BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stuber GD, Wise RA. Lateral hypothalamic circuits for feeding and reward. Nat Neurosci 2016;19:198-205. [PMID: 26814589 DOI: 10.1038/nn.4220] [Cited by in Crossref: 226] [Cited by in F6Publishing: 204] [Article Influence: 37.7] [Reference Citation Analysis]
Number Citing Articles
1 Bocarsly ME. Pharmacological interventions for obesity: current and future targets. Curr Addict Rep 2018;5:202-11. [PMID: 30505644 DOI: 10.1007/s40429-018-0204-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
2 Wan XQ, Zeng F, Huang XF, Yang HQ, Wang L, Shi YC, Zhang ZH, Lin S. Risperidone stimulates food intake and induces body weight gain via the hypothalamic arcuate nucleus 5-HT2c receptor-NPY pathway. CNS Neurosci Ther 2020;26:558-66. [PMID: 31880085 DOI: 10.1111/cns.13281] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
3 van der Veldt S, Etter G, Mosser CA, Manseau F, Williams S. Conjunctive spatial and self-motion codes are topographically organized in the GABAergic cells of the lateral septum. PLoS Biol 2021;19:e3001383. [PMID: 34460812 DOI: 10.1371/journal.pbio.3001383] [Reference Citation Analysis]
4 Pei H, Patterson CM, Sutton AK, Burnett KH, Myers MG Jr, Olson DP. Lateral Hypothalamic Mc3R-Expressing Neurons Modulate Locomotor Activity, Energy Expenditure, and Adiposity in Male Mice. Endocrinology 2019;160:343-58. [PMID: 30541071 DOI: 10.1210/en.2018-00747] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
5 Esteban de Antonio E, López-Álvarez J, Rábano A, Agüera-Ortiz L, Sánchez-Soblechero A, Amaya L, Portela S, Cátedra C, Olazarán J. Pathological Correlations of Neuropsychiatric Symptoms in Institutionalized People with Dementia. J Alzheimers Dis 2020;78:1731-41. [PMID: 33185596 DOI: 10.3233/JAD-200600] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Cirino TJ, McLaughlin JP. Mini review: Promotion of substance abuse in HIV patients: Biological mediation by HIV-1 Tat protein. Neurosci Lett 2021;753:135877. [PMID: 33838257 DOI: 10.1016/j.neulet.2021.135877] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Herrera CG, Ponomarenko A, Korotkova T, Burdakov D, Adamantidis A. Sleep & metabolism: The multitasking ability of lateral hypothalamic inhibitory circuitries. Front Neuroendocrinol 2017;44:27-34. [PMID: 27884682 DOI: 10.1016/j.yfrne.2016.11.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
8 Schneider NY, Chaudy S, Epstein AL, Viollet C, Benani A, Pénicaud L, Grosmaître X, Datiche F, Gascuel J. Centrifugal projections to the main olfactory bulb revealed by transsynaptic retrograde tracing in mice. J Comp Neurol 2020;528:1805-19. [PMID: 31872441 DOI: 10.1002/cne.24846] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
9 Fernandez-Garcia JM, Carrillo B, Tezanos P, Collado P, Pinos H. Genistein during Development Alters Differentially the Expression of POMC in Male and Female Rats. Metabolites 2021;11:293. [PMID: 34063209 DOI: 10.3390/metabo11050293] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Hawlitschka A, Holzmann C, Witt S, Spiewok J, Neumann A, Schmitt O, Wree A, Antipova V. Intrastriatally injected botulinum neurotoxin-A differently effects cholinergic and dopaminergic fibers in C57BL/6 mice. Brain Research 2017;1676:46-56. [DOI: 10.1016/j.brainres.2017.09.016] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
11 Fu O, Iwai Y, Narukawa M, Ishikawa AW, Ishii KK, Murata K, Yoshimura Y, Touhara K, Misaka T, Minokoshi Y, Nakajima KI. Hypothalamic neuronal circuits regulating hunger-induced taste modification. Nat Commun 2019;10:4560. [PMID: 31594935 DOI: 10.1038/s41467-019-12478-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 1] [Article Influence: 6.7] [Reference Citation Analysis]
12 Franco R, Fonoff ET, Alvarenga P, Lopes AC, Miguel EC, Teixeira MJ, Damiani D, Hamani C. DBS for Obesity. Brain Sci 2016;6:E21. [PMID: 27438859 DOI: 10.3390/brainsci6030021] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
13 Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex. Rev Endocr Metab Disord 2022. [PMID: 35380355 DOI: 10.1007/s11154-022-09720-1] [Reference Citation Analysis]
14 Alhadeff AL, Goldstein N, Park O, Klima ML, Vargas A, Betley JN. Natural and Drug Rewards Engage Distinct Pathways that Converge on Coordinated Hypothalamic and Reward Circuits. Neuron 2019;103:891-908.e6. [PMID: 31277924 DOI: 10.1016/j.neuron.2019.05.050] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
15 Fattahi M, Ashabi G, Karimian SM, Riahi E. Preventing morphine reinforcement with high‐frequency deep brain stimulation of the lateral hypothalamic area. Addiction Biology 2018;24:685-95. [DOI: 10.1111/adb.12634] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
16 Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021;11:1425-47. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Reference Citation Analysis]
17 Li P, Shan H, Nie B, Liu H, Dong G, Guo Y, Du J, Gao H, Ma L, Li D, Shan B. Sleeve Gastrectomy Rescuing the Altered Functional Connectivity of Lateral but Not Medial Hypothalamus in Subjects with Obesity. Obes Surg 2019;29:2191-9. [PMID: 30895508 DOI: 10.1007/s11695-019-03822-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Yamashita T, Yamanaka A. Lateral hypothalamic circuits for sleep-wake control. Curr Opin Neurobiol 2017;44:94-100. [PMID: 28427008 DOI: 10.1016/j.conb.2017.03.020] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
19 Hwang YT, Piguet O, Hodges JR, Grunstein R, Burrell JR. Sleep and orexin: A new paradigm for understanding behavioural-variant frontotemporal dementia? Sleep Medicine Reviews 2020;54:101361. [DOI: 10.1016/j.smrv.2020.101361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Pignatelli M, Tejeda HA, Barker DJ, Bontempi L, Wu J, Lopez A, Palma Ribeiro S, Lucantonio F, Parise EM, Torres-Berrio A, Alvarez-Bagnarol Y, Marino RAM, Cai ZL, Xue M, Morales M, Tamminga CA, Nestler EJ, Bonci A. Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. Mol Psychiatry 2021;26:1860-79. [PMID: 32161361 DOI: 10.1038/s41380-020-0686-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
21 Martín-pérez C, Contreras-rodríguez O, Vilar-lópez R, Verdejo-garcía A. Hypothalamic Networks in Adolescents With Excess Weight: Stress-Related Connectivity and Associations With Emotional Eating. Journal of the American Academy of Child & Adolescent Psychiatry 2019;58:211-220.e5. [DOI: 10.1016/j.jaac.2018.06.039] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
22 Johnson AW. Characterizing ingestive behavior through licking microstructure: Underlying neurobiology and its use in the study of obesity in animal models. Int J Dev Neurosci 2018;64:38-47. [PMID: 28684308 DOI: 10.1016/j.ijdevneu.2017.06.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 4.2] [Reference Citation Analysis]
23 Tandon S, Keefe KA, Taha SA, Roeper J. Mu opioid receptor signaling in the nucleus accumbens shell increases responsiveness of satiety-modulated lateral hypothalamus neurons. Eur J Neurosci 2017;45:1418-30. [DOI: 10.1111/ejn.13579] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
24 Bittencourt JC. Anatomical and functional heterogeneity of 'hypothalamic' peptidergic neuron populations. Nat Rev Endocrinol 2022. [PMID: 35469075 DOI: 10.1038/s41574-022-00680-9] [Reference Citation Analysis]
25 Ponté C, Giron A, Crequy M, Lapeyre-Mestre M, Fabre N, Salles J. Cluster Headache in Subjects With Substance Use Disorder: A Case Series and a Review of the Literature. Headache 2019;59:576-89. [PMID: 30957220 DOI: 10.1111/head.13516] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Lazaridis I, Tzortzi O, Weglage M, Märtin A, Xuan Y, Parent M, Johansson Y, Fuzik J, Fürth D, Fenno LE, Ramakrishnan C, Silberberg G, Deisseroth K, Carlén M, Meletis K. A hypothalamus-habenula circuit controls aversion. Mol Psychiatry 2019;24:1351-68. [PMID: 30755721 DOI: 10.1038/s41380-019-0369-5] [Cited by in Crossref: 46] [Cited by in F6Publishing: 30] [Article Influence: 15.3] [Reference Citation Analysis]
