, Gao X, Lu Y, Lian Y, Liu J. Dopamine Receptor D2 Gene (DRD2) Polymorphisms, Job Stress, and Their Interaction on Sleep Dysfunction. Int J Environ Res Public Health 2020;17:E8174. [PMID: 33167416 DOI: 10.3390/ijerph17218174] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
160 Shi G, Xing L, Wu D, Bhattacharyya BJ, Jones CR, McMahon T, Chong SYC, Chen JA, Coppola G, Geschwind D, Krystal A, Ptáček LJ, Fu YH. A Rare Mutation of β1-Adrenergic Receptor Affects Sleep/Wake Behaviors. Neuron 2019;103:1044-1055.e7. [PMID: 31473062 DOI: 10.1016/j.neuron.2019.07.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
161 Rahaman SM, Chowdhury S, Mukai Y, Ono D, Yamaguchi H, Yamanaka A. Functional Interaction Between GABAergic Neurons in the Ventral Tegmental Area and Serotonergic Neurons in the Dorsal Raphe Nucleus. Front Neurosci 2022;16:877054. [DOI: 10.3389/fnins.2022.877054] [Reference Citation Analysis]
162 Beckwith EJ, French AS. Sleep in Drosophila and Its Context. Front Physiol 2019;10:1167. [PMID: 31572216 DOI: 10.3389/fphys.2019.01167] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
163 Oishi Y, Lazarus M. The control of sleep and wakefulness by mesolimbic dopamine systems. Neuroscience Research 2017;118:66-73. [DOI: 10.1016/j.neures.2017.04.008] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 11.0] [Reference Citation Analysis]
164 Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y. An Excitatory Circuit in the Perioculomotor Midbrain for Non-REM Sleep Control. Cell 2019;177:1293-1307.e16. [PMID: 31031008 DOI: 10.1016/j.cell.2019.03.041] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
165 Bandarabadi M, Vassalli A, Tafti M. Sleep as a default state of cortical and subcortical networks. Current Opinion in Physiology 2020;15:60-7. [DOI: 10.1016/j.cophys.2019.12.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
166 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
167 Sanchez REA, Kalume F, de la Iglesia HO. Sleep timing and the circadian clock in mammals: Past, present and the road ahead. Semin Cell Dev Biol 2021:S1084-9521(21)00149-X. [PMID: 34092510 DOI: 10.1016/j.semcdb.2021.05.034] [Reference Citation Analysis]
168 Gassió R, González MJ, Sans O, Artuch R, Sierra C, Ormazabal A, Cuadras D, Campistol J. Prevalence of sleep disorders in early-treated phenylketonuric children and adolescents. Correlation with dopamine and serotonin status. Eur J Paediatr Neurol 2019;23:685-91. [PMID: 31522993 DOI: 10.1016/j.ejpn.2019.08.005] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
169 Gretenkord S, Olthof BMJ, Stylianou M, Rees A, Gartside SE, LeBeau FEN. Electrical stimulation of the ventral tegmental area evokes sleep-like state transitions under urethane anaesthesia in the rat medial prefrontal cortex via dopamine D1 -like receptors. Eur J Neurosci 2020;52:2915-30. [PMID: 31891427 DOI: 10.1111/ejn.14665] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
170 Chowdhury S, Matsubara T, Miyazaki T, Ono D, Fukatsu N, Abe M, Sakimura K, Sudo Y, Yamanaka A. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice. Elife 2019;8:e44928. [PMID: 31159923 DOI: 10.7554/eLife.44928] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
171 Asfestani MA, Brechtmann V, Santiago J, Peter A, Born J, Feld GB. Consolidation of Reward Memory during Sleep Does Not Require Dopaminergic Activation. J Cogn Neurosci 2020;32:1688-703. [PMID: 32459129 DOI: 10.1162/jocn_a_01585] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
172 Landolt HP, Holst SC, Valomon A. Clinical and Experimental Human Sleep-Wake Pharmacogenetics. Handb Exp Pharmacol 2019;253:207-41. [PMID: 30443785 DOI: 10.1007/164_2018_175] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
173 Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2021;:10738584211052263. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Reference Citation Analysis]