27 Sotelo MI, Tyan J, Markunas C, Sulaman BA, Horwitz L, Lee H, Morrow JG, Rothschild G, Duan B, Eban-Rothschild A. Lateral hypothalamic neuronal ensembles regulate pre-sleep nest-building behavior. Curr Biol 2022:S0960-9822(21)01740-1. [PMID: 35051354 DOI: 10.1016/j.cub.2021.12.053] [Reference Citation Analysis]
28 Inada K, Hagihara M, Tsujimoto K, Abe T, Konno A, Hirai H, Kiyonari H, Miyamichi K. Plasticity of neural connections underlying oxytocin-mediated parental behaviors of male mice. Neuron 2022:S0896-6273(22)00304-X. [PMID: 35443152 DOI: 10.1016/j.neuron.2022.03.033] [Reference Citation Analysis]
29 Harding IH, Andrews ZB, Mata F, Orlandea S, Martínez-Zalacaín I, Soriano-Mas C, Stice E, Verdejo-Garcia A. Brain substrates of unhealthy versus healthy food choices: influence of homeostatic status and body mass index. Int J Obes (Lond) 2018;42:448-54. [PMID: 29064475 DOI: 10.1038/ijo.2017.237] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 3.4] [Reference Citation Analysis]
30 Koekkoek LL, Mul JD, la Fleur SE. Glucose-Sensing in the Reward System. Front Neurosci 2017;11:716. [PMID: 29311793 DOI: 10.3389/fnins.2017.00716] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
31 Zhang S, Zhornitsky S, Angarita GA, Li CR. Hypothalamic response to cocaine cues and cocaine addiction severity. Addict Biol 2020;25:e12682. [PMID: 30295396 DOI: 10.1111/adb.12682] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
32 Weera MM, Shackett RS, Kramer HM, Middleton JW, Gilpin NW. Central Amygdala Projections to Lateral Hypothalamus Mediate Avoidance Behavior in Rats. J Neurosci 2021;41:61-72. [PMID: 33188067 DOI: 10.1523/JNEUROSCI.0236-20.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Patel H. The role of the lateral septum in neuropsychiatric disease. J Neurosci Res 2022. [PMID: 35443088 DOI: 10.1002/jnr.25052] [Reference Citation Analysis]
34 DiFazio LE, Fanselow M, Sharpe MJ. The effect of stress and reward on encoding future fear memories. Behav Brain Res 2022;417:113587. [PMID: 34543677 DOI: 10.1016/j.bbr.2021.113587] [Reference Citation Analysis]
35 Bortolini T, Melo B, Basilio R, Fischer R, Zahn R, de Oliveira-Souza R, Knutson B, Moll J. Striatal and septo-hypothalamic responses to anticipation and outcome of affiliative rewards. Neuroimage 2021;243:118474. [PMID: 34407439 DOI: 10.1016/j.neuroimage.2021.118474] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Lüscher C, Robbins TW, Everitt BJ. The transition to compulsion in addiction. Nat Rev Neurosci 2020;21:247-63. [PMID: 32231315 DOI: 10.1038/s41583-020-0289-z] [Cited by in Crossref: 72] [Cited by in F6Publishing: 55] [Article Influence: 36.0] [Reference Citation Analysis]
37 McHenry JA, Otis JM, Rossi MA, Robinson JE, Kosyk O, Miller NW, McElligott ZA, Budygin EA, Rubinow DR, Stuber GD. Hormonal gain control of a medial preoptic area social reward circuit. Nat Neurosci 2017;20:449-58. [PMID: 28135243 DOI: 10.1038/nn.4487] [Cited by in Crossref: 132] [Cited by in F6Publishing: 113] [Article Influence: 26.4] [Reference Citation Analysis]
38 Williams DL. The diverse effects of brain glucagon-like peptide 1 receptors on ingestive behaviour. Br J Pharmacol 2021. [PMID: 33990944 DOI: 10.1111/bph.15535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Sweeney P, Li C, Yang Y. Appetite suppressive role of medial septal glutamatergic neurons. Proc Natl Acad Sci U S A 2017;114:13816-21. [PMID: 29229861 DOI: 10.1073/pnas.1707228114] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
40 Risco S, Mediavilla C. Orexin A in the ventral tegmental area enhances saccharin-induced conditioned flavor preference: The role of D1 receptors in central nucleus of amygdala. Behavioural Brain Research 2018;348:192-200. [DOI: 10.1016/j.bbr.2018.04.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Vasquez JH, Borniger JC. Neuroendocrine and Behavioral Consequences of Hyperglycemia in Cancer. Endocrinology 2020;161:bqaa047. [PMID: 32193527 DOI: 10.1210/endocr/bqaa047] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Schneider NY, Piccin C, Datiche F, Coureaud G. Spontaneous brain processing of the mammary pheromone in rabbit neonates prior to milk intake. Behav Brain Res 2016;313:191-200. [PMID: 27418440 DOI: 10.1016/j.bbr.2016.07.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
43 Mediavilla C. Bidirectional gut-brain communication: A role for orexin-A. Neurochem Int 2020;141:104882. [PMID: 33068686 DOI: 10.1016/j.neuint.2020.104882] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Jung S, Lee M, Kim DY, Son C, Ahn BH, Heo G, Park J, Kim M, Park HE, Koo DJ, Park JH, Lee JW, Choe HK, Kim SY. A forebrain neural substrate for behavioral thermoregulation. Neuron 2021:S0896-6273(21)00712-1. [PMID: 34687664 DOI: 10.1016/j.neuron.2021.09.039] [Reference Citation Analysis]
45 Qualls-Creekmore E, Münzberg H. Modulation of Feeding and Associated Behaviors by Lateral Hypothalamic Circuits. Endocrinology 2018;159:3631-42. [PMID: 30215694 DOI: 10.1210/en.2018-00449] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
46 Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The Physiological Control of Eating: Signals, Neurons, and Networks. Physiol Rev 2021. [PMID: 34486393 DOI: 10.1152/physrev.00028.2020] [Reference Citation Analysis]
47 Owens-french J, Li S, Francois M, Leigh Townsend R, Daniel M, Soulier H, Turner A, de Lecea L, Münzberg H, Morrison C, Qualls-creekmore E. Lateral hypothalamic galanin neurons are activated by stress and blunt anxiety-like behavior in mice. Behavioural Brain Research 2022. [DOI: 10.1016/j.bbr.2022.113773] [Reference Citation Analysis]
48 Li Y, Zeng J, Zhang J, Yue C, Zhong W, Liu Z, Feng Q, Luo M. Hypothalamic Circuits for Predation and Evasion. Neuron 2018;97:911-924.e5. [DOI: 10.1016/j.neuron.2018.01.005] [Cited by in Crossref: 90] [Cited by in F6Publishing: 74] [Article Influence: 22.5] [Reference Citation Analysis]
49 Wang Y, Kim J, Schmit MB, Cho TS, Fang C, Cai H. A bed nucleus of stria terminalis microcircuit regulating inflammation-associated modulation of feeding. Nat Commun 2019;10:2769. [PMID: 31235690 DOI: 10.1038/s41467-019-10715-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 8.7] [Reference Citation Analysis]
50 Minbashi Moeini M, Sadr SS, Riahi E. Deep Brain Stimulation of the Lateral Hypothalamus Facilitates Extinction and Prevents Reinstatement of Morphine Place Preference in Rats. Neuromodulation 2021;24:240-7. [PMID: 33496024 DOI: 10.1111/ner.13320] [Reference Citation Analysis]
51 Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2021;229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
52 Talakoub O, Paiva RR, Milosevic M, Hoexter MQ, Franco R, Alho E, Navarro J, Pereira JF Jr, Popovic MR, Savage C, Lopes AC, Alvarenga P, Damiani D, Teixeira MJ, Miguel EC, Fonoff ET, Batistuzzo MC, Hamani C. Lateral hypothalamic activity indicates hunger and satiety states in humans. Ann Clin Transl Neurol 2017;4:897-901. [PMID: 29296618 DOI: 10.1002/acn3.466] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
53 Ulrich M, Stauß P, Grön G. Glucose Modulates Human Ventral Tegmental Activity in Response to Sexual Stimuli. The Journal of Sexual Medicine 2018;15:20-8. [DOI: 10.1016/j.jsxm.2017.11.014] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Azevedo EP, Pomeranz L, Cheng J, Schneeberger M, Vaughan R, Stern SA, Tan B, Doerig K, Greengard P, Friedman JM. A Role of Drd2 Hippocampal Neurons in Context-Dependent Food Intake. Neuron 2019;102:873-886.e5. [DOI: 10.1016/j.neuron.2019.03.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
55 Wei Q, Krolewski DM, Moore S, Kumar V, Li F, Martin B, Tomer R, Murphy GG, Deisseroth K, Watson SJ Jr, Akil H. Uneven balance of power between hypothalamic peptidergic neurons in the control of feeding. Proc Natl Acad Sci U S A 2018;115:E9489-98. [PMID: 30224492 DOI: 10.1073/pnas.1802237115] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
56 Xu L, Lin W, Zheng Y, Chen J, Fang Z, Tan N, Hu W, Guo Y, Wang Y, Chen Z. An H2R-dependent medial septum histaminergic circuit mediates feeding behavior. Curr Biol 2022:S0960-9822(22)00401-8. [PMID: 35338850 DOI: 10.1016/j.cub.2022.03.010] [Reference Citation Analysis]
57 Yang DJ, Hong J, Kim KW. Hypothalamic primary cilium: A hub for metabolic homeostasis. Exp Mol Med 2021;53:1109-15. [PMID: 34211092 DOI: 10.1038/s12276-021-00644-5] [Reference Citation Analysis]
58 Mahmoudi M, Maleki-roveshti M, Karimi-haghighi S, Haghparast A. Chemical stimulation of the lateral hypothalamus induced seeking behaviors in rats: Involvement of orexin receptors in the ventral tegmental area. European Journal of Pharmacology 2020;886:173433. [DOI: 10.1016/j.ejphar.2020.173433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Thanarajah SE, Backes H, Difeliceantonio AG, Albus K, Cremer AL, Hanssen R, Lippert RN, Cornely OA, Small DM, Brüning JC, Tittgemeyer M. Food Intake Recruits Orosensory and Post-ingestive Dopaminergic Circuits to Affect Eating Desire in Humans. Cell Metabolism 2019;29:695-706.e4. [DOI: 10.1016/j.cmet.2018.12.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
60 Rawlinson S, Andrews ZB. Hypothalamic insulin signalling as a nexus regulating mood and metabolism. J Neuroendocrinol 2021;33:e12939. [PMID: 33634518 DOI: 10.1111/jne.12939] [Reference Citation Analysis]
61 Marino RAM, McDevitt RA, Gantz SC, Shen H, Pignatelli M, Xin W, Wise RA, Bonci A. Control of food approach and eating by a GABAergic projection from lateral hypothalamus to dorsal pons. Proc Natl Acad Sci U S A 2020;117:8611-5. [PMID: 32229573 DOI: 10.1073/pnas.1909340117] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
62 Wang Y, Eddison M, Fleishman G, Weigert M, Xu S, Wang T, Rokicki K, Goina C, Henry FE, Lemire AL, Schmidt U, Yang H, Svoboda K, Myers EW, Saalfeld S, Korff W, Sternson SM, Tillberg PW. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 2021;184:6361-6377.e24. [PMID: 34875226 DOI: 10.1016/j.cell.2021.11.024] [Reference Citation Analysis]
63 Deem JD, Faber CL, Morton GJ. AgRP neurons: Regulators of feeding, energy expenditure, and behavior. FEBS J 2021. [PMID: 34469623 DOI: 10.1111/febs.16176] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Bloomfield FH, Alexander T, Muelbert M, Beker F. Smell and taste in the preterm infant. Early Hum Dev 2017;114:31-4. [PMID: 28899618 DOI: 10.1016/j.earlhumdev.2017.09.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
65 Contreras López WO, Navarro PA, Crispín S. Effectiveness of Deep Brain Stimulation in Reducing Body Mass Index and Weight: A Systematic Review. Stereotact Funct Neurosurg 2021;:1-11. [PMID: 34583359 DOI: 10.1159/000519158] [Reference Citation Analysis]
66 Gaspari S, Quenneville S, Rodriguez Sanchez-Archidona A, Thorens B, Croizier S. Structural and molecular characterization of paraventricular thalamic glucokinase-expressing neuronal circuits in the mouse. J Comp Neurol 2022. [PMID: 35303367 DOI: 10.1002/cne.25312] [Reference Citation Analysis]
67 Tsanov M. Speed and Oscillations: Medial Septum Integration of Attention and Navigation. Front Syst Neurosci 2017;11:67. [PMID: 28979196 DOI: 10.3389/fnsys.2017.00067] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
68 Gomes-de-Souza L, Benini R, Costa-Ferreira W, Crestani CC. GABAA but not GABAB receptors in the lateral hypothalamus modulate the tachycardic response to emotional stress in rats. Eur Neuropsychopharmacol 2019;29:672-80. [PMID: 30878320 DOI: 10.1016/j.euroneuro.2019.03.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
69 Lemche E, Chaban OS, Lemche AV. Neuroendocrinological and Epigenetic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome. Front Neurosci 2016;10:142. [PMID: 27147943 DOI: 10.3389/fnins.2016.00142] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
70 Ko J. Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns. Front Neural Circuits 2017;11:41. [PMID: 28659766 DOI: 10.3389/fncir.2017.00041] [Cited by in Crossref: 70] [Cited by in F6Publishing: 67] [Article Influence: 14.0] [Reference Citation Analysis]
71 Kalsbeek MJT, Yi CX. The infundibular peptidergic neurons and glia cells in overeating, obesity, and diabetes. Handb Clin Neurol 2021;180:315-25. [PMID: 34225937 DOI: 10.1016/B978-0-12-820107-7.00019-7] [Reference Citation Analysis]
72 Gendelis S, Inbar D, Kupchik YM. The role of the nucleus accumbens and ventral pallidum in feeding and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2021;111:110394. [PMID: 34242717 DOI: 10.1016/j.pnpbp.2021.110394] [Reference Citation Analysis]
73 Blancas-Velazquez A, Mendoza J, Garcia AN, la Fleur SE. Diet-Induced Obesity and Circadian Disruption of Feeding Behavior. Front Neurosci. 2017;11:23. [PMID: 28223912 DOI: 10.3389/fnins.2017.00023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 3.4] [Reference Citation Analysis]
74 Li YD, Luo YJ, Xu W, Ge J, Cherasse Y, Wang YQ, Lazarus M, Qu WM, Huang ZL. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol Psychiatry 2021;26:2912-28. [PMID: 33057171 DOI: 10.1038/s41380-020-00906-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Cassidy RM, Tong Q. Hunger and Satiety Gauge Reward Sensitivity. Front Endocrinol (Lausanne) 2017;8:104. [PMID: 28572791 DOI: 10.3389/fendo.2017.00104] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 6.4] [Reference Citation Analysis]
76 Alhadeff AL. Monitoring In Vivo Neural Activity to Understand Gut-Brain Signaling. Endocrinology 2021;162:bqab029. [PMID: 33558881 DOI: 10.1210/endocr/bqab029] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
77 Siddiqui R, Mungroo MR, Khan NA. SARS-CoV-2 invasion of the central nervous: a brief review. Hosp Pract (1995) 2021;49:157-63. [PMID: 33554684 DOI: 10.1080/21548331.2021.1887677] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
78 Sun M, Mao XF, Li ZM, Zhu ZH, Gong DM, Lu L, Chen X, Zhang Y, Fukunaga K, Ji Y, Gu AH, Lu YM, Han F. Endothelial peroxynitrite causes disturbance of neuronal oscillations by targeting caspase-1 in the arcuate nucleus. Redox Biol 2021;47:102147. [PMID: 34601428 DOI: 10.1016/j.redox.2021.102147] [Reference Citation Analysis]
79 Ye L, Liddle RA. Gastrointestinal hormones and the gut connectome. Curr Opin Endocrinol Diabetes Obes 2017;24:9-14. [PMID: 27820704 DOI: 10.1097/MED.0000000000000299] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
80 Yang CF, Feldman JL. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J Comp Neurol 2018;526:1389-402. [PMID: 29473167 DOI: 10.1002/cne.24415] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 14.5] [Reference Citation Analysis]
81 Sachuriga, Nishimaru H, Takamura Y, Matsumoto J, Ferreira Pereira de Araújo M, Ono T, Nishijo H. Neuronal Representation of Locomotion During Motivated Behavior in the Mouse Anterior Cingulate Cortex. Front Syst Neurosci 2021;15:655110. [PMID: 33994964 DOI: 10.3389/fnsys.2021.655110] [Reference Citation Analysis]
82 Schiffino FL, Siemian JN, Petrella M, Laing BT, Sarsfield S, Borja CB, Gajendiran A, Zuccoli ML, Aponte Y. Activation of a lateral hypothalamic-ventral tegmental circuit gates motivation. PLoS One 2019;14:e0219522. [PMID: 31291348 DOI: 10.1371/journal.pone.0219522] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
83 Kranz GS, Hahn A, Kaufmann U, Tik M, Ganger S, Seiger R, Hummer A, Windischberger C, Kasper S, Lanzenberger R. Effects of testosterone treatment on hypothalamic neuroplasticity in female-to-male transgender individuals. Brain Struct Funct 2018;223:321-8. [PMID: 28819863 DOI: 10.1007/s00429-017-1494-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
84 Fu O, Iwai Y, Narukawa M, Ishikawa AW, Ishii KK, Murata K, Yoshimura Y, Touhara K, Misaka T, Minokoshi Y, Nakajima KI. Hypothalamic neuronal circuits regulating hunger-induced taste modification. Nat Commun 2019;10:4560. [PMID: 31594935 DOI: 10.1038/s41467-019-12478-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