174 Bruinenberg VM, Gordijn MCM, MacDonald A, van Spronsen FJ, Van der Zee EA. Sleep Disturbances in Phenylketonuria: An Explorative Study in Men and Mice. Front Neurol 2017;8:167. [PMID: 28491049 DOI: 10.3389/fneur.2017.00167] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.6] [Reference Citation Analysis]
175 Li SB, Damonte VM, Chen C, Wang GX, Kebschull JM, Yamaguchi H, Bian WJ, Purmann C, Pattni R, Urban AE, Mourrain P, Kauer JA, Scherrer G, de Lecea L. Hyperexcitable arousal circuits drive sleep instability during aging. Science 2022;375:eabh3021. [PMID: 35201886 DOI: 10.1126/science.abh3021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
176 Vaidyanathan TV, Collard M, Yokoyama S, Reitman ME, Poskanzer KE. Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways. Elife 2021;10:e63329. [PMID: 33729913 DOI: 10.7554/eLife.63329] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
177 Gui H, Liu C, He H, Zhang J, Chen H, Zhang Y. Dopaminergic Projections From the Ventral Tegmental Area to the Nucleus Accumbens Modulate Sevoflurane Anesthesia in Mice. Front Cell Neurosci 2021;15:671473. [PMID: 33994950 DOI: 10.3389/fncel.2021.671473] [Reference Citation Analysis]
178 Moody OA, Zhang ER, Arora V, Kato R, Cotten JF, Solt K. D-Amphetamine Accelerates Recovery of Consciousness and Respiratory Drive After High-Dose Fentanyl in Rats. Front Pharmacol 2020;11:585356. [PMID: 33424595 DOI: 10.3389/fphar.2020.585356] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
179 Spindler LRB, Luppi AI, Adapa RM, Craig MM, Coppola P, Peattie ARD, Manktelow AE, Finoia P, Sahakian BJ, Williams GB, Allanson J, Pickard JD, Menon DK, Stamatakis EA. Dopaminergic brainstem disconnection is common to pharmacological and pathological consciousness perturbation. Proc Natl Acad Sci U S A 2021;118:e2026289118. [PMID: 34301891 DOI: 10.1073/pnas.2026289118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
180 Alonso IP, Pino JA, Kortagere S, Torres GE, España RA. Dopamine transporter function fluctuates across sleep/wake state: potential impact for addiction. Neuropsychopharmacology 2021;46:699-708. [PMID: 33032296 DOI: 10.1038/s41386-020-00879-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
181 Yokoi R, Okabe M, Matsuda N, Odawara A, Karashima A, Suzuki I. Impact of Sleep-Wake-Associated Neuromodulators and Repetitive Low-Frequency Stimulation on Human iPSC-Derived Neurons. Front Neurosci 2019;13:554. [PMID: 31191238 DOI: 10.3389/fnins.2019.00554] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
182 Li SB, Borniger JC, Yamaguchi H, Hédou J, Gaudilliere B, de Lecea L. Hypothalamic circuitry underlying stress-induced insomnia and peripheral immunosuppression. Sci Adv 2020;6:eabc2590. [PMID: 32917689 DOI: 10.1126/sciadv.abc2590] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
183 Yanagihara S, Ikebuchi M, Mori C, Tachibana RO, Okanoya K. Arousal State-Dependent Alterations in Neural Activity in the Zebra Finch VTA/SNc. Front Neurosci 2020;14:897. [PMID: 32973441 DOI: 10.3389/fnins.2020.00897] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
184 Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022. [PMID: 35362070 DOI: 10.1097/ALN.0000000000004148] [Reference Citation Analysis]
185 Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021;132:1254-64. [PMID: 33857967 DOI: 10.1213/ANE.0000000000005361] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
186 Vlasov K, Van Dort CJ, Solt K. Optogenetics and Chemogenetics. Methods Enzymol 2018;603:181-96. [PMID: 29673525 DOI: 10.1016/bs.mie.2018.01.022] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
187 Rattenborg NC. Sleeping on the wing. Interface Focus 2017;7:20160082. [PMID: 28163874 DOI: 10.1098/rsfs.2016.0082] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
188 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