85 Liu Y, Yan M, Guo Y, Niu Z, Sun R, Jin H, Gong Y. Ghrelin and electrical stimulating the lateral hypothalamus area regulated the discharges of gastric distention neurons via the dorsal vagal complex in cisplatin-treated rats. Gen Comp Endocrinol. 2019;279:174-183. [PMID: 30914266 DOI: 10.1016/j.ygcen.2019.03.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
86 Campbell EJ, Barker DJ, Nasser HM, Kaganovsky K, Dayas CV, Marchant NJ. Cue-induced food seeking after punishment is associated with increased Fos expression in the lateral hypothalamus and basolateral and medial amygdala. Behav Neurosci 2017;131:155-67. [PMID: 28221079 DOI: 10.1037/bne0000185] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
87 Perez CI, Kalyanasundar B, Moreno MG, Gutierrez R. The Triple Combination Phentermine Plus 5-HTP/Carbidopa Leads to Greater Weight Loss, With Fewer Psychomotor Side Effects Than Each Drug Alone. Front Pharmacol 2019;10:1327. [PMID: 31780943 DOI: 10.3389/fphar.2019.01327] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
88 Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020;12:E3304. [PMID: 33126672 DOI: 10.3390/nu12113304] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
89 Melchior JR, Perez RE, Salimando GJ, Luchsinger JR, Basu A, Winder DG. Cocaine Augments Dopamine Mediated Inhibition of Neuronal Activity in the Dorsal Bed Nucleus of the Stria Terminalis. J Neurosci 2021:JN-RM-0284-21. [PMID: 34035141 DOI: 10.1523/JNEUROSCI.0284-21.2021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Berridge KC. Evolving Concepts of Emotion and Motivation. Front Psychol 2018;9:1647. [PMID: 30245654 DOI: 10.3389/fpsyg.2018.01647] [Cited by in Crossref: 66] [Cited by in F6Publishing: 43] [Article Influence: 16.5] [Reference Citation Analysis]
91 Rossi MA, Basiri ML, Liu Y, Hashikawa Y, Hashikawa K, Fenno LE, Kim YS, Ramakrishnan C, Deisseroth K, Stuber GD. Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area. Neuron 2021;109:3823-3837.e6. [PMID: 34624220 DOI: 10.1016/j.neuron.2021.09.020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Chen L, Lu Y, Chen H, Huang S, Guo Y, Zhang J, Li Q, Luo C, Lin S, Chen Z, Hu L, Wang W, Li H, Cai P, Yu C. Ventral tegmental area GABAergic neurons induce anxiety-like behaviors and promote palatable food intake. Neuropharmacology 2020;173:108114. [DOI: 10.1016/j.neuropharm.2020.108114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
93 Siemian JN, Sarsfield S, Aponte Y. Glutamatergic fast-spiking parvalbumin neurons in the lateral hypothalamus: Electrophysiological properties to behavior. Physiol Behav 2020;221:112912. [PMID: 32289319 DOI: 10.1016/j.physbeh.2020.112912] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R, Leppla CA, Izadmehr EM, Tye KM. Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation. Neuron 2016;90:1286-98. [PMID: 27238864 DOI: 10.1016/j.neuron.2016.04.035] [Cited by in Crossref: 154] [Cited by in F6Publishing: 146] [Article Influence: 25.7] [Reference Citation Analysis]
95 Jin T, Jiang Z, Luan X, Qu Z, Guo F, Gao S, Xu L, Sun X. Exogenous Orexin-A Microinjected Into Central Nucleus of the Amygdala Modulates Feeding and Gastric Motility in Rats. Front Neurosci 2020;14:274. [PMID: 32410931 DOI: 10.3389/fnins.2020.00274] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
96 Bracey EF, Burdakov D. Fast sensory representations in the lateral hypothalamus and their roles in brain function. Physiology & Behavior 2020;222:112952. [DOI: 10.1016/j.physbeh.2020.112952] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
97 Barbosa DAN, de Oliveira-souza R, Monte Santo F, de Oliveira Faria AC, Gorgulho AA, De Salles AAF. The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurgical Focus 2017;43:E15. [DOI: 10.3171/2017.6.focus17256] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 4.8] [Reference Citation Analysis]
98 Devarakonda K, Kenny PJ. Energy Balance: Lateral Hypothalamus Hoards Food Memories. Current Biology 2017;27:R803-5. [DOI: 10.1016/j.cub.2017.06.082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
99 Hansen HH, Perens J, Roostalu U, Skytte JL, Salinas CG, Barkholt P, Thorbek DD, Rigbolt KTG, Vrang N, Jelsing J, Hecksher-Sørensen J. Whole-brain activation signatures of weight-lowering drugs. Mol Metab 2021;47:101171. [PMID: 33529728 DOI: 10.1016/j.molmet.2021.101171] [Reference Citation Analysis]
100 Francke P, Tiedemann LJ, Menz MM, Beck J, Büchel C, Brassen S. Mesolimbic white matter connectivity mediates the preference for sweet food. Sci Rep 2019;9:4349. [PMID: 30867529 DOI: 10.1038/s41598-019-40935-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
101 Hurtado MM, Puerto A. Tolerance to rewarding brain electrical stimulation: Differential effects of contingent and non-contingent activation of parabrachial complex and lateral hypothalamus. Behavioural Brain Research 2018;336:15-21. [DOI: 10.1016/j.bbr.2017.08.030] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
102 Santiago AN, Makowicz EA, Du M, Aoki C. Food Restriction Engages Prefrontal Corticostriatal Cells and Local Microcircuitry to Drive the Decision to Run versus Conserve Energy. Cereb Cortex 2021;31:2868-85. [PMID: 33497440 DOI: 10.1093/cercor/bhaa394] [Reference Citation Analysis]
103 Torres-Berrio A, Cuesta S, Lopez-Guzman S, Nava-Mesa MO. Interaction Between Stress and Addiction: Contributions From Latin-American Neuroscience. Front Psychol 2018;9:2639. [PMID: 30622500 DOI: 10.3389/fpsyg.2018.02639] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
104 Petrovich GD. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior. Front Syst Neurosci 2018;12:14. [PMID: 29713268 DOI: 10.3389/fnsys.2018.00014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
105 Sweeney P, Yang Y. Neural Circuit Mechanisms Underlying Emotional Regulation of Homeostatic Feeding. Trends Endocrinol Metab 2017;28:437-48. [PMID: 28279562 DOI: 10.1016/j.tem.2017.02.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
106 Zhang S, Wang W, Zhornitsky S, Li CR. Resting State Functional Connectivity of the Lateral and Medial Hypothalamus in Cocaine Dependence: An Exploratory Study. Front Psychiatry 2018;9:344. [PMID: 30100886 DOI: 10.3389/fpsyt.2018.00344] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
107 Gazea M, Furdan S, Sere P, Oesch L, Molnár B, Di Giovanni G, Fenno LE, Ramakrishnan C, Mattis J, Deisseroth K, Dymecki SM, Adamantidis AR, Lőrincz ML. Reciprocal Lateral Hypothalamic and Raphe GABAergic Projections Promote Wakefulness. J Neurosci 2021;41:4840-9. [PMID: 33888606 DOI: 10.1523/JNEUROSCI.2850-20.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
108 Siemian JN, Borja CB, Sarsfield S, Kisner A, Aponte Y. Lateral hypothalamic fast-spiking parvalbumin neurons modulate nociception through connections in the periaqueductal gray area. Sci Rep 2019;9:12026. [PMID: 31427712 DOI: 10.1038/s41598-019-48537-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
109 Ichinose T, Tanimoto H, Yamagata N. Behavioral Modulation by Spontaneous Activity of Dopamine Neurons. Front Syst Neurosci 2017;11:88. [PMID: 29321731 DOI: 10.3389/fnsys.2017.00088] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
110 Devarakonda K, Stanley S. Investigating metabolic regulation using targeted neuromodulation. Ann N Y Acad Sci 2018;1411:83-95. [PMID: 29106710 DOI: 10.1111/nyas.13468] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
111 Ghosh S, Li N, Schwalm M, Bartelle BB, Xie T, Daher JI, Singh UD, Xie K, DiNapoli N, Evans NB, Chung K, Jasanoff A. Functional dissection of neural circuitry using a genetic reporter for fMRI. Nat Neurosci 2022. [PMID: 35241803 DOI: 10.1038/s41593-022-01014-8] [Reference Citation Analysis]
112 Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019;527:3046-72. [DOI: 10.1002/cne.24729] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
113 Novelle MG, Diéguez C. Unravelling the role and mechanism of adipokine and gastrointestinal signals in animal models in the nonhomeostatic control of energy homeostasis: Implications for binge eating disorder. Eur Eat Disorders Rev 2018;26:551-68. [DOI: 10.1002/erv.2641] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
114 Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 2017;18:73-85. [DOI: 10.1038/nrn.2016.165] [Cited by in Crossref: 426] [Cited by in F6Publishing: 378] [Article Influence: 85.2] [Reference Citation Analysis]
115 Kelly AM, Seifert AW. Distribution of Vasopressin and Oxytocin Neurons in the Basal Forebrain and Midbrain of Spiny Mice (Acomys cahirinus). Neuroscience 2021;468:16-28. [PMID: 34102266 DOI: 10.1016/j.neuroscience.2021.05.034] [Reference Citation Analysis]
116 Vincis R, Fontanini A. Central taste anatomy and physiology. Handb Clin Neurol 2019;164:187-204. [PMID: 31604547 DOI: 10.1016/B978-0-444-63855-7.00012-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
117 De Pablo-Fernández E, Warner TT. Hypothalamic α-synuclein and its relation to autonomic symptoms and neuroendocrine abnormalities in Parkinson disease. Handb Clin Neurol 2021;182:223-33. [PMID: 34266594 DOI: 10.1016/B978-0-12-819973-2.00015-0] [Reference Citation Analysis]
118 Rossi MA, Stuber GD. Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. Cell Metab 2018;27:42-56. [PMID: 29107504 DOI: 10.1016/j.cmet.2017.09.021] [Cited by in Crossref: 112] [Cited by in F6Publishing: 99] [Article Influence: 22.4] [Reference Citation Analysis]
119 Kosse C, Schöne C, Bracey E, Burdakov D. Orexin-driven GAD65 network of the lateral hypothalamus sets physical activity in mice. Proc Natl Acad Sci U S A 2017;114:4525-30. [PMID: 28396414 DOI: 10.1073/pnas.1619700114] [Cited by in Crossref: 47] [Cited by in F6Publishing: 35] [Article Influence: 9.4] [Reference Citation Analysis]
120 Garcia A, Coss A, Luis-Islas J, Puron-Sierra L, Luna M, Villavicencio M, Gutierrez R. Lateral Hypothalamic GABAergic Neurons Encode and Potentiate Sucrose's Palatability. Front Neurosci 2020;14:608047. [PMID: 33551725 DOI: 10.3389/fnins.2020.608047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Qiu J, Rivera HM, Bosch MA, Padilla SL, Stincic TL, Palmiter RD, Kelly MJ, Rønnekleiv OK. Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. Elife 2018;7:e35656. [PMID: 30079889 DOI: 10.7554/eLife.35656] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
122 Kelley L, Verlezza S, Long H, Loka M, Walker CD. Increased Hypothalamic Projections to the Lateral Hypothalamus and Responses to Leptin in Rat Neonates From High Fat Fed Mothers. Front Neurosci 2019;13:1454. [PMID: 32082105 DOI: 10.3389/fnins.2019.01454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
123 Guillaumin MCC, Burdakov D. Neuropeptides as Primary Mediators of Brain Circuit Connectivity. Front Neurosci 2021;15:644313. [PMID: 33776641 DOI: 10.3389/fnins.2021.644313] [Reference Citation Analysis]
124 Sheth C, Furlong TM, Keefe KA, Taha SA. The lateral hypothalamus to lateral habenula projection, but not the ventral pallidum to lateral habenula projection, regulates voluntary ethanol consumption. Behav Brain Res 2017;328:195-208. [PMID: 28432009 DOI: 10.1016/j.bbr.2017.04.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
125 Lebedev AA, Bessolova YN, Efimov NS, Bychkov ER, Droblenkov AV, Shabanov PD. Role of orexin peptide system in emotional overeating induced by brain reward stimulation in fed rats. RRP 2020;6:81-91. [DOI: 10.3897/rrpharmacology.6.52180] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Sharpe MJ, Batchelor HM, Mueller LE, Gardner MPH, Schoenbaum G. Past experience shapes the neural circuits recruited for future learning. Nat Neurosci 2021;24:391-400. [PMID: 33589832 DOI: 10.1038/s41593-020-00791-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Sharpe MJ, Marchant NJ, Whitaker LR, Richie CT, Zhang YJ, Campbell EJ, Koivula PP, Necarsulmer JC, Mejias-Aponte C, Morales M, Pickel J, Smith JC, Niv Y, Shaham Y, Harvey BK, Schoenbaum G. Lateral Hypothalamic GABAergic Neurons Encode Reward Predictions that Are Relayed to the Ventral Tegmental Area to Regulate Learning. Curr Biol 2017;27:2089-2100.e5. [PMID: 28690111 DOI: 10.1016/j.cub.2017.06.024] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 10.6] [Reference Citation Analysis]
128 Al Massadi O, Nogueiras R, Dieguez C, Girault JA. Ghrelin and food reward. Neuropharmacology 2019;148:131-8. [PMID: 30615902 DOI: 10.1016/j.neuropharm.2019.01.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
129 Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020;14:101. [PMID: 32116534 DOI: 10.3389/fnins.2020.00101] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
130 Kurt G, Woodworth HL, Fowler S, Bugescu R, Leinninger GM. Activation of lateral hypothalamic area neurotensin-expressing neurons promotes drinking. Neuropharmacology 2019;154:13-21. [PMID: 30266601 DOI: 10.1016/j.neuropharm.2018.09.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
131 Yao Y. Exploring Neural Substrates Underlying the Execution of Behavior Across the Whole Brain. Neurosci Bull 2016;32:505-7. [PMID: 27590485 DOI: 10.1007/s12264-016-0057-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
132 He M, Shi Z, Sha N, Chen N, Peng S, Liao D, Wong M, Dong X, Wang Y, Yuan T, Zhang Y. Paricalcitol alleviates lipopolysaccharide-induced depressive-like behavior by suppressing hypothalamic microglia activation and neuroinflammation. Biochemical Pharmacology 2019;163:1-8. [DOI: 10.1016/j.bcp.2019.01.021] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
133 Gazea M, Patchev AV, Anderzhanova E, Leidmaa E, Pissioti A, Flachskamm C, Almeida OFX, Kimura M. Restoring Serotonergic Homeostasis in the Lateral Hypothalamus Rescues Sleep Disturbances Induced by Early-Life Obesity. J Neurosci 2018;38:441-51. [PMID: 29196316 DOI: 10.1523/JNEUROSCI.1333-17.2017] [Cited by in Crossref: 3] [Article Influence: 0.6] [Reference Citation Analysis]
134 Tolle V, Ramoz N, Epelbaum J. Is there a hypothalamic basis for anorexia nervosa? Handb Clin Neurol 2021;181:405-24. [PMID: 34238474 DOI: 10.1016/B978-0-12-820683-6.00030-0] [Reference Citation Analysis]
135 Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017;4:ENEURO. [PMID: 28966976 DOI: 10.1523/ENEURO.0013-17.2017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 9.6] [Reference Citation Analysis]
136 Rodgers R. Bench to bedside in appetite research: Lost in translation? Neuroscience & Biobehavioral Reviews 2017;76:163-73. [DOI: 10.1016/j.neubiorev.2016.08.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
137 Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 2017;10:679-89. [PMID: 28592656 DOI: 10.1242/dmm.026609] [Cited by in Crossref: 238] [Cited by in F6Publishing: 220] [Article Influence: 59.5] [Reference Citation Analysis]
138 Stern SA, Doerig KR, Azevedo EP, Stoffel E, Friedman JM. Control of non-homeostatic feeding in sated mice using associative learning of contextual food cues. Mol Psychiatry 2020;25:666-79. [PMID: 29875477 DOI: 10.1038/s41380-018-0072-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
139 Woodward ORM, Gribble FM, Reimann F, Lewis JE. Gut peptide regulation of food intake - evidence for the modulation of hedonic feeding. J Physiol 2021. [PMID: 34152020 DOI: 10.1113/JP280581] [Reference Citation Analysis]
140 Siemian JN, Arenivar MA, Sarsfield S, Borja CB, Erbaugh LJ, Eagle AL, Robison AJ, Leinninger G, Aponte Y. An excitatory lateral hypothalamic circuit orchestrating pain behaviors in mice. Elife 2021;10:e66446. [PMID: 34042586 DOI: 10.7554/eLife.66446] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Haight JL, Campus P, Maria-Rios CE, Johnson AM, Klumpner MS, Kuhn BN, Covelo IR, Morrow JD, Flagel SB. The lateral hypothalamus and orexinergic transmission in the paraventricular thalamus promote the attribution of incentive salience to reward-associated cues. Psychopharmacology (Berl) 2020;237:3741-58. [PMID: 32852601 DOI: 10.1007/s00213-020-05651-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