189 Mizrahi-Kliger AD, Kaplan A, Israel Z, Bergman H. Desynchronization of slow oscillations in the basal ganglia during natural sleep. Proc Natl Acad Sci U S A 2018;115:E4274-83. [PMID: 29666271 DOI: 10.1073/pnas.1720795115] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
190 Dong H, Chen ZK, Guo H, Yuan XS, Liu CW, Qu WM, Huang ZL. Striatal neurons expressing dopamine D1 receptor promote wakefulness in mice. Curr Biol 2022:S0960-9822(21)01702-4. [PMID: 35021048 DOI: 10.1016/j.cub.2021.12.026] [Reference Citation Analysis]
191 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
192 Ma Z, Eaton M, Liu Y, Zhang J, Chen X, Tu X, Shi Y, Que Z, Wettschurack K, Zhang Z, Shi R, Chen Y, Kimbrough A, Lanman NA, Schust L, Huang Z, Yang Y. Deficiency of autism-related Scn2a gene in mice disrupts sleep patterns and circadian rhythms. Neurobiol Dis 2022;:105690. [PMID: 35301122 DOI: 10.1016/j.nbd.2022.105690] [Reference Citation Analysis]
193 Stucynski JA, Schott AL, Baik J, Chung S, Weber F. Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Curr Biol 2021:S0960-9822(21)01419-6. [PMID: 34735794 DOI: 10.1016/j.cub.2021.10.030] [Reference Citation Analysis]
194 Jhou TC. The rostromedial tegmental (RMTg) "brake" on dopamine and behavior: A decade of progress but also much unfinished work. Neuropharmacology 2021;198:108763. [PMID: 34433088 DOI: 10.1016/j.neuropharm.2021.108763] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
195 Ballester Roig MN, Leduc T, Areal CC, Mongrain V. Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 2021;3:312-41. [PMID: 34207633 DOI: 10.3390/clockssleep3020020] [Reference Citation Analysis]
196 Walker WH 2nd, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019;20:E2780. [PMID: 31174326 DOI: 10.3390/ijms20112780] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
197 Borniger JC, Walker Ii WH, Surbhi, Emmer KM, Zhang N, Zalenski AA, Muscarella SL, Fitzgerald JA, Smith AN, Braam CJ, TinKai T, Magalang UJ, Lustberg MB, Nelson RJ, DeVries AC. A Role for Hypocretin/Orexin in Metabolic and Sleep Abnormalities in a Mouse Model of Non-metastatic Breast Cancer. Cell Metab 2018;28:118-129.e5. [PMID: 29805100 DOI: 10.1016/j.cmet.2018.04.021] [Cited by in Crossref: 36] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
198 Kelz MB, García PS, Mashour GA, Solt K. Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019;128:726-36. [PMID: 30883418 DOI: 10.1213/ANE.0000000000004006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
199 Gómez Pérez LJ, Cardullo S, Cellini N, Sarlo M, Monteanni T, Bonci A, Terraneo A, Gallimberti L, Madeo G. Sleep quality improves during treatment with repetitive transcranial magnetic stimulation (rTMS) in patients with cocaine use disorder: a retrospective observational study. BMC Psychiatry 2020;20:153. [PMID: 32252720 DOI: 10.1186/s12888-020-02568-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
200 Liu Y, Chen B, Cai Y, Han Y, Xia Y, Li N, Fan B, Yuan T, Jiang J, Gao PO, Yu W, Jiao Y, Li W. Activation of anterior thalamic reticular nucleus GABAergic neurons promotes arousal from propofol anesthesia in mice. Acta Biochim Biophys Sin (Shanghai) 2021;53:883-92. [PMID: 33929026 DOI: 10.1093/abbs/gmab056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
201 Koshimizu Y, Isa K, Kobayashi K, Isa T. Double viral vector technology for selective manipulation of neural pathways with higher level of efficiency and safety. Gene Ther 2021;28:339-50. [PMID: 33432122 DOI: 10.1038/s41434-020-00212-y] [Reference Citation Analysis]
202 Luo YJ, Li YD, Wang L, Yang SR, Yuan XS, Wang J, Cherasse Y, Lazarus M, Chen JF, Qu WM, Huang ZL. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun 2018;9:1576. [PMID: 29679009 DOI: 10.1038/s41467-018-03889-3] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 16.8] [Reference Citation Analysis]
203 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