142 Barbier M, Fellmann D, Risold PY. Morphofunctional Organization of the Connections From the Medial and Intermediate Parts of the Central Nucleus of the Amygdala Into Distinct Divisions of the Lateral Hypothalamic Area in the Rat. Front Neurol 2018;9:688. [PMID: 30210427 DOI: 10.3389/fneur.2018.00688] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
143 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
144 Nasseef MT, Devenyi GA, Mechling AE, Harsan LA, Chakravarty MM, Kieffer BL, Darcq E. Deformation-based Morphometry MRI Reveals Brain Structural Modifications in Living Mu Opioid Receptor Knockout Mice. Front Psychiatry 2018;9:643. [PMID: 30559685 DOI: 10.3389/fpsyt.2018.00643] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
145 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
146 Li N, Jasanoff A. Local and global consequences of reward-evoked striatal dopamine release. Nature 2020;580:239-44. [PMID: 32269346 DOI: 10.1038/s41586-020-2158-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
147 Tiedemann LJ, Alink A, Beck J, Büchel C, Brassen S. Valence Encoding Signals in the Human Amygdala and the Willingness to Eat. J Neurosci 2020;40:5264-72. [PMID: 32457069 DOI: 10.1523/JNEUROSCI.2382-19.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
148 Somalwar AR, Shelkar GP, Subhedar NK, Kokare DM. The role of neuropeptide CART in the lateral hypothalamic-ventral tegmental area (LH-VTA) circuit in motivation. Behavioural Brain Research 2017;317:340-9. [DOI: 10.1016/j.bbr.2016.09.054] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
149 Thoeni S, Loureiro M, O’connor EC, Lüscher C. Depression of Accumbal to Lateral Hypothalamic Synapses Gates Overeating. Neuron 2020;107:158-172.e4. [DOI: 10.1016/j.neuron.2020.03.029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
150 Zhou J, Gardner MPH, Schoenbaum G. Is the core function of orbitofrontal cortex to signal values or make predictions? Curr Opin Behav Sci 2021;41:1-9. [PMID: 33869678 DOI: 10.1016/j.cobeha.2021.02.011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
151 Farzi A, Lau J, Ip CK, Qi Y, Shi YC, Zhang L, Tasan R, Sperk G, Herzog H. Arcuate nucleus and lateral hypothalamic CART neurons in the mouse brain exert opposing effects on energy expenditure. Elife 2018;7:e36494. [PMID: 30129922 DOI: 10.7554/eLife.36494] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
152 Burdakov D, Peleg-raibstein D. The hypothalamus as a primary coordinator of memory updating. Physiology & Behavior 2020;223:112988. [DOI: 10.1016/j.physbeh.2020.112988] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
153 Soti M, Abbasnejad M, Kooshki R, Esmaeili-mahani S. Central microinjection of phytohormone abscisic acid changes feeding behavior, decreases body weight, and reduces brain oxidative stress in rats. Nutritional Neuroscience 2018;22:678-87. [DOI: 10.1080/1028415x.2018.1431093] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Guo H, Yuan XS, Zhou JC, Chen H, Li SQ, Qu WM, Huang ZL. Whole-Brain Monosynaptic Inputs to Hypoglossal Motor Neurons in Mice. Neurosci Bull 2020;36:585-97. [PMID: 32096114 DOI: 10.1007/s12264-020-00468-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
155 Ram A, Lo AW. Is Smaller Better? A Proposal to Use Bacteria For Neuroscientific Modeling. Front Comput Neurosci 2018;12:7. [PMID: 29527158 DOI: 10.3389/fncom.2018.00007] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
156 Hao S, Yang H, Wang X, He Y, Xu H, Wu X, Pan L, Liu Y, Lou H, Xu H, Ma H, Xi W, Zhou Y, Duan S, Wang H. The Lateral Hypothalamic and BNST GABAergic Projections to the Anterior Ventrolateral Periaqueductal Gray Regulate Feeding. Cell Rep 2019;28:616-624.e5. [PMID: 31315042 DOI: 10.1016/j.celrep.2019.06.051] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
157 Leib DE, Zimmerman CA, Poormoghaddam A, Huey EL, Ahn JS, Lin YC, Tan CL, Chen Y, Knight ZA. The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement. Neuron 2017;96:1272-1281.e4. [PMID: 29268095 DOI: 10.1016/j.neuron.2017.11.041] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 17.0] [Reference Citation Analysis]
158 Rossier D, La Franca V, Salemi T, Natale S, Gross CT. A neural circuit for competing approach and defense underlying prey capture. Proc Natl Acad Sci U S A 2021;118:e2013411118. [PMID: 33876745 DOI: 10.1073/pnas.2013411118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
159 Cheong RY, Gabery S, Petersén Å. The Role of Hypothalamic Pathology for Non-Motor Features of Huntington's Disease. J Huntingtons Dis 2019;8:375-91. [PMID: 31594240 DOI: 10.3233/JHD-190372] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
160 Gendelis S, Inbar D, Inbar K, Mesner S, Kupchik YM. Metaplasticity in the Ventral Pallidum as a Potential Marker for the Propensity to Gain Weight in Chronic High-Calorie Diet. J Neurosci 2020;40:9725-35. [PMID: 33199503 DOI: 10.1523/JNEUROSCI.1809-20.2020] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
161 Howick K, Griffin BT, Cryan JF, Schellekens H. From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation. Int J Mol Sci 2017;18:E273. [PMID: 28134808 DOI: 10.3390/ijms18020273] [Cited by in Crossref: 70] [Cited by in F6Publishing: 59] [Article Influence: 14.0] [Reference Citation Analysis]
162 Wee CL, Song EY, Johnson RE, Ailani D, Randlett O, Kim JY, Nikitchenko M, Bahl A, Yang CT, Ahrens MB, Kawakami K, Engert F, Kunes S. A bidirectional network for appetite control in larval zebrafish. Elife 2019;8:e43775. [PMID: 31625906 DOI: 10.7554/eLife.43775] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
163 Micioni Di Bonaventura E, Botticelli L, Tomassoni D, Tayebati SK, Micioni Di Bonaventura MV, Cifani C. The Melanocortin System behind the Dysfunctional Eating Behaviors. Nutrients 2020;12:E3502. [PMID: 33202557 DOI: 10.3390/nu12113502] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
164 Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020;11:145. [PMID: 32373062 DOI: 10.3389/fendo.2020.00145] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
165 Livneh Y, Andermann ML. Cellular activity in insular cortex across seconds to hours: Sensations and predictions of bodily states. Neuron 2021;109:3576-93. [PMID: 34582784 DOI: 10.1016/j.neuron.2021.08.036] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
166 Zhou L, Liu MZ, Li Q, Deng J, Mu D, Sun YG. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus. Cell Rep 2017;18:3018-32. [PMID: 28329692 DOI: 10.1016/j.celrep.2017.02.077] [Cited by in Crossref: 46] [Cited by in F6Publishing: 32] [Article Influence: 9.2] [Reference Citation Analysis]
167 Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021;145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Reference Citation Analysis]
168 Uribe-Cerda S, Morselli E, Perez-Leighton C. Updates on the neurobiology of food reward and their relation to the obesogenic environment. Curr Opin Endocrinol Diabetes Obes 2018;25:292-7. [PMID: 30063551 DOI: 10.1097/MED.0000000000000427] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
169 Kakall ZM, Gopalasingam G, Herzog H, Zhang L. Dynamic regional alterations in mouse brain neuronal activity following short-term changes in energy balance. Obesity (Silver Spring) 2021;29:1650-63. [PMID: 34402189 DOI: 10.1002/oby.23253] [Reference Citation Analysis]
170 Tsanov M. Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration. Eur J Neurosci 2018;48:2783-94. [DOI: 10.1111/ejn.13746] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
171 Butler MJ, Perrini AA, Eckel LA. Estradiol treatment attenuates high fat diet-induced microgliosis in ovariectomized rats. Horm Behav 2020;120:104675. [PMID: 31923417 DOI: 10.1016/j.yhbeh.2020.104675] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
172 Zhou X, Risold PY, Alvarez-Bolado G. Development of the GABAergic and glutamatergic neurons of the lateral hypothalamus. J Chem Neuroanat 2021;116:101997. [PMID: 34182088 DOI: 10.1016/j.jchemneu.2021.101997] [Reference Citation Analysis]