204 Winsky-sommerer R, de Oliveira P, Loomis S, Wafford K, Dijk D, Gilmour G. Disturbances of sleep quality, timing and structure and their relationship with other neuropsychiatric symptoms in Alzheimer’s disease and schizophrenia: Insights from studies in patient populations and animal models. Neuroscience & Biobehavioral Reviews 2019;97:112-37. [DOI: 10.1016/j.neubiorev.2018.09.027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
205 Grima LL, Panayi MC, Härmson O, Syed ECJ, Manohar SG, Husain M, Walton ME. Nucleus accumbens D1-receptors regulate and focus transitions to reward-seeking action. Neuropsychopharmacology 2022. [PMID: 35478011 DOI: 10.1038/s41386-022-01312-6] [Reference Citation Analysis]
206 Dhuna NA, Malkani RG. Antidepressants and Their Impact on Sleep. Curr Sleep Medicine Rep 2020;6:216-25. [DOI: 10.1007/s40675-020-00189-5] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
207 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
208 Singh K, García-Gomar MG, Cauzzo S, Staab JP, Indovina I, Bianciardi M. Structural connectivity of autonomic, pain, limbic, and sensory brainstem nuclei in living humans based on 7 Tesla and 3 Tesla MRI. Hum Brain Mapp 2022. [PMID: 35305272 DOI: 10.1002/hbm.25836] [Reference Citation Analysis]
209 Kolesov DV, Sokolinskaya EL, Lukyanov KA, Bogdanov AM. Molecular Tools for Targeted Control of Nerve Cell Electrical Activity. Part II. Acta Naturae 2021;13:17-32. [PMID: 35127143 DOI: 10.32607/actanaturae.11415] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
210 Borniger JC, de Lecea L. Peripheral Lipopolyssacharide Rapidly Silences REM-Active LHGABA Neurons. Front Behav Neurosci 2021;15:649428. [PMID: 33716686 DOI: 10.3389/fnbeh.2021.649428] [Reference Citation Analysis]
211 Liu Y, Li Y, Yang B, Yu M, Zhang X, Bi L, Xu H. Glutamatergic Neurons of the Paraventricular Nucleus are Critical for the Control of Wakefulness. Neuroscience 2020;446:137-44. [PMID: 32860935 DOI: 10.1016/j.neuroscience.2020.08.024] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
212 Fifel K, Meijer JH, Deboer T. Circadian and Homeostatic Modulation of Multi-Unit Activity in Midbrain Dopaminergic Structures. Sci Rep 2018;8:7765. [PMID: 29773830 DOI: 10.1038/s41598-018-25770-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
213 Bjorness TE, Greene RW. Dose response of acute cocaine on sleep/waking behavior in mice. Neurobiol Sleep Circadian Rhythms 2018;5:84-93. [PMID: 31236515 DOI: 10.1016/j.nbscr.2018.02.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
214 Zhong YH, Jiang S, Qu WM, Zhang W, Huang ZL, Chen CR. Saikosaponin a promotes sleep by decreasing neuronal activities in the lateral hypothalamus. J Sleep Res 2021;:e13484. [PMID: 34510626 DOI: 10.1111/jsr.13484] [Reference Citation Analysis]
215 Deng B, Li Q, Liu X, Cao Y, Li B, Qian Y, Xu R, Mao R, Zhou E, Zhang W, Huang J, Rao Y. Chemoconnectomics: Mapping Chemical Transmission in Drosophila. Neuron 2019;101:876-893.e4. [PMID: 30799021 DOI: 10.1016/j.neuron.2019.01.045] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 19.3] [Reference Citation Analysis]
216 Sun HX, Wang DR, Ye CB, Hu ZZ, Wang CY, Huang ZL, Yang SR. Activation of the ventral tegmental area increased wakefulness in mice. Sleep Biol Rhythms 2017;15:107-15. [PMID: 28386207 DOI: 10.1007/s41105-017-0094-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
217 Fitzpatrick CM, Runegaard AH, Christiansen SH, Hansen NW, Jørgensen SH, Mcgirr JC, de Diego Ajenjo A, Sørensen AT, Perrier J, Petersen A, Gether U, Woldbye DP, Andreasen JT. Differential effects of chemogenetic inhibition of dopamine and norepinephrine neurons in the mouse 5-choice serial reaction time task. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;90:264-76. [DOI: 10.1016/j.pnpbp.2018.12.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
218 Ranjbar-Slamloo Y, Fazlali Z. Dopamine and Noradrenaline in the Brain; Overlapping or Dissociate Functions? Front Mol Neurosci 2019;12:334. [PMID: 32038164 DOI: 10.3389/fnmol.2019.00334] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