173 Wang D, Opperhuizen A, Reznick J, Turner N, Su Y, Cooney GJ, Kalsbeek A. Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus. Brain Research 2017;1671:93-101. [DOI: 10.1016/j.brainres.2017.07.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
174 Harrison NL, Skelly MJ, Grosserode EK, Lowes DC, Zeric T, Phister S, Salling MC. Effects of acute alcohol on excitability in the CNS. Neuropharmacology 2017;122:36-45. [PMID: 28479395 DOI: 10.1016/j.neuropharm.2017.04.007] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 8.8] [Reference Citation Analysis]
175 Koblinger K, Jean-Xavier C, Sharma S, Füzesi T, Young L, Eaton SEA, Kwok CHT, Bains JS, Whelan PJ. Optogenetic Activation of A11 Region Increases Motor Activity. Front Neural Circuits 2018;12:86. [PMID: 30364230 DOI: 10.3389/fncir.2018.00086] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
176 Cui X, Gruzdeva A, Kim H, Yapici N. Of flies, mice and neural control of food intake: lessons to learn from both models. Curr Opin Neurobiol 2022;73:102531. [PMID: 35390643 DOI: 10.1016/j.conb.2022.102531] [Reference Citation Analysis]
177 Muto A, Lal P, Ailani D, Abe G, Itoh M, Kawakami K. Activation of the hypothalamic feeding centre upon visual prey detection. Nat Commun 2017;8:15029. [PMID: 28425439 DOI: 10.1038/ncomms15029] [Cited by in Crossref: 61] [Cited by in F6Publishing: 43] [Article Influence: 12.2] [Reference Citation Analysis]
178 Ma T, Wong SZH, Lee B, Ming GL, Song H. Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron 2021;109:1150-1167.e6. [PMID: 33600763 DOI: 10.1016/j.neuron.2021.01.026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
179 de Ávila C, Chometton S, Ma S, Pedersen LT, Timofeeva E, Cifani C, Gundlach AL. Effects of chronic silencing of relaxin-3 production in nucleus incertus neurons on food intake, body weight, anxiety-like behaviour and limbic brain activity in female rats. Psychopharmacology 2020;237:1091-106. [DOI: 10.1007/s00213-019-05439-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
180 Cheng J, Wang J, Ma X, Ullah R, Shen Y, Zhou YD. Anterior Paraventricular Thalamus to Nucleus Accumbens Projection Is Involved in Feeding Behavior in a Novel Environment. Front Mol Neurosci 2018;11:202. [PMID: 29930498 DOI: 10.3389/fnmol.2018.00202] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 7.0] [Reference Citation Analysis]
181 Sweeney P, Yang Y. An Inhibitory Septum to Lateral Hypothalamus Circuit That Suppresses Feeding. J Neurosci 2016;36:11185-95. [PMID: 27807162 DOI: 10.1523/JNEUROSCI.2042-16.2016] [Cited by in Crossref: 41] [Cited by in F6Publishing: 26] [Article Influence: 8.2] [Reference Citation Analysis]
182 Gouveia FV, Silk E, Davidson B, Pople CB, Abrahao A, Hamilton J, Ibrahim GM, Müller DJ, Giacobbe P, Lipsman N, Hamani C. A systematic review on neuromodulation therapies for reducing body weight in patients with obesity. Obes Rev 2021;22:e13309. [PMID: 34337843 DOI: 10.1111/obr.13309] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
183 Yousefvand S, Hamidi F. Role of Lateral Hypothalamus Area in the Central Regulation of Feeding. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10391-4] [Reference Citation Analysis]
184 Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021;44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Reference Citation Analysis]
185 Tiedemann LJ, Schmid SM, Hettel J, Giesen K, Francke P, Büchel C, Brassen S. Central insulin modulates food valuation via mesolimbic pathways. Nat Commun 2017;8:16052. [PMID: 28719580 DOI: 10.1038/ncomms16052] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 7.8] [Reference Citation Analysis]
186 Millard SJ, Bearden CE, Karlsgodt KH, Sharpe MJ. The prediction-error hypothesis of schizophrenia: new data point to circuit-specific changes in dopamine activity. Neuropsychopharmacology 2021. [PMID: 34588607 DOI: 10.1038/s41386-021-01188-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
187 Godfrey N, Borgland SL. Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology 2019;154:4-12. [DOI: 10.1016/j.neuropharm.2019.05.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
188 Ferreira-pinto MJ, Ruder L, Capelli P, Arber S. Connecting Circuits for Supraspinal Control of Locomotion. Neuron 2018;100:361-74. [DOI: 10.1016/j.neuron.2018.09.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 10.5] [Reference Citation Analysis]
189 You H, Chu P, Guo W, Lu B. A subpopulation of Bdnf-e1-expressing glutamatergic neurons in the lateral hypothalamus critical for thermogenesis control. Mol Metab 2020;31:109-23. [PMID: 31918913 DOI: 10.1016/j.molmet.2019.11.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
190 Gordon-Fennell A, Stuber GD. Illuminating subcortical GABAergic and glutamatergic circuits for reward and aversion. Neuropharmacology 2021;:108725. [PMID: 34375625 DOI: 10.1016/j.neuropharm.2021.108725] [Reference Citation Analysis]
191 Roman-Ortiz C, Guevara JA, Clem RL. GABAergic basal forebrain projections to the periaqueductal gray promote food consumption, reward and predation. Sci Rep 2021;11:22638. [PMID: 34811442 DOI: 10.1038/s41598-021-02157-7] [Reference Citation Analysis]
192 Levenberg K, Hajnal A, George DR, Saunders EFH. Prolonged functional cerebral asymmetry as a consequence of dysfunctional parvocellular paraventricular hypothalamic nucleus signaling: An integrative model for the pathophysiology of bipolar disorder. Med Hypotheses 2021;146:110433. [PMID: 33317848 DOI: 10.1016/j.mehy.2020.110433] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
193 Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, Jiang L, Yu L, Zhuo M, Qiu S. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun 2020;11:640. [PMID: 32005806 DOI: 10.1038/s41467-020-14281-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
194 López-Ferreras L, Richard JE, Noble EE, Eerola K, Anderberg RH, Olandersson K, Taing L, Kanoski SE, Hayes MR, Skibicka KP. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. Mol Psychiatry 2018;23:1157-68. [PMID: 28894301 DOI: 10.1038/mp.2017.187] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 8.2] [Reference Citation Analysis]
195 Schoonakker M, Meijer JH, Deboer T, Fifel K. Heterogeneity in the circadian and homeostatic modulation of multiunit activity in the lateral hypothalamus. Sleep 2018;41. [PMID: 29522210 DOI: 10.1093/sleep/zsy051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
196 Zheng DJ, Okobi DE Jr, Shu R, Agrawal R, Smith SK, Long MA, Phelps SM. Mapping the vocal circuitry of Alston's singing mouse with pseudorabies virus. J Comp Neurol 2022. [PMID: 35385140 DOI: 10.1002/cne.25321] [Reference Citation Analysis]
197 Kosse C, Burdakov D. Fast and Slow Oscillations Recruit Molecularly-Distinct Subnetworks of Lateral Hypothalamic Neurons In Situ. eNeuro 2018;5:ENEURO. [PMID: 29423437 DOI: 10.1523/ENEURO.0012-18.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
198 Siemian JN, Arenivar MA, Sarsfield S, Borja CB, Russell CN, Aponte Y. Lateral hypothalamic LEPR neurons drive appetitive but not consummatory behaviors. Cell Rep 2021;36:109615. [PMID: 34433027 DOI: 10.1016/j.celrep.2021.109615] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
199 Ogundele OM, Lee CC, Francis J. Thalamic dopaminergic neurons projects to the paraventricular nucleus-rostral ventrolateral medulla/C1 neural circuit. Anat Rec (Hoboken) 2017;300:1307-14. [PMID: 27981779 DOI: 10.1002/ar.23528] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
200 Franco RR, Fonoff ET, Alvarenga PG, Alho EJL, Lopes AC, Hoexter MQ, Batistuzzo MC, Paiva RR, Taub A, Shavitt RG, Miguel EC, Teixeira MJ, Damiani D, Hamani C. Assessment of Safety and Outcome of Lateral Hypothalamic Deep Brain Stimulation for Obesity in a Small Series of Patients With Prader-Willi Syndrome. JAMA Netw Open 2018;1:e185275. [PMID: 30646396 DOI: 10.1001/jamanetworkopen.2018.5275] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