219 An S, Sun H, Wu M, Xie D, Hu S, Ding H, Cao J. Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit. Current Biology 2021;31:1379-1392.e4. [DOI: 10.1016/j.cub.2021.01.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
220 Hemmings HC Jr, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, Goldstein PA. Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends Pharmacol Sci 2019;40:464-81. [PMID: 31147199 DOI: 10.1016/j.tips.2019.05.001] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 19.3] [Reference Citation Analysis]
221 Luppi P, Fort P. Sleep–wake physiology. Clinical Neurophysiology: Basis and Technical Aspects. Elsevier; 2019. pp. 359-70. [DOI: 10.1016/b978-0-444-64032-1.00023-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
222 Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM, Arrigoni E, Scammell TE. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 2017;37:1352-66. [PMID: 28039375 DOI: 10.1523/JNEUROSCI.1405-16.2016] [Cited by in Crossref: 90] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
223 Cardozo Pinto DF, Lammel S. Viral vector strategies for investigating midbrain dopamine circuits underlying motivated behaviors. Pharmacol Biochem Behav 2018;174:23-32. [PMID: 28257849 DOI: 10.1016/j.pbb.2017.02.006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
224 Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021;22:9241. [PMID: 34502143 DOI: 10.3390/ijms22179241] [Reference Citation Analysis]
225 Zhao YN, Yan YD, Wang CY, Qu WM, Jhou TC, Huang ZL, Yang SR. The Rostromedial Tegmental Nucleus: Anatomical Studies and Roles in Sleep and Substance Addictions in Rats and Mice. Nat Sci Sleep 2020;12:1215-23. [PMID: 33380853 DOI: 10.2147/NSS.S278026] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
226 Bianciardi M, Izzy S, Rosen BR, Wald LL, Edlow BL. Location of Subcortical Microbleeds and Recovery of Consciousness After Severe Traumatic Brain Injury. Neurology 2021;97:e113-23. [PMID: 34050005 DOI: 10.1212/WNL.0000000000012192] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
227 Schwartz MD, Palmerston JB, Lee DL, Hoener MC, Kilduff TS. Deletion of Trace Amine-Associated Receptor 1 Attenuates Behavioral Responses to Caffeine. Front Pharmacol 2018;9:35. [PMID: 29456505 DOI: 10.3389/fphar.2018.00035] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
228 Driscoll M, Buchert SN, Coleman V, McLaughlin M, Nguyen A, Sitaraman D. Compartment specific regulation of sleep by mushroom body requires GABA and dopaminergic signaling. Sci Rep 2021;11:20067. [PMID: 34625611 DOI: 10.1038/s41598-021-99531-2] [Reference Citation Analysis]
229 Melonakos ED, Siegmann MJ, Rey C, O'Brien C, Nikolaeva KK, Solt K, Nehs CJ. Excitation of Putative Glutamatergic Neurons in the Rat Parabrachial Nucleus Region Reduces Delta Power during Dexmedetomidine but not Ketamine Anesthesia. Anesthesiology 2021. [PMID: 34270686 DOI: 10.1097/ALN.0000000000003883] [Reference Citation Analysis]
230 Luppi P, Fort P. Neuroanatomical and Neurochemical Bases of Vigilance States. In: Landolt H, Dijk D, editors. Sleep-Wake Neurobiology and Pharmacology. Cham: Springer International Publishing; 2019. pp. 35-58. [DOI: 10.1007/164_2017_84] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
231 Wang D, Guo Q, Zhou Y, Xu Z, Hu SW, Kong XX, Yu YM, Yang JX, Zhang H, Ding HL, Cao JL. GABAergic Neurons in the Dorsal-Intermediate Lateral Septum Regulate Sleep-Wakefulness and Anesthesia in Mice. Anesthesiology 2021. [PMID: 34259824 DOI: 10.1097/ALN.0000000000003868] [Reference Citation Analysis]
232 Kohlmeier KA, Polli FS. Plasticity in the Brainstem: Prenatal and Postnatal Experience Can Alter Laterodorsal Tegmental (LDT) Structure and Function. Front Synaptic Neurosci 2020;12:3. [PMID: 32116639 DOI: 10.3389/fnsyn.2020.00003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]