201 Camandola S. Astrocytes, emerging stars of energy homeostasis. Cell Stress 2018;2:246-52. [PMID: 30417169 DOI: 10.15698/cst2018.10.157] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
202 Mickelsen LE, Bolisetty M, Chimileski BR, Fujita A, Beltrami EJ, Costanzo JT, Naparstek JR, Robson P, Jackson AC. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat Neurosci 2019;22:642-56. [PMID: 30858605 DOI: 10.1038/s41593-019-0349-8] [Cited by in Crossref: 94] [Cited by in F6Publishing: 73] [Article Influence: 31.3] [Reference Citation Analysis]
203 Nillni EA. Neuropeptides Controlling Our Behavior. In: Nillni EA, editor. Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function. Cham: Springer International Publishing; 2018. pp. 29-54. [DOI: 10.1007/978-3-319-89506-2_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
204 Barbier M, González JA, Houdayer C, Burdakov D, Risold PY, Croizier S. Projections from the dorsomedial division of the bed nucleus of the stria terminalis to hypothalamic nuclei in the mouse. J Comp Neurol 2021;529:929-56. [PMID: 32678476 DOI: 10.1002/cne.24988] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
205 Rogers AA, Aiani LM, Blanpain LT, Yuxian S, Moore R, Willie JT. Deep brain stimulation of hypothalamus for narcolepsy-cataplexy in mice. Brain Stimul 2020;13:1305-16. [PMID: 32320748 DOI: 10.1016/j.brs.2020.04.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
206 Ahn D, Jang HB, Chang S, Kim HK, Ryu Y, Lee BH, Kim SC, Bills KB, Steffensen SC, Fan Y, Kim HY. Role of Lateral Hypothalamus in Acupuncture Inhibition of Cocaine Psychomotor Activity. Int J Mol Sci 2021;22:5994. [PMID: 34206060 DOI: 10.3390/ijms22115994] [Reference Citation Analysis]
207 Ferré S. Hormones and Neuropeptide Receptor Heteromers in the Ventral Tegmental Area. Targets for the Treatment of Loss of Control of Food Intake and Substance Use Disorders. Curr Treat Options Psychiatry 2017;4:167-83. [PMID: 28580231 DOI: 10.1007/s40501-017-0109-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
208 Shah A, Zuo W, Kang S, Li J, Fu R, Zhang H, Bekker A, Ye JH. The lateral habenula and alcohol: Role of glutamate and M-type potassium channels. Pharmacol Biochem Behav 2017;162:94-102. [PMID: 28624587 DOI: 10.1016/j.pbb.2017.06.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
209 Kim LH, Sharma S, Sharples SA, Mayr KA, Kwok CHT, Whelan PJ. Integration of Descending Command Systems for the Generation of Context-Specific Locomotor Behaviors. Front Neurosci 2017;11:581. [PMID: 29093660 DOI: 10.3389/fnins.2017.00581] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
210 Simon MJ, Zafra MA, Puerto A. Differential rewarding effects of electrical stimulation of the lateral hypothalamus and parabrachial complex: Functional characterization and the relevance of opioid systems and dopamine. J Psychopharmacol 2019;33:1475-90. [PMID: 31282233 DOI: 10.1177/0269881119855982] [Reference Citation Analysis]
211 Zhang S, Zhornitsky S, Le TM, Li CR. Hypothalamic Responses to Cocaine and Food Cues in Individuals with Cocaine Dependence. Int J Neuropsychopharmacol 2019;22:754-64. [PMID: 31420667 DOI: 10.1093/ijnp/pyz044] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
212 Noritake A, Nakamura K. Encoding prediction signals during appetitive and aversive Pavlovian conditioning in the primate lateral hypothalamus. Journal of Neurophysiology 2019;121:396-417. [DOI: 10.1152/jn.00247.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
213 Gasser E, Moutos CP, Downes M, Evans RM. FGF1 - a new weapon to control type 2 diabetes mellitus. Nat Rev Endocrinol 2017;13:599-609. [PMID: 28664920 DOI: 10.1038/nrendo.2017.78] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 7.2] [Reference Citation Analysis]
214 Luo YJ, Li YD, Wang L, Yang SR, Yuan XS, Wang J, Cherasse Y, Lazarus M, Chen JF, Qu WM, Huang ZL. Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nat Commun 2018;9:1576. [PMID: 29679009 DOI: 10.1038/s41467-018-03889-3] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 16.8] [Reference Citation Analysis]
215 Rodriguez-Romaguera J, Ung RL, Nomura H, Otis JM, Basiri ML, Namboodiri VMK, Zhu X, Robinson JE, van den Munkhof HE, McHenry JA, Eckman LEH, Kosyk O, Jhou TC, Kash TL, Bruchas MR, Stuber GD. Prepronociceptin-Expressing Neurons in the Extended Amygdala Encode and Promote Rapid Arousal Responses to Motivationally Salient Stimuli. Cell Rep 2020;33:108362. [PMID: 33176134 DOI: 10.1016/j.celrep.2020.108362] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
216 Botticelli L, Micioni Di Bonaventura E, Ubaldi M, Ciccocioppo R, Cifani C, Micioni Di Bonaventura MV. The Neural Network of Neuropeptide S (NPS): Implications in Food Intake and Gastrointestinal Functions. Pharmaceuticals (Basel) 2021;14:293. [PMID: 33810221 DOI: 10.3390/ph14040293] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
217 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
218 Jennings KJ, de Lecea L. Neural and Hormonal Control of Sexual Behavior. Endocrinology 2020;161:bqaa150. [PMID: 32845294 DOI: 10.1210/endocr/bqaa150] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
219 Fakhoury M. The tail of the ventral tegmental area in behavioral processes and in the effect of psychostimulants and drugs of abuse. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;84:30-8. [DOI: 10.1016/j.pnpbp.2018.02.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
220 Adamantidis A. How the gut talks to the brain. Science 2022;376:248-9. [PMID: 35420955 DOI: 10.1126/science.abo7933] [Reference Citation Analysis]
221 Yang YL, Ran XR, Li Y, Zhou L, Zheng LF, Han Y, Cai QQ, Wang ZY, Zhu JX. Expression of Dopamine Receptors in the Lateral Hypothalamic Nucleus and Their Potential Regulation of Gastric Motility in Rats With Lesions of Bilateral Substantia Nigra. Front Neurosci 2019;13:195. [PMID: 30923496 DOI: 10.3389/fnins.2019.00195] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
222 Clarke RE, Verdejo-Garcia A, Andrews ZB. The role of corticostriatal-hypothalamic neural circuits in feeding behaviour: implications for obesity. J Neurochem 2018;147:715-29. [PMID: 29704424 DOI: 10.1111/jnc.14455] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
223 Rønnekleiv OK, Qiu J, Kelly MJ. Arcuate Kisspeptin Neurons Coordinate Reproductive Activities with Metabolism. Semin Reprod Med 2019;37:131-40. [PMID: 31869841 DOI: 10.1055/s-0039-3400251] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
224 Alhadeff AL. A hunger for warmth. Neuron 2022;110:180-2. [PMID: 35051361 DOI: 10.1016/j.neuron.2021.12.030] [Reference Citation Analysis]
225 Clarke GS, Gatford KL, Young RL, Grattan DR, Ladyman SR, Page AJ. Maternal adaptations to food intake across pregnancy: Central and peripheral mechanisms. Obesity (Silver Spring) 2021;29:1813-24. [PMID: 34623766 DOI: 10.1002/oby.23224] [Reference Citation Analysis]
226 Singh O, Agarwal N, Yadav A, Basu S, Malik S, Rani S, Kumar V, Singru PS. Concurrent changes in photoperiod-induced seasonal phenotypes and hypothalamic CART peptide-containing systems in night-migratory redheaded buntings. Brain Struct Funct 2020;225:2775-98. [PMID: 33141294 DOI: 10.1007/s00429-020-02154-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
227 Mantas I, Vallianatou T, Yang Y, Shariatgorji M, Kalomoiri M, Fridjonsdottir E, Millan MJ, Zhang X, Andrén PE, Svenningsson P. TAAR1-Dependent and -Independent Actions of Tyramine in Interaction With Glutamate Underlie Central Effects of Monoamine Oxidase Inhibition. Biol Psychiatry 2021;90:16-27. [PMID: 33579534 DOI: 10.1016/j.biopsych.2020.12.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
228 Wang J, DePena M, Taylor G, Gilbert ER, Cline MA. Hypothalamic mechanism of corticotropin-releasing factor's anorexigenic effect in Japanese quail (Coturnix japonica). Gen Comp Endocrinol 2019;276:22-9. [PMID: 30769012 DOI: 10.1016/j.ygcen.2019.02.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